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Abstract. We shall give a simple proof of the weak type L1 inequality for the K-bi-invariant Hardy-Littlewood
maximal functions on non-compact real rank one semisimple Lie groups. For higher rank groups we do under an
assumption which holds for the most parts. And on SU(n, n + k) we introduce a maximal operator defined by the
characteristic function supported on a cube, and show that the operator also satisfies the weak L1 property.

1. Introduction.

The maximal theorem, the strong type Lp (p > 1) and the weak type L1 inequalities for
the Hardy-Littlewood maximal functions, was first obtained in the Euclidean space, and then
generalized to various spaces. For example, homogeneous groups and semisimple Lie groups.

On homogeneous groups, an appropriate family of dilations is equipped, and the Hardy-
Littlewood maximal operator is defined by supr>0 |f | ∗ χB,r , where χB,r is a dilation of the
characteristic function χB of the unit ball B. Since the covering lemma, based on the so-
called doubling condition, holds on the group, we can prove the maximal theorem by using
analogous arguments in the Euclidean space. In this process the shape of the domain on
which the characteristic function is supported is not essential, and the fact that dilations of the
domain satisfies the doubling property is essential (see [4, Chap. 2]).

Non-compact semisimple Lie groups are not homogeneous groups. The Lp inequality
was first proved by Clerc and Stein [1] for p > 1 and the weak type L1 inequality by Ström-
berg [10]. In his proof, Strömberg obtained deep estimates of the convolution structure, which
are based on the Iwasawa decomposition of G, and carried out a little bit complicated argu-
ment. Therefore, it is worth to simplify his proof or to find a new approach to the maximal
theorem. Recently, the second author [9] gave a simple proof of the maximal theorem for the
Hardy-Littlewood maximal functions associated to the Jacobi transform. By specializing the
Jacobi transform, his result gives a simple proof in the case of K-bi-invariant functions on
real rank one semisimple Lie groups and his estimates are based on the Cartan decomposition
of G.
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In this paper, we shall give a further simplified proof of the maximal theorem for K-bi-
invariant functions on semisimple Lie groups. The key is, since we assume K-bi-invariance,
that the pointwise estimate remarked in [10, Remark 2] can be replaced by the estimate of
an integral over K (see (��) in Proposition 3.1), which essentially comes from an estimate
of the kernel appeared in the integral formula of the product of zonal spherical functions (see
(�) in Definition 2.1). By this process we can simplify the arguments in [10] which yield the
estimate of σ , however, we still apply [10, Lemma 2] for our conclusion.

This inequality (��) was used by the first author in [7, 8] for real rank one case. For
higher rank case we notice that most of all semisimple Lie groups satisfy the estimate (�) and
thereby (��), so we can give a simplified proof of the maximal theorem for these higher rank
semisimple Lie groups. Actually, except three simple Lie groups; SL(3, R), SL(4, R), and
SO(3, 2), all simple Lie groups satisfy (��) (see Definition 2.1, Remark 2.2, and Proposition
3.1).

The organization of this paper is the following. In §2 we shall recall some basic facts
on the kernel form and we define a class of semisimple Lie groups satisfying the estimate
(�), which includes most of all semisimple Lie groups (see Remark 2.2). Then, combining
(�) and a sharp estimate of the volume of the ball, we deduce the key inequality (��) in
§3. The weak type L1 inequality for the Hardy-Littlewood maximal functions easily follows
from this estimate and [10, Lemma 2] in §4 (see Theorem 4.1). In §5 we treat the case of
SU(n, n + k) and we introduce a cubic maximal operator, which is defined by using the
characteristic function supported on a cube, instead of the unit ball. This operator is one of
generalized maximal operators remarked in [10, Remark 2] and thus, it also satisfies the weak
type L1 inequality. In 5.2 we shall give an another approach. We obtain the corresponding
estimate (�) inductively and thereby, without using [10, Lemma 2], we prove the weak type
L1 estimate simply and directly (see Theorem 5.4). In this sense this operator is a little better
than the Hardy-Littlewood maximal operator.

2. Kernel form.

Let G be a non-compact connected semisimple Lie group with finite center and G =
KAN an Iwasawa decomposition of G. Let Σ+ denote the set of positive roots for (G,A),
A+ the positive Weyl chamber of A, and G = KCL(A+)K the Cartan decomposition of G.
In what follows we identify A with Rn and we denote the image of A+ under the identification
by Rn

W . We denote the dual space of the Lie algebra of A by F and we also identifyF with Rn.
Each K-bi-invariant function f on G is determined by its restriction on A as a W -invariant
function on A, and thus, as one on A+. We abuse the following notation:

f (g ) = f (ax) = f (x) (g ∈ KaxK, ax ∈ A+, x ∈ Rn
W ) .

