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1. Introduction.

Let S be a non-singular ruled surface with positive irregularity q and D an irreducible
curve on S, which are defined over the field of complex numbers.

The purpose of this paper is to study pairs (S,D) from the view point of birational
geometry. Two pairs (S,D) and (S1,D1) are said to be birationally equivalent if there exists
a birational map ϕ : S → S1 such that the proper image ϕ[D] of D by ϕ coincides with D1.
Such ϕ is said to be a birational transformation between pairs.

The pair (S,D) is said to be non-singular whenever both S and D are non-singular. In
this case, define Pm[D] to be dimH 0(S,O(m(D +K))) (m > 0) and κ[D] to be the K +D

dimension of S, which is denoted by κ(D + K,S), where K indicates a canonical divisor
on S. Both Pm[D] and κ[D] are invariant under birational transformations between pairs. If
every exceptional curve E of the first kind on S satisfies the inequality E ·D ≥ 2 (E �= D),

then (S,D) is said to be relatively minimal (cf. [I1], [Sa1]). Moreover, (S,D) is said to be
minimal, if every birational map from any non-singular pair (S1,D1) into (S,D) turns out
to be a morphism. It is easily shown that every minimal pair is relatively minimal. Since S
is an irrational ruled surface, the Albanese map α : S → Alb(S) gives rise to a surjective
morphism α : S → α(S) = B, which is a curve of genus q . Let F denote a general fiber
of α : S → B. Then the intersection number D · F coincides with the mapping degree of
α|D : D → B, which is denoted by σ(D).

Every irrational ruled surface is obtained from a P1-bundle overB by successive blowing
ups. Suppose thatX is a P1-bundle andC a curve onX. Then the group Num(X) of numerical
equivalent classes of divisors on X is a free abelian group generated by an infinite section
Γ∞ and a fiber Fu = Φ−1(u) of the P1-bundle X where Φ is the projection (cf. [Ha], p. 370,
Proposition 2.3). ThenC ≡ σΓ∞+eFu for some integers σ and e where the symbol ≡ means
numerical equivalence between divisors. Note that σ = C ·Fu = σ(C). Let b = −Γ 2∞, which
is said to be the degree of X. Moreover, let the multiplicities of all the singular points of C be
denoted by m1,m2, · · · ,mr (m1 ≥ m2 ≥ · · · ≥ mr) where infinitely near singular points are
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included. Then the type of a pair (X,C) is said to be [σ ∗ e,X;m1,m2, · · · ,mr ]. In the case
where C is itself non-singular, we put r = 1 and m1 = 1 by convention.

First, we give a birational classification of relatively minimal pairs (S,D) as follows.

THEOREM 1. Suppose that q = 1. Then we have the following table.

class κ[D] types g (D) Pm[D] (m ≥ 1)

I −∞ σ(D) = 0 or 1 0 or 1 0

II 0 [2 ∗ −1, A−1; 1] 1 1 (where m is even)

[2 ∗ 0,Σ(2); 1] 1 0 (where m is odd)

II 1
2 1 [σ ∗ 0,Σ(σ); 1] 1 1 + 2s −m, (s = [m(σ − 1)/σ ])

[4 ∗ −2, A−1; 1] 1 1 + 3s −m, (s = [m/2])
[2 ∗ e,X; 1] e − b + 1 ≥ 2 m(e − b)

III 2 ≥ 1 ≥ 2 if m ≥ 2.

Here, the surfaces Σ(2),Σ(σ) and A−1 are elliptic surfaces where σ ≥ 3. g (D) denotes the
genus of a curve D and the symbol [x] denotes the integral part of a number x. The degree of
A−1 is −1 and the degrees of Σ(2) andΣ(σ) are zero.

Define n to be 4g (D)−D2 − 8q + 4.

THEOREM 2. Suppose that q = 1 and that (S,D) is a relatively minimal pair with
κ[D] = 2. Then n ≥ 1 and σ(D) ≤ n(n + 2). If n = 1, then σ(D) = 3. In this case, there
exists a pair (S,D) satisfying these conditions.

Now, the pair (S,D) is said to be an Enriques pair if the type is either [2 ∗ −1, A−1; 1]
or [2 ∗ 0,Σ(2); 1]. In this case, 2(K +D) ∼ 0 andK +D �∼ 0.