Especially, the invariant integral on G can be written as∫
G

f (g )dg =
∫

Rn
W

f (x)∆(x)dx ,
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where ∆(x) = ∏
α∈Σ+(eα(x) − e−α(x)).

Let φλ, λ ∈ F , be the zonal spherical function on G. The kernel form of the product of
two spherical functions is given as

φλ(x)φλ(y) =
∫

Rn
W

φλ(z)K(x, y, z)∆(z)dz, x, y ∈ Rn
W .

Then the Plancherel formula yields that, for all f ∈ C∞
c (K\G/K)∫

Rn
W

f (z)K(x, y, z)∆(z)dz =
∫
F

f̂ (λ)φλ(x)φλ(y)|C(λ)|−2dλ

=
∫
F

f̂ (λ)

∫
K

φλ(axkay)dk|C(λ)|−2dλ

=
∫

K

f (axkay)dk . (1)

Therefore, as a distribution sense, it follows that

K(x, y, z) =
∫
F

φλ(x)φλ(y)φλ(z)|C(λ)|−2dλ (2)

and thereby

σ(axa
−1
y ) ≤ σ(az) ≤ σ(axay) if ax, ay ∈ A+ and K(x, y, z) �= 0 , (3)

where σ is the distance function on G/K (see [5]).

DEFINITION 2.1. We say that G has a fine kernel if the kernel K(x, y, z) satisfies

(�) K(x, y, z) ≤ ce−(ρ(x)+ρ(y)+ρ(z))(1 + σ(z))n−1 , x, y, z ∈ Rn
W ,

if σ(ax), σ (ay), σ (az) ≥ 1 and σ(axa
−1
y ) ≥ 1.

REMARK 2.2. When G is of real rank one (n = 1) and not SU(1, 1), the desired esti-
mate follows from the explicit form of K(x, y, z) obtained by [3, (4.19)], so except SU(1, 1)

the real rank one semisimple Lie groups have fine kernels. For higher rank case, we recall the
following Harish-Chandra expansion of φλ(x):

φλ(x) = e−ρ(x)
∑
w∈W

eisλΦ(sλ, x)C(sλ) . (4)

Especially, if σ(x) ≥ 1, it follows from [5] that

|φλ(x)| |C(λ)|−1 ≤ ce−ρ(x) , λ ∈ F .

Here we assume that the C-function is integrable far from the wall. On the wall the C-function
has the singularities corresponding to short simple roots. However, in (4) these singularities
are canceled by taking the sum over W , because the left hand side has no singularities. Espe-
cially, if σ(x) ≥ 1, noting that Φ(sλ, x) is uniformly bounded and its l-th derivative on λ has
a polynomial growth of order l on σ(x), we see that

∑
w∈W eisλΦ(sλ, x)C(sλ) is integrable

on F and has a polynomial growth of order n − 1 on σ(x). This means that if the C-fucntion
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is integrable far from the wall, then eρ(x)φλ(x), as a function of λ, is integrable on F and has
a polynomial growth of order n − 1 on σ(x) ≥ 1. Therefore, (�) follows from (2).

Let d be the dimension of G/K and n the real rank of G/K . When λ is far from the wall,
the order of the C-function is gives as

|C(λ)| ∼ (1 + ‖λ‖)−(d−n)/2 , ‖λ‖ ≥ 1 .

Hence, if d > 3n, the C-function is integrable far from the wall. Therefore, combining
the previous observation for real rank one case, except SU(1, 1), SL(3, R), SL(4, R), and
SO(3, 2), all simple Lie groups satisfy the estimate (�).

3. A key estimate.

We choose a coordinate of Rn so that ρ is identified with (ρ1, ρ2, · · · , ρn) in Rn
W :

ρ(x) = ρ1x1 + ρ2x2 + · · · + ρnxn = 〈ρ, x〉 , ρ ∈ Rn
W ,

and moreover, we denote x ∈ Rn by

x = x0
ρ

‖ρ‖ + x̃, x0 ∈ R , x̃ ∈ Rn−1 , (5)

where 〈ρ, x̃〉 = 0. Clearly,

∆(x) ≤ e2〈ρ,x〉 = e2‖ρ‖x0 , x ∈ Rn
W , (6)

and, if x is far from the boundaries of Rn
W , then

∆(x) ∼ e2〈ρ,x〉 , (7)

where the symbol “∼” means that the ratio of the left hand side to the right hand side is
bounded above and below by a positive constant.

Let B(r), r > 0, denote the ball with radius r centered at the origin:

B(r) = {g ∈ G ; σ(g ) ≤ r}
and |B(r)| the volume of the ball. We define a K-bi-invariant function τ on G by

τ (g ) = 1

1 + |B(σ(g )| (g ∈ G) . (8)

LEMMA 3.1. Let Sn−1 be the unit sphere in Rn and dω the surface measure on Sn−1.
We fix c > 0. Then, for r > 0∫

Sn−1∩Rn
W

e−c(‖ρ‖r−〈ρ,rω〉)dω ∼ (1 + r)−(n−1)/2 .