COROLLARY 1. Suppose that q = 1. Then a relatively minimal pair (S,D) is an
Enriques pair if and only if P2[D] = 1 and P3[D] = 0.

THEOREM 3. Suppose that q ≥ 2 and that (S,D) is relatively minimal. If κ[D] = 1,
then n = 0. If κ[D] = 2, then n ≥ 4(q − 1). Furthermore, we have the following table.

class κ[D] σ(D)

I −∞ 0 or 1

II 0 none

II 1
2 1 2

III 2 ≤ 2 + n/(2q − 2)
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1.1. Elementary transformations and �-minimal pairs. Let A = {z 	→ αz +
β; α �= 0, β ∈ C} denote the 1-dimensional affine transformation group, which has a sub-
group C∗ consisting of non-zero complex numbers. A P1-bundle X is said to be a C∗-bundle
or an affine-bundle if the structure group of X is C∗ or A, respectively.

By Atiyah [At], if q = 1, then the degree of C∗-bundleX is non-negative and the degree
of affine-bundle X is zero or minus one, which is denoted by A0 or A−1, respectively. The
C∗-bundle with degree b(> 0) is isomorphic to each other. Note that C∗-bundle X of degree
b has two mutually disjoint sections Γ0 and Γ∞ such that Γ 2

0 = b and Γ 2∞ = −b. If X is a
direct product S0 = P1 × B, then there exist an infinite number of sections Γ with Γ 2 = 0.

Let Φ : X → B be the projection of the P1-bundle X. Elementary transformations of
P1-bundlesX are defined as follows:

Take a point p1 on X. Blowing up at p1, we have a birational morphism µ : S1 → X.
The fiber F0 = Φ−1(Φ(p1)) has the proper inverse image F ′

0 by µ and the exceptional curve
(of the first kind ) E = µ−1(p1). Then F ′

0
2 = −1 and F ′

0 turns out to be an exceptional curve.
Contracting F ′

0 into a non-singular point p′
1, we have a non-singular surface X′ and a proper

birational morphism µ′ : S1 → X′. Here X′ is also a P1-bundle. The birational map µ′ · µ−1

is called an elementary transformation with center p1.
Let C be a curve on X. The proper image of C by the birational map µ′ ·µ−1 is denoted

by C′. The curve C′ has the invariants σ ′, e′ defined by C′ ≡ σ ′Γ ′∞ + e′F ′. Moreover, letm′
1

denote the multiplicity of C′ at p′
1. It is easy to show that σ ′ = σ, e′ = e+σ−m1, if p1 ∈ Γ∞

and σ ′ = σ, e′ = e −m1, if p1 �∈ Γ∞. Note that if 2 ≤ σ < 2m1, then m′
1 = σ −m1 < m1.

Repeating such transformations if necessary, we may suppose σ ≥ 2m1, when σ ≥ 2.

DEFINITION. The pair (X,C) is said to be �-minimal if σ ≥ 2m1 (cf. I1).

Suppose that a relatively minimal pair (S,D) satisfies σ(D) ≥ 2. Then contracting
exceptional curves successively, we have a P1-bundle X and a birational morphism λ : S →
X. The image of D by λ is denoted by a curve C. Assume that C ≡ σΓ∞ + eFu. Then it is
obviously that σ(D) = σ . From the previous argument, we infer the following proposition.

PROPOSITON 1. Assume that (S,D) is a relatively minimal pair with σ(D) ≥ 2.
Then contracting exceptional curves successively and after a finite number of elementary
transformations, (S,D) is transformed into a �-minimal pair (X,C).

REMARK 1. Suppose that (S,D) is a relatively minimal pair with κ[D] ≥ 0. Then
since |m(K +D)| �= ∅, it follows thatm(K +D) ·F = m(σ(D)− 2) ≥ 0 where F denotes a
general fiber of α : S → B. Hence, σ(D) ≥ 2. Conversely, assume that σ(D) ≥ 2. Then an
addition formula of logarithmic Kodaira dimension by Kawamata [K] yields that κ[D] ≥ 0.
But here we shall study pairs more precisely and thus provide another proof of the result.
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2. Case of ruled surfaces with irregularity 1.