PROOF. Let δ > 0 be a sufficiently small constant and S
ρ,δ
n−1 the intersection of Sn−1

and the cone defined by Cρ,δ = {x ∈ Rn
W ; ‖ρ‖‖x‖−〈ρ, x〉 ≤ δ‖ρ‖‖x‖}. Then the integration
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outside of S
ρ,δ
n−1 is dominated below and above by e−cδ‖ρ‖r . As for the integration over S

ρ,δ
n−1,

we see that ∫
S

ρ,δ
n−1

e−c(‖ρ‖r−〈ρ,rω〉)dω ∼
∫

S
ρ,δ
n−1

e−c‖ρ‖r(1−cos θω)dω

∼
∫

S
ρ,δ
n−1

e−c‖ρ‖rθ2
ωdω

∼ (1 + r)−(n−1)/2 . �

LEMMA 3.2. When r > 1,

|B(r)| =
∫

σ(az)≤r

∆(z)dz ∼ e2‖ρ‖r r(n−1)/2 .

PROOF. When the real rank of G is one, the estimate is obvious from (6). We suppose
that the real rank of G is greater than one.

|B(r)| =
∫

σ(az)≤r

∆(z)dz

≤
∫

‖z‖≤r

e2〈ρ,z〉dz

=
∫

‖z‖≤r

e−2(‖ρ‖‖z‖−〈ρ,z〉)e2‖ρ‖‖z‖dz

=
∫ r

0

( ∫
Sn−1∩Rn

W

e−2(‖ρ‖t−〈ρ,tω〉)dω

)
e2‖ρ‖t t (n−1)dt

∼
∫ r

0
e2‖ρ‖t t (n−1)/2dt

∼ e2‖ρ‖rr(n−1)/2 .

Let δ > 0 be a sufficiently small constant and S
ρ,δ
n−1 the surface domain defined in the proof of

Lemma 3.1. We put Dρ,δ
r = {z = tω ; r − 1/2 ≤ t ≤ r, ω ∈ S

ρ,δ
n−1}. Since D

ρ,δ
r ⊂ B(r) and

D
ρ,δ
r is far from the boundaries of Rn

W , it follows from (7) that

|B(r)| =
∫

σ(az)≤r

∆(z)dz

≥ c

∫
D

ρ,δ
r

e2〈ρ,x〉dz

= c

∫ r

r−1/2

( ∫
S

ρ,δ
n−1

e−2(‖ρ‖t−〈ρ,tω〉)dω

)
e2‖ρ‖t t (n−1)dt

≥ c

∫ r

r−1/2
e2‖ρ‖t t (n−1)/2dt

∼ e2‖ρ‖r r(n−1)/2 . �
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PROPOSITION 3.3. We suppose that G = SU(1, 1) or G has a fine kernel and 0 <

γ < 1. Then, for all ax, ay ∈ A+, σ (axa−1
y ) ≥ 2

(��)

∫
K

|B(σ(axkay))|−1dk ≤ ce−2ρ(x)e−(‖ρ‖‖x−y‖−〈ρ,x−y〉)‖x − y‖n−1 .

In particular, for all ax, ay ∈ A+∫
K

τ(σ(axkay))dk ≤ ce−2ρ(x)e−(‖ρ‖‖x−y‖−〈ρ,x−y〉)(1 + ‖x − y‖)n−1 .

PROOF. Since σ(axa
−1
y ) ≥ 2, if σ(ay) ≤ 1, then σ(ax) > 1 and

|B(σ(axkay))|−1 ≤ ce−2‖ρ‖‖x−y‖‖x − y‖−(n−1)/2

≤ ce−2‖ρ‖‖x‖ ≤ ce−2ρ(x)e−(‖ρ‖‖x−y‖−〈ρ,x−y〉).
On the other hand, if σ(ax) ≤ 1, the same argument yields (��). Thereby, we may assume
that σ(ax), σ (ay) ≥ 1.

When G = SU(1, 1), we can obtain (��) from a direct calculation (cf. [7, Lemma 2.5]).
Hence, we may assume that G has a fine kernel and thus, we can apply (�) to prove (��):∫

K

|B(axkay)|−1dk

=
∫

A+
|B(σ(az))|−1K(x, y, z)∆(z)dz

≤ ce−〈ρ,x+y〉
∫

σ(axa−1
y )≤σ(z)≤σ(axay)

e−2‖ρ‖‖z‖‖z‖−(n−1)/2‖z‖n−1e〈ρ,z〉dz

= e−〈ρ,x+y〉
∫ ‖x+y‖

‖x−y‖
e−‖ρ‖t t3(n−1)/2

( ∫
Sn−1∩Rn

W

e−2(‖ρ‖t−〈ρ,tω〉)dω

)
dt

∼ ce−〈ρ,x+y〉
∫ ‖x+y‖

‖x−y‖
e−‖ρ‖t tn−1dt

≤ ce−〈ρ,x+y〉e−‖ρ‖‖x−y‖‖x − y‖n−1

= ce−2〈ρ,x〉e−(‖ρ‖‖x−y‖−〈ρ,x−y〉)‖x − y‖n−1 .

Next we shall estimate τ . When σ(axa−1
y ) ≥ 2, the assertion follows from (��). Hence,

we may assume that σ(axa
−1
y ) ≤ 2. If σ(ax) ≤ 1, then the right hand side is bounded. Since

τ ≤ 1, the desired estimate is clear. Therefore, we shall consider the case that σ(axa
−1
y ) ≤ 2

and σ(ax) ≥ 1.
We fix an element a0 in A+ such that σ(a0) ≥ 4. Since τ is continuous as a function of

x, σ(axa−1
y ) ≤ 2, and σ(a0axa

−1
y ) ≥ 4 − 2 = 2, it follows that
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K

τ(axka−1
y )dk ∼

∫
K

τ(a0axka−1
y )dk

≤ ce−2ρ(x+loga0)e−(‖ρ‖‖x+log a0−y‖−〈ρ,x+log a0−y〉)‖x + log a0 − y‖n−1

∼ ce−2ρ(x)e−(‖ρ‖‖x−y‖−〈ρ,x−y〉)(1 + ‖x − y‖)n−1 . �

For the real rank one groups we have a little bit better estimate, which will be used in §5.

COROLLARY 3.4. We suppose that G is of real rank one. Then for any ε > 0∫
K

e−(2+ε)ρσ(axkay)dk ≤ ce−2ρxe−ερ|x−y| if |x − y| > 2 .

PROOF. Since τ (g ) ∼ e2ρσ(g ), it follows that∫
K

e−(2+ε)ρσ(axkay)dk ≤
∫

K

τ(σ(axkay))dke−ερσ(axa
−1
y ) ≤ ce−2ρxe−ερ|x−y| . �

CONJECTURE. The estimate (��) in Proposition 3.3 holds for any semisimple Lie
groups.

4. Weak type L1 inequality.

The Hardy-Littlewood maximal operator on G is defined by

MHLf (g ) = sup
r>0

1

|B(r)|
∫

B(r)

|f (gh)|dh , g ∈ G

for f ∈ L1(K\G/K). We define the local (resp. global) maximal operator M0
HL (resp. M1

HL)
with supremum restricted to the balls of redius 0 < r ≤ 1 (resp. r > 1). Then we easily see
that

MHLf (g ) ≤ M0
HLf (g ) + M1

HLf (g ) , g ∈ G ,

M1
HLf (g ) ≤ τ ∗ |f |(g ) ,

where τ is defined by (8).

THEOREM 4.1. We suppose that G = SU(1, 1) or G has a fine kernal. Then the
maximal operator MHL is of strong (Lp,Lp), 1 < p ≤ ∞, and satisfies the weak type L1

inequality: for any ε > 0 and f in L1(K\G/K)∫
{x∈Rn

W ; MHLf (x)>ε}
∆(x)dx ≤ c

‖f ‖1

ε
.

PROOF. Clearly, MHL is of strong (L∞, L∞), so we may suppose that p < ∞. We
shall prove the theorem for M0

HL and M1
HL respectively. As for the local maximal operator

M0
HL, we can apply the same argument used in the Euclidean case, and we can deduce that

M0
HL is of strong (Lp,Lp), 1 < p < ∞, and it satisfies the weak type L1 inequality.
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As for M1
HL, since τ belongs to Lp0 for all p0 > 1, [1, Lemma 2] yields that M1

HL is of
strong (Lp,Lp), 1 < p < ∞. When p = 1, it follows from (1) that

M1
HLf (x) ≤ cτ ∗ |f |(x) ≤

∫
G

(∫
K

τ(axkay)dk

)
|f (y)|∆(y)dy .

Here we take a sufficiently small δ > 0, and we devide the domain of integration as Rn
W =

D1 ∪ D2, where
D1 = {y ∈ Rn

W ; ‖x̃ − ỹ‖ ≤ δ(x0 − y0)}
and D2 = Rn

W − D1. On D1, we note that

‖x − y‖ = |x0 − y0|
(

1 + ‖x̃ − ỹ‖2

|x0 − y0|2
)1/2

∼ |x0 − y0| + ‖x̃ − ỹ‖2

2|x0 − y0| .