In this section, we suppose that q = 1, i.e., B is an elliptic curve.

2.1. Elementary proof of κ[D] ≥ 0. Let (X,C) be a �-minimal pair and let [σ ∗
e,X;m1,m2, · · · ,mr ] denote the type of (X,C). Letting π andK0 be the virtual genus of C
and a canonical divisor of X, respectively, we have

K0 · C = σb − 2e , C2 = 2σe − σ 2b , π = (σ − 1)(2e− σb)

2
+ 1 .

By blowing ups singular points on C over X successively, we have a birational morphism
λ : S → X, which gives rise to a shortest resolution of singularities of the embedded curve C
on X. Let D denote the proper inverse image of C by λ. In this case, the pair (S,D) said to
be a shortest model of (X,C). We have the next.

PROPOSITION 2. Let (S,D) be a shortest model of a �-minimal pair (X,C). Then
κ[D] ≥ 0.

PROOF. By definition,

K ∼ λ∗(K0)+
r∑
j=1

Ej , D ∼ λ∗(C)−
r∑
j=1

mjEj ,

where the symbol ∼ means linear equivalence between divisors. The Ej are exceptional
curves derived from blowing up singular points pj . For simplicity, the total inverse images of
Ej are denoted by the same symbols Ej . From K0 ≡ −2Γ∞ − bFu and C ≡ σΓ∞ + eFu,
we have

σK + 2D ∼ λ∗(2C + σK0)+
r∑
j=1

(σ − 2mj)Ej , σK0 + 2C ≡ (2e − bσ)Fu . (1)

LEMMA 1. Let Y be a curve on a surface X which is a P1-bundle over a curve. Then
there exist α, β such that Y ≡ αΓ∞ + βFu where Γ∞ is the infinite section such that Γ 2∞ =
−b. Suppose that Y �= Fu and Y �= Γ∞. If b ≥ 0 then α > 0 and β ≥ bα. If b = −1 then
α > 0 and β ≥ −α/2.

PROOF. See Proposition 2.21 of chapter V in [Ha]. �

By Lemma 1, we have 2e−bσ ≥ 0. Moreover, 2e−bσ = 0 if and only if (b, e) = (0, 0)
or (b, e) = (−1,−σ/2).

(i) Case 2e− bσ > 0: Then σK0 + 2C ≡ (2e− bσ)Fu and O(σK0 + 2C) ∼= Φ∗(L)
for some invertible sheaf L on C such that deg(L) = 2e−bσ . By the Riemann-Roch theorem
on B,

dimH 0(X,O(σK0 + 2C)) = dimH 0(B,L) = deg(L) = 2e − bσ > 0 .

Hence, |σK0 + 2C| �= φ, which induces |σK + 2D| �= φ, too. Thus,

0 ≤ κ(σK + 2D,S) ≤ κ(σ(K +D), S) = κ(K +D,S) = κ[D] .
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(ii) Case 2e − bσ = 0: Then (b, e) = (0, 0) or (b, e) = (−1,−σ/2). In both cases,
we can verifyC2 = 0 and C ·K0 = 0 and hence π(C) = 1. However, since σ ≥ 2 is assumed,
it follows that Φ(C) = B and so C cannot be a rational curve. Hence, C is a non-singular
elliptic curve, i.e., S = X and D = C. The restriction of Φ to C turns out to be an étale
morphism f : C → B. From Φ : X → B and f : C → B, we obtain a fiber product
W = X ×B C, which has projections f̄ : W → X and Φ̄ : W → C. To complete the proof
of Proposition 2, we prepare the following proposition.

PROPOSITION 3. W is isomorphic to the product C × P1 except for the case b = −1
and σ = 2.