Therefore, since τ (axkay) ≤ τ (axa
−1
y ), it follows from Lemma 3.2 that

M1
HLf (x) ≤ c

∫
D1

e−2‖ρ‖‖x−y‖‖x − y‖−(n−1)/2|f (y)|∆(y)dy

≤ c

∫
D1

e−2‖ρ‖(|x0−y0|+‖x̃−ỹ‖2/2|x0−y0|)|x0 − y0|−(n−1)/2|f (y)|∆(y)e−2〈ρ,y〉dy

= H1∗̃F1(x) ,

where ∗̃ is the convolution on Rn and

H1(x) = e−2‖ρ‖(|x0|+‖x̃‖2/2|x0|)|x0|−(n−1)/2, F1(x) = |f (y)|∆(y)e−2〈ρ,y〉 .
On D2 we recall that ‖x̃−ỹ‖ > δ(x0−y0). If x0−y0 ≤ 0, then ‖ρ‖‖x−y‖−〈ρ, x−y〉 >

‖ρ‖‖x − y‖, and if x0 − y0 > 0, then

‖ρ‖‖x − y‖ − 〈ρ, x − y〉 > ‖ρ‖‖x − y‖
(

1 − 1

/√
1 + ‖x̃ − ỹ‖2

|x0 − y0|2
)

> ‖ρ‖‖x − y‖(1 − 1/
√

1 + δ)

= δ′‖ρ‖‖x − y‖, 0 < δ′ < 1 .

Therefore, by using the inequality in Proposition 3.3, we see that

ce−2〈ρ,x〉
∫

D2

e−(‖ρ‖‖x−y‖−〈ρ,x−y〉)‖x − y‖n−1|f (y)|∆(y)dy

≤ ce−2〈ρ,x〉
∫

D2

e−δ′‖ρ‖‖x−y‖‖x − y‖n−1|f (y)|∆(y)dy

= ce−2〈ρ,x〉H2∗̃F2(x) ,

where
H2(x) = e−δ′‖ρ‖‖x‖‖x‖n−1 , F2(x) = |f (y)|∆(y) .

Since
∫

Rn e−δ′‖ρ‖‖x‖‖x‖n−1dx < ∞, it follows that∫
Rn

H2∗̃F2(x)dx ≤
∫

Rn
W

|f (y)|∆(y)dy = c‖f ‖1 .
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Hence, we have deduced that

τ ∗ |f |(x) ≤ cH1∗̃F1(x) + ce−2〈ρ,x〉H2∗̃F2(x) = J1(x) + J2(x) .

In order to obtain the weak L1 estimate for M1
HL it is enough to show the estimate for

each J1 and J2 respectively. As for J1 we can apply Lemma 2 in [10] and as for J1, since

‖J2‖1 = c

∫
Rn

W

e−2〈ρ,x〉H2∗̃F2(x)∆(x)dx ≤ c‖f ‖1 ,

it satisfies the weak L1 inequality.
This completes the proof of the theorem. �

5. A cubic maximal operator.

In this section we shall define a cubic maximal operator MC in the case of SU(n, n + k)

and we shall prove that MC satisfies the weak type L1 inequality as in Theorem 4.1. This result
follows from Strömberg’s criteria in [10, Remark 2], however, we shall give an inductive and
simple proof. We retain the notations used in [5].

5.1. Let G = Gn = SU(n, n + k) (n ∈ N, k ∈ N ∪ {0}) and Gn = KnAnNn the
Iwasawa decomposition of Gn: An is the set of all matrices of the form

at = exp Ht , Ht =
⎛
⎝ On,n diag(t1, t2, · · · , tn) On,k

diag(t1, t2, · · · , tn) On,n On,k

Ok,n Ok,n Ok,k

⎞
⎠

for any t = (t1, t2, · · · , tn) ∈ Rn and Kn = S(U(n) × U(n + k)). As in §2, we identify An

and Fn, the dual space of the Lie algebra of An, with Rn. If we define αi ∈ Fn, 1 ≤ i ≤ n,
by αi(Ht) = ti , then

Σ+ = {αi, 2αi (1 ≤ i ≤ n), αi ± αj (1 ≤ i < j ≤ n)} ,

mα =
⎧⎨
⎩

2k α = αi ,

1 α = 2αi ,

2 α = αi ± αj ,

where mα is the multiplicity of α. The weight ∆ = ∆n and ρ = ρn, half the sum of the
positive roots, are respectively given as follows:

∆n(t) =
∏

α∈Σ+
(eα(t) − e−α(t)) = σ(t)ω(t)2 ,

where

σ(t) = 2n(2k+1)
n∏

i=1

(sinh 2ti)
2k sinh 2ti = 2n(2k+1)

n∏
i=1

∆1(ti) ,

ω(t) = 2n(n−1)/2
∏
i<j

(cosh 2ti − cosh 2tj ) = 2n(n−1)/2 det(cosh t
2(j−1)
i ) ,
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ρn(t) = (k + 1 + 2(n − 1))t1 + (k + 1 + 2(n − 2))t2 + · · · + (k + 1)tn

= ρn,1t1 + ρn,2t2 + · · · + ρn,ntn .