PROOF. From W = {(x, p) ∈ X × C |Φ(x) = f (p)}, it follows that Φ̄−1(p) =
Φ−1(f (p)) ∼= P1 for any p ∈ C. Hence,W is a P1-bundle over C. Take a general point p1 ∈
C. Then f−1(f (p1)) = {p1, p2, · · · , pσ }. The curves Γj = {(p1, pj ) ∈ C × C |p1 ∈ C}
are sections of Φ̄ : W → C and Γi ∩ Γj = ∅ for i �= j . Note that if b = 0 and σ = 2, then
f̄−1(Γ∞) is a section and Γi ∩ f̄−1(Γ∞) = ∅ for any i. Hence W has at least three sections
such that any pair of sections has no common points, which implies that W is isomorphic to
the product C × P1. �

We shall proceed with the proof of Proposition 2. By Proposition 3, f̄ ∗(C) ∼ σC̄ and
KW ∼ −2C̄ where C̄ is a copy of C. Since KW + f̄ ∗C ∼ (σ − 2)C̄, we have

κ[D] = κ(X,KX + C) = κ(W,KW + f̄ ∗C) = κ(C × P1, (σ − 2)C̄) ≥ 0 .

In the case when b = −1 and σ = 2, a pair of type [2 ∗ 0,Σ(2); 1] is transformed into a pair
of type [2 ∗ −1, A−1; 1] by an elementary transformation. Thus, κ[D] ≥ 0. This completes
the proof of Proposition 2. �

2.2. Properties of relatively minimal pairs.

PROPOSITION 4. Let (S,D) be a relatively minimal pair with κ[D] ≥ 0. ThenK+D
is nef.

PROOF. Note that σ(D) ≥ 2, whenever κ[D] ≥ 0 by Remark 1. Then since D is a
curve over B, g (D) ≥ q = g (B) ≥ 1. Suppose that there exists an irreducible curve A on S
such that (K +D) ·A < 0. If A = D, then (K +D) ·D = 2g (D)− 2 < 0. Thus, g (D) = 0,
which contradicts the fact that g (D) ≥ 1. Therefore, D �= A and so A · D ≥ 0. Since
A2 < 0 and K · A < −D · A ≤ 0, it follows that A is an exceptional curve and moreover,
−1 < −D · A ≤ 0, which implies that D · A = 0. However, this contradicts the hypothesis
that (S,D) is relatively minimal. �

PROPOSITION 5. Let (S,D) be a shortest model of a �-minimal pair (X,C). Then
(S,D) is relatively minimal.

PROOF. Suppose that (S,D) is not relatively minimal. Then S �= X and there exists
an exceptional curve A such that A ·D = 1 or 0. Letting A0 = µ(A), we have

2 − σ ≥ (σK + 2D) · A ≥ (σK0 + 2C) · A0 = (2e− bσ)Fu ·A0 ≥ 0 .
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Hence, σ = 2, which implies that D = C and S = X. �

LEMMA 2. κ[D] = 2 if and only if (K +D)2 > 0.

PROOF. By Corollary 14.18 in [B] or Proposition 1 in [Sa2], we have the result. �

2.3. Proof of Theorem 1. First we note that κ[D] = −∞ if and only if σ(D) = 0 or
1 by Remark 1.

Second, suppose that κ[D] ≥ 0. Then σ(D) ≥ 2. By Lemma 2, κ[D] = 0 or 1 if and
only if (K + D)2 = 0. Assume that (K + D)2 = 0. Since K + D ≡ (σ − 2)Γ∞ + (e −
b)Fu − ∑r

j=1(mj − 1)Ej , we obtain

(K +D)2 = (σ − 2)(2e− σb)−
r∑
j=1

(mj − 1)2 .

Thus by hypothesis,

(σ − 2)(2e− σb) =
r∑
j=1

(mj − 1)2 . (2)

By the adjunction formula, letting g = g (D),

0 ≤ 2g − 2 = D2 +K ·D = (D +K) ·D = (σ − 1)(2e− bσ)−
r∑
j=1

mj(mj − 1) .

Hence,

(σ − 2)(2e− σb) ≥
r∑
j=1

mj(mj − 1)− (2e− σb) . (3)

From (2) and (3), it follows that
r∑
j=1

(mj − 1)2 = (σ − 2)(2e− σb) ≥
r∑
j=1

mj(mj − 1)− (2e− σb) . (4)

Hence, 2e − σb ≥ ∑r
j=1(mj − 1). Multiplying both sides by σ − 2,

(σ − 2)(2e− σb) ≥ (σ − 2)
r∑
j=1

(mj − 1) .

Recalling the equality (2), we obtain
r∑
j=1

(mj − 1)2 ≥ (σ − 2)
r∑
j=1

(mj − 1) .

Hence,
r∑
j=1

(mj − 1)(mj + 1 − σ) ≥ 0 .
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Since σ ≥ 2mj , it follows that mj + 1 − σ ≤ 1 −mj . Hence
∑r
j=1(mj − 1)(1 −mj) ≥ 0;

thus, i.e., r = 0 and so S = X and D = C. By the equality (2),

(σ − 2)(2e− σb) = 0 . (5)

Hence, we obtain either σ = 2 or 2e− σb = 0.
Thus we have two cases to examine, separately.
(I) case 2e− σb = 0: Then (b, e) = (0, 0) or (b, e) = (−1,−σ/2).
Let κ−1(S) denote κ(S,−K), which means the anti-Kodaira dimension of S. Define S0

to be the product of P1 and an elliptic curve E.

LEMMA 3. If there exists an étale morphism ϕ : S0 → X, then X has a structure of
an elliptic surface.

PROOF. Since ϕ is an étale morphism, κ−1(S0) = κ−1(X). Thus, κ−1(X) =
κ−1(S0) = 1, which implies that X is an elliptic surface. �

LEMMA 4. Suppose that X is an elliptic ruled surface. Then X is isomorphic to one
of the following:

(1) P1 ×E , (2) Σ(k) (3) A−1 .

Here Σ(k) has a general elliptic fiber which is numerically equivalent to kΓ∞.

PROOF. See Theorem 5 of [Sw]. �

Employing the notation in the proof of Proposition 3, sinceW ∼=P1 ×C and f̄ : W → X

is an étale morphism, X is an elliptic surface by Lemma 3. On the other hand, since (b =
0, e = 0) or (b = −1, e = −σ/2), it follows that C2 = 0 and K0 · C = 0. Hence, C is an
elliptic curve which is a fiber of the elliptic fiber space ψ : X →P1. If b = 0, then since C
is a general elliptic fiber and C ≡ σΓ∞, we obtain X �∼= P1 × C. Hence, X is isomorphic to
either Σ(σ) or A−1.

We shall examine the following cases, separately.
(I-1) (b, e) = (0, 0): Then X = Σ(σ). From the canonical bundle formula by Kodaira

[Ko], K = K0 ∼ ψ∗(−2P) + (σ − 1)F1 + (σ − 1)F2 and D = C ∼ ψ∗(P ), where P is a
point on P1 and σFi ∼ ψ∗(P ). Hence,

σK0 + 2C ∼ 0 . (6)

In the case of σ = 2, we have 2(K0 + C) ∼ 0. Hence, P2m[D] = 1 and P2m−1[D] = 0
for any m > 0. In this case, we have κ[D] = 0.

Suppose that σ ≥ 3. For a positive integerm, let s be the quotient ofm(σ −1) by σ with
the remainder ρ, i.e., m(σ − 1) = sσ + ρ. Then for i = 1, 2,

m(σ − 1)Fi ∼ ψ∗(sP )+ ρFi .

Thus, it follows that

m(K0 + C) ∼ ψ∗((−m+ 2s)P )+ ρ(F1 + F2) .
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If m = 1, then s = 0 and so P1[D] = 0. If m ≥ 2, then 2s −m ≥ 2[2m/3] −m ≥ 0. Hence,
Pm[D] = 1 + 2s −m ≥ 1 for any m ≥ 2. If m ≥ 3, then 2s −m > 0. Thus, κ[D] = 1.

(I-2) (b, e) = (−1,−σ/2) where σ ≥ 3: Since X = A−1 and since D = C is a
general elliptic fiber, we have σ = 4. We see that K = K0 ∼ ψ∗(−2P)+ F1 + F2 + F3 and
D = C ∼ ψ∗(P ) where 2Fi ∼ ψ∗(P ). For a positive integerm, let s be the quotient ofm by
2 with the remainder ρ. Then it follows that

m(K0 + C) ∼ ψ∗((−m+ 3s)P )+ ρ(F1 + F2 + F3) .

If m = 1, then s = 0 and so P1[D] = 0. If m ≥ 2, then 3s −m ≥ 3[m/2] −m ≥ 0. Hence,
Pm[D] = 1 + 3s −m for any m > 0. In this case, we have κ[D] = 1.