We note

ρ1 = ρ1,1 = k + 1 .

We denote the zonal spherical function and Harish-Chandra’s C-function of Gn by φn
s (g )

and Cn(s) (s ∈ Rn) respectively. For their explicit forms we refer to [3] and [6]. Then
Hoogenboom [6] deduced the following reduction formulas: For t = (t1, t2, · · · , tn) and
λ = (λ1, λ2, · · · , λn) ∈ Rn

W

φn
λ(t) = A∏

i<j (λ
2
i − λ2

j )
· det(φ1

λi
(tj ))

ω(t)
,

Cn(λ) =A
C1(λ1)C

1(λ2) · · · C1(λn)

(−1)n(n−1)/2 det(λ2(j−1)

i )
,

where

A = (−1)n(n−1)/222n(n−1)
n−1∏
j=1

((k + j)n−j j !) .

We now introduce a cubic maximal operator MC on G. Let D(r) (r > 0) denote the
domain in Rn

W defined by

D(r) = {t = (t1, t2, · · · , tn) ∈ Rn
W ; t1 + t2 + · · · + tn ≤ r}

and χr the characteristic function of D(r). We regard χr as a K-bi-invariant function on G.
Then the maximal operator MC is defined by

MCf (g ) = sup
r>0

1

|D(r)|χr ∗ |f |(g ) , g ∈ G

for f ∈ L1(K\G/K).

5.2. In order to obtain the weak L1 inequality for MC , we shall apply the same process
used in §4 (see 5.3 below). In this process we need to estimate the following integral: For
s ∈ R, x, y ∈ Rn

W ∫
K

coshn(axkay)
−2sdk ,

where coshn is the K-bi-invariant function on Gn defined by

coshn(at ) = cosh(t1) cosh(t2) · · · cosh(tn) , t = (t1, t1, · · · , tn) ∈ Rn
W .

In this subsection, applying a result in [2], we shall estimate the integral. We first calcu-
late the spherical Fourier transform of cosh−2s

n .

LEMMA 5.1. For any ε > 0 and λ = (λ1, λ2, · · · , λn) ∈ Rn
W

(cosh−2(ρ1+(n−1)+ε)
n )∧(λ) = (cosh−2(ρ1+ε)

1 )∧(λ1) · · · (cosh−2(ρ1+ε)
1 )∧(λn).
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PROOF. For γ1, γ2, · · · , γn > n + k, we put

F(t) = (cosh t1)
−2γ1(cosh t2)

−2γ2 · · · (cosh tn)
−2γn .

By definition, the spherical Fourier transform F̂ of F is given by

F̂ (λ) =
∫

G

f (g )φn
λ(g )dg =

∫
Rn

W

F (t)φn
λ(t)∆n(t)dt

= A∏
i<j (λ

2
i − λ2

j )

∫
(cosh t1)

−2γ1 · · · (cosh tn)
−2γn det

(
φλi (tj )

)
σ(t)ω(t)dt .

We here note that

det(φλi (tj ))ω(t)(cosh t1)
−2γ1(cosh t2)

−2γ2 · · · (cosh tn)
−2γn

= det(φλi (tj )) · det(cosh t
2(j−1)
i )(cosh t1)

−2γ1 · · · (cosh tn)
−2γn

=
∑
σ∈Sn

sgn(σ )φλσ(1)
(t1)φλσ(2)

(t2) · · ·φλσ(n)
(tn)

×
∑

σ ′∈Sn

sgn(σ ′)(cosh t1)
2(σ ′(1)−1)−2γ1 · · · (cosh tn)

2(σ ′(n)−1)−2γn.

When the real rank of Gn is one (n = 1), the spherical Fourier transform F̂s (λ), λ ∈ R, of
Fs = cosh−2s is given by

F̂s (λ) = (cosh−2s )∧(λ) = Γ (s + (iλ − ρ1)/2)Γ (s + (−iλ − ρ1)/2)

Γ (s)2 ,

where s > ρ1 = k + 1 (see [2, p. 120]). Especially, if γ − β > ρ1, then

F̂γ−β(λ) =
∫

φ1
λ(t)(cosh t)2β(cosh t)−2γ ∆1(t)dt

= Γ (γ − β + (iλ − ρ1)/2)Γ (γ − β + (−iλ − ρ1)/2)

Γ (γ − β)2

= Γ (γ − (n − 1) + (iλ − ρ1)/2)Γ (γ − (n − 1) + (−iλ − ρ1)/2)

Γ (γ − (n − 1))2

× 1∏n−1−β

k=1 (γ − β − k)2
2−2(n−1−β)

n−1−β∏
k=1

(4(γ − β − k − ρ1/2)2 + λ2)

= BF̂γ−(n−1)(λ)

n−1−β∏
k=1

(4(γ − β − k − ρ1/2)2 + λ2) ,

where

B = 2−2(n−1−β)∏n−1−β

k=1 (γ − β − k)2
.