(II) case σ = 2 and 2e−σb �= 0: We see that if b ≥ 1, then e ≥ σb and if b = 0, then
e ≥ 1 and if b = −1, then e ≥ 0. Therefore, K0 + C ≡ (e − b)Fu where e − b is positive.
Moreover, O(K0 + C) ∼= Φ∗(L) for some invertible sheaf L on C such that deg(L) = e− b.
By the Riemann-Roch theorem on B,

dimH 0(X,O(m(K0 + C))) = dimH 0(B,L⊗m) = deg(L⊗m) = m(e − b) > 0 .

Hence, Pm[C] = m(e − b) for m ≥ 1. In this case, we have κ[D] = 1. Moreover, g (D) =
(C +K0) · C/2 + 1 = e − b + 1 ≥ 2. This completes the proofs of I, II and II 1

2 in Theorem
1. �

LEMMA 5. If κ[D] = 2 and m ≥ 2 then

Pm[D] = m(m− 1)

2
(K +D)2 + m

2
(K +D) ·D + max{0, 2 − g (D)} ≥ 2 .

PROOF. By Lemma (4.2) in [Sa1], dimH 1(S,O(m(K + D))) = dimH 1(D,

O(mKD)) = 1 or 0 according to g (D) = 1 or g (D) ≥ 2, respectively. Hence we have
the result by the Riemann-Roch theorem. �

Therefore, the proof of Theorem 1 is complete.

2.4. Proof of Theorem 2. By κ[D] = 2, we obtain (K + D)2 > 0 and so D2 <

4g − 4 − r where g denotes the genus of the curveD. Hence, 0 ≤ r < 4g −D2 − 4 = n.
(1) Case m1 ≤ 2. ThenD2 = σ(2e− σb)− 4r and 4g = 2(σ − 1)(2e− σb)+ 4 − 4r .

These imply that

1 ≤ n = 4g −D2 − 4 = (2e− σb)(σ − 2) . (7)

Thus, σ − 2 ≤ n ; hence σ ≤ n+ 2 ≤ n(n+ 2).
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(2) Case m1 ≥ 3. Then σ ≥ 6. Since D2 = C2 − ∑r
j=1m

2
j and g = π −∑r

j=1mj(mj − 1)/2, we obtain

r∑
j=1

mj = C2 − 2π −D2 + 2g = n+ t − 2(g − 1) , (8)

r∑
j=1

m2
j = C2 −D2 = σ t + n− 4(g − 1) (9)

where t = 2e− σb ≥ 0. From (8) and (9), it follows that

0 ≤
( r∑
j=1

mj

)2

−
r∑
j=1

m2
j

= (n+ t)2 − 4(n+ t)(g − 1)+ 4(g − 1)2 − σ t − n+ 4(g − 1)

= (n+ t)2 − σ t − n− 4(n+ t − g )(g − 1)

≤ (n+ t)2 − σ t − n− 4(g − 2)(g − 1)

≤ (n+ t)2 − σ t − n .

Hence,

σ t ≤ (n+ t)2 − n . (10)

If t = 0, then from (8) and (9), it follows that
r∑
j=1

mj(mj − 1) = −2(g − 1) .

Hence, we have g = 1 and r = 0. This contradicts the hypothesis m1 ≥ 3. Thus, t > 0 and
so

σ ≤ (n+ t)2 − n

t
. (11)

On the other hand, from (8) and (9), it follows that

0 ≤ m1

r∑
j=1

mj −
r∑
j=1

m2
j = (m1 − 1)n− (σ −m1)t − 2(g − 1)(m1 − 2) .

Hence,

(σ −m1)t ≤ (m1 − 1)n− 2(g − 1)(m1 − 2) .

Since σ ≥ 2m1 and g ≥ 1, it follows that t < n.

From t < n and the equality (11), we obtain

σ = σ(D) ≤ (n+ t)2 − n

t
< n(n+ 2) .

This completes the proof of the first part of Theorem 2. �
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PROPOSITION 6. Let (S,D) be a relatively minimal pair with κ[D] = 2 and n = 1.
Then the type of (S,D) is [3 ∗ −1, A−1; 1] and g (D) = 2,D2 = 3. Furthermore, Pm[D] =
m(m+ 1)/2 for any m ≥ 1.

To prove Proposition 6, we prepare following lemmas.

LEMMA 6. Let A be a divisor on A−1. Suppose that A ≡ αΓ∞ + βF . Then A is
ample if and only if α > 0, β > −α/2.

PROOF. See Proposition 2.21 of p. 382 of [Ha]. �

LEMMA 7. P1[D] = g (D)− 1 + h(D), where h(D) denotes dimH 1(S,O(−D)).
PROOF. By the Riemann-Roch theorem, Serre duality and the adjunction formula,

P1[D]−h(D) = dimH 0(S,O(K+D))−dimH 1(S,O(K+D)) = (K +D) ·D
2

= g (D)−1 .

�

PROOF OF PROPOSITION 6. By the equality (7), we have (2e − σb)(σ − 2) = 1;
hence, 2e − σb = 1 and σ = 3. Thus, the type of the pair is [3 ∗ −1, A−1; 1]. In this case,
g (D) = 2 and D2 = 3.

Moreover, let us consider a linear system |F̄ + Γ∞| where F̄ is a double fiber of the
elliptic surface A−1, which satisfies F̄ ≡ 2Γ∞ −Fu. LetD be a general element of |F̄ +Γ∞|.
Then D ≡ 3Γ∞ − Fu. By Lemma 6, D is an ample divisor. Therefore, by the Kodaira
vanishing theorem, dimH 1(A−1,O(K0 −D)) = 0. By the Riemann-Roch theorem, we have
dimH 0(A−1,O(D)) = 2.

On the other hand, by Lemma 6 and Γ∞−K0 ≡ 3Γ∞−Fu, Γ∞−K0 is an ample divisor.
Hence, by the Kodaira vanishing theorem, dimH 1(A−1,O(Γ∞ − K0 + K0)) = 0. Hence,
dimH 0(A−1,O(Γ∞)) = 1 by the Riemann-Roch theorem. Furthermore, since O(2F̄ ) ∼
ψ∗O(1), it follows that dimH 0(A−1,O(F̄ )) = 1. From dimH 0(A−1,O(F̄ + Γ∞)) = 2,
|F̄ + Γ∞| is free from fixed components. Since D ∈ |F̄ + Γ∞| andD2 = 3, D is irreducible
by a theorem of Bertini.

By dimH 1(A−1,O(−D)) = 0 and Lemma 7, it follows that P1[D] = 2 − 1 + 0 = 1.
Moreover, Since g (D) = 2, (K+D)2 = Γ 2∞ = 1 andD · (K +D) = (3Γ∞ −Fu) ·Γ∞ = 2,
we obtain Pm[D] = m(m+ 1)/2 for all m ≥ 2 by Lemma 5.

This completes the proof of Proposition 6. �

2.5. Minimal pairs.

LEMMA 8. Suppose that α(K +D)+ τK is nef for some α ≥ 1 and τ > 0. Then the
pair (S,D) is minimal.

PROOF. See Proposition 4 of [I1]. �

PROPOSITION 7. Suppose that every relatively minimal pair (S,D) with κ[D] ≥ 1
is minimal unless the type of (S,D) is [2 ∗ e,X; 1]. In any case, (K + D)2 is a birational
invariant for pairs.
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PROOF. Suppose that κ[D] = 1 and that the type of (S,D) is not [2 ∗ e,X; 1]. (Case
A) Assume that the type is [σ ∗ 0,Σ(σ); 1] where σ ≥ 3. Then σK + 2D ∼ 0 by (6).
Hence, 2(K + D) + (σ − 2)K ∼ 0, which is clearly nef. (Case B) Assume that the type is
[4 ∗ (−2), A−1; 1]. Then by the canonical bundle formula of Kodaira [Ko], 2K + D ∼ 0,
which is clearly nef.

If κ[D] = 2, then by a similar argument to the proof of Proposition 3 of [I1], we see that
(m − 1)(K + D) + K is nef for sufficiently large m. Hence by Lemma 8, we complete the
proof. �

3. Case of ruled surfaces with irregularity q ≥ 2.

In this section, we shall study the birational structure of pairs (S,D) with irregularity
q ≥ 2.