176 TAKESHI KAWAZOE AND JIANMING LIU

Therefore, since σ(t) = c
∏n

i=1 ∆1(ti), F̂ (λ) can be written as

B∏
i<j (λ

2
i − λ2

j )

×
∑
σ

sgn(σ )(cosh−2(γ1−(n−1)))∧(λσ(1)) · · · (cosh−2(γn−(n−1)))∧(λσ(n))

×
∑
σ ′

sgn(σ ′)
n−σ ′(1)∏

k=1

(4(γ1 − σ ′(1) + 1 − k − ρ1/2)2 + λ2
σ(1))

× · · ·
n−σ ′(n)∏

k=1

(4(γn − σ ′(n) + 1 − k − ρ1/2)2 + λ2
σ(n)) .

If γ1 = γ2 = · · · = γn = γ , then the last sum is equal to

∑
σ ′

sgn(σ ′)
n−σ ′(1)∏

k=1

(4(γ − σ ′(1) + 1 − k − ρ1/2)2 + λ2
σ(1))

× · · ·
n−σ ′(n)∏

k=1

(4(γ − σ ′(n) + 1 − k − ρ1/2)2 + λ2
σ(n))

=
∑
τ

sgn(τ )

n−1∏
k=1

(4(γ − 1 + 1 − k − ρ1/2)2 + λ2
τ (1))

×
n−2∏
k=1

(4(γ − 2 + 1 − k − ρ1/2)2 + λ2
τ (2))

× · · ·
1∏

k=1

(4(γ − (n − 1) + 1 − k − ρ1/2)2 + λ2
τ (n−1)) · 1

= det

( i∏
k=1

(4(γ − (n − i) + 1 − k − ρ1/2)2 + λ2
j )

)

=
∏
i<j

(λ2
i − λ2

j ) .

Finally, letting γ = n + k + ε = ρ1 + (n − 1) + ε, ε > 0, we obtain the desired result. �

As an application of this lemma, we can deduce the following inequality.

PROPOSITION 5.2. Let notation be as above. Then, for x, y ∈ Rn
W∫

K

coshn(axkay)
−2ρn,1dk ≤ ce−2ρ(x)e−2(|x2−y2|+2|x3−y3|+···+(n−1)|xn−yn|) .

PROOF. We easily see that, if ‖z‖ ≤ 1, then coshn(azaxkay) ∼ coshn(axkay) and
e−2ρ(z+x) ∼ e−2ρ(x). Thereby, we may assume that x, y are far from the boundaries of Rn

W .
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It follows from (1), Lemma 5.1 with ε = n − 1, and the Fourier inversion formula for G1 that∫
K

coshn(axkay)
−2ρn,1dk

=
∫

φλ(x)φλ(y)(cosh−2(ρ1+2(n−1))
n )∧(λ)|C(λ)|−2dλ

= c
1

ω(x)

1

ω(y)

∫
· · ·

∫
det(φλi (xj ))∏
i<j (λ

2
i − λ2

j )

det(φλi (yj ))∏
i<j (λ

2
i − λ2

j )

× (cosh−2(ρ1+(n−1))
1 )∧(λ1) · · · (cosh−2(ρ1+(n−1))

1 )∧(λn)

×
∣∣∣∣∣C1(λ1) · · ·C1(λn)∏

i<j (λ
2
i − λ2

j )

∣∣∣∣∣
−2

dλ1 · · · dλn

= c
1

ω(x)

1

ω(y)

∑
σ

∑
σ ′

sgn(σ )sgn(σ ′)

×
∫

· · ·
∫

φλ1(xσ(1)) · · ·φλn(xσ(n))φλ1(yσ ′(1)) · · · φλn(yσ ′(n))

× (cosh−2(ρ1+(n−1))
1 )∧(λ1) · · · (cosh−2(ρ1+(n−1))

1 )∧(λn)

× |C1(λ1)|−2 · · · |C1(λn)|−2dλ1 · · · dλn

= c
1

ω(x)

1

ω(y)

∑
σ

∑
σ ′

sgn(σ )sgn(σ ′)
∫

K1

cosh1(axσ(1)
k1ayσ ′(1)

)−2(ρ1+ε)dk1

× · · ·
∫

K1

cosh1(axσ(n)
k1ayσ ′(n)

))−2(ρ1+ε)dk1.

For x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn), we put

ui = max(xi, yi) , vi = min(xi, yi) .

Then, Corollary 3.4 yields that

∫
K

coshn(axkay)
−2ρn,1dk ≤ c

1

ω(x)

1

ω(y)
(coshn u)−2ρ1(coshn u)−2(n−1)(coshn v)2(n−1) .

Here, we recall that x, y are far from the boundaries of Rn
W , and thereby

1

ω(x)

1

ω(y)
(coshn u)−2(n−1)(coshn v)2(n−1)

≤ ce−2((n−1)x1+(n−2)x2+···+xn−1)e−2((n−1)y1+(n−2)y2+···+yn−1)

× e−2(n−1)(u1+u2+···+un)e2(n−1)(v1+v2+···+vn)

≤ ce−4((n−1)u1+(n−2)u2+···+un−1)e−2(|x2−y2|+2|x3−y3|+···+(n−1)|xn−yn|) .
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Hence∫
K

coshn(axkay)
−2ρn,1dk

≤ c(coshn u)−2ρ1e−4((n−1)u1+(n−2)u2+···+un−1)e−2(|x2−y2|+···+(n−1)|xn−yn|)

≤ ce−2ρ(u)e−2(|x2−y2|+2|x3−y3|+···+(n−1)|xn−yn|).

This completes the proof of Proposition 5.2. �.

5.3. Now we shall obtain the weak type L1 inequality of the cubic maximal operator
MC . First we note the following.

LEMMA 5.3. Let notation be as above. Then
1

|D(r)|χr(t) ≤ c(coshn t)−2ρn,1 (r ≥ n2) .

PROOF. Let D′(r) be the domain in Rn
W defined by

2(n − 1) + 1 ≤ t1 ≤ r − n(n − 1) ,

2(n − 2) + 1 ≤ t2 ≤ 2(n − 1) ,

· · · · · · · · · · · · · · ·
3 ≤ tn−1 ≤ 4 ,

1 ≤ tn ≤ 2 .

Clearly, D′(r) ⊂ D(r) and |ti − tj | ≥ 1 if t ∈ D′(r) and i �= j . Hence,

|D(r)| ≥
∫

D′(r)
∆(t)dt

= c

∫ r−n(n−1)

2(n−1)+1
e2ρn,1t1dt1

∫ 2(n−1)

2(n−2)+1
e2ρn,2t2dt2 · · ·

∫ 2

1
e2ρn,ntndtn

= ce2ρn,1r .

Since e−srχr(t), s > 0, is dominated by cosh−s
n (t), the lemma follows. �

We note that

(coshn t)−2ρn,1 ≤ ce−2ρ(t)e−2(t2+2t3+···+(n−1)tn)

and ω(t) = e−2(t2+2t3+···+(n−1)tn) satisfies the contitions (I) and (II) in [10, Remark 2]. There-
fore, MC satisfies the weak type L1 inequality as remarked in [10]. Here, we shall give a
simple and direct proof based on Proposition 5.2, and we don’t use Lemma 2 in [10].

THEOREM 5.4. The maximal operator MC is of strong (Lp,Lp), 1 < p ≤ ∞, and
satisfies the weak type L1 inequality : for any ε > 0 and f in L1(K\G/K)∫

{x∈Rn
W ; MCf (x)≥ε}

∆(x)dx ≤ c
‖f ‖1

ε
.

PROOF. We note that the L1 norm of χr/|D(r)| equals 1 and cosh−2(ρ1+2(n−1))
n belongs

to Lp0 for all p0 > 1. Hence, as in the proof of Theorem 4.1, it is enough to show that a global
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part of MC satisfies the weak type L1 estimate. Proposition 5.2 and Lemma 5.3 yield that

sup
n2≤r

1

|D(r)|χr ∗ |f |(x) ≤ c cosh
−2ρn,1
n ∗|f |(x)

≤ ce−2ρ(x)

∫
Rn

W

e−2(|x2−y2|+2|x3−y3|+···+(n−1)|xn−yn|)|f (y)|∆(y)dy

≤ ce−2ρ(x)H(x ′) .

Here x ′ = (x2, x3, . . . , xn) and, as a function on Rn−1,

H(x ′) =
∫

R
E ∗′ |f ∆|(y1, x

′)dy1 ,

where E(x ′) = e−2(|x2|+2|x3|+···+(n−1)|xn|) and ∗′ is the convolution on Rn−1. Clearly,
‖H‖L1(Rn−1) ≤ ‖E‖L1(Rn−1)‖f ‖1. We denote ρ = ρ0 + ρ′, where ρ0(x) = ρn,1x1, and
thus, ρ(x) = ρ0(x1) + ρ′(x ′). Since∫

{x∈Rn
W ; e−2ρ(x)H(x ′)>λ}

∆(x)dx

≤
∫

Rn−1

(∫
{x1>0 ; e−2ρ0(x1)>λ/e−2ρ′(x′)H(x ′)}

e2ρ0(x1)dx1

)
e2ρ′(x ′)dx ′

=
∫

Rn−1

H(x ′)
λ

dx ′ ≤ ‖f ‖1

λ
,

the weak type L1 estimate follows. �
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