Let (X,C) be a �-minimal pair with type [σ ∗e,X;m1, · · · ,mr ] whereX is a P1-bundle
with irregularity q ≥ 2. Let (S,D) be a shortest model of a (X,C). Employing the same
notation as in section 2, we have

σK + 2D ≡ σK0 + 2C +
r∑
j=1

(σ − 2mj)Ej , σK0 + 2C ≡ (2e− σb + 2σ(q − 1))F .

Since C is an irreducible curve, it follows that 2e ≥ σb. Moreover, e ≥ σb if b ≥ 0 (cf.
[Ha]). σK0 + 2C is written as a pull back of a divisor Θ on B. Then

degΘ = 2e − σb + 2σ(q − 1) ≥ 2σ(q − 1) ≥ 4(q − 1) ≥ 2q ,

dim|σK0 + 2C| = dim|Θ| = degΘ − q ≥ 2 .

Hence, κ[D] ≥ 1. Moreover,K+D is nef and (S,D) is a relatively minimal pair by a similar
argument to the proofs of Propositions 4 and 5. Furthermore, by following the argument of the
proof of Proposition 7, we see that any relatively minimal pair (S,D) is minimal whenever
κ[D] = 2.

3.1. Proof of Theorem 3. (1) Suppose that κ[D] = 1. SinceK+D is nef, κ[D] =
1 if and only if (K +D)2 = 0. Then fromK0 + C ≡ (σ − 2)Γ∞ + (e− b + 2q − 2)Fu and

0 = (K +D)2 = (K0 + C)2 −
r∑
j=1

(mj − 1)2 ,

it follows that

(σ − 2)(2e− σb + 4q − 4) =
r∑
j=1

(mj − 1)2 . (12)

On the other hand, since

2q ≤ 2g = (σ − 1)(2e− σb + 2q − 2)+ 2q −
r∑
j=1

mj(mj − 1) ,
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it follows that

(σ − 2)(2e− σb + 4q − 4)− 2(σ − 1)(q − 1)+ (2e− σb + 4q − 4) ≥
r∑
j=1

mj(mj − 1) .

Hence, from

r∑
j

(mj − 1)2 − 2(σ − 1)(q − 1) ≥
r∑
j=1

mj(mj − 1)− (2e − σb + 4q − 4) ,

we infer
r∑
j=1

(mj − 1)+ 2(σ − 1)(q − 1) ≤ 2e− σb + 4q − 4 . (13)

By �-minimality,

2
r∑
j=1

(mj − 1)2 ≤ (σ − 2)
r∑
j=1

(mj − 1) .

By (12) and (13),

2
r∑
j=1

(mj − 1)2 + 2(σ − 2)(σ − 1)(q − 1) ≤
r∑
j=1

(mj − 1)2 .

Thus, σ = σ(D) = 2 and r = 0, which implies n = 0. In this case, it follows that κ[D] = 1.
(2) Suppose that κ[D] = 2. Then σ = σ(D) ≥ 3.
(2-1) Case m1 ≤ 2. By D2 − 4g = C2 − 4π = 4 − 8q − n, we have

(σ − 2)(t + 4q − 4) = n , (14)

where t = 2e − σb ≥ 0 and g denotes the genus of a curve D. Since t ≥ 0 and σ ≥ 3, it
follows that n ≥ 4(σ − 2)(q − 1) ≥ 4(q − 1). Moreover, from 4q − 4 �= 0, we infer that
σ(D) = σ ≤ 2 + n/(4q − 4) < 2 + n/(2q − 2).

(2-2) Case m1 ≥ 3. Then σ ≥ 6 and furthermore,

D2 = σ t −
r∑
j=1

m2
j , 4g = 2(σ − 1)(t + 2q − 2)+ 4q − 2

r∑
j=1

mj(mj − 1) .

From this, we have

r∑
j=1

mj = n− 2(σ − 3)(q − 1)+ t − 2(g − q) ,

r∑
j=1

m2
j = σ t + n+ 4(q − 1)− 4(g − q) .
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Hence,

0 ≤ σ

r∑
j=1

mj −
r∑
j=1

m2
j

= σn− 2σ(σ − 3)(q − 1)− 2σ(g − q)− n− 4(q − 1)+ 4(g − q)

= (σ − 1)n− 2(σ − 1)(σ − 2)(q − 1)− 2(σ − 2)(g − q) .

Therefore, by g ≥ q and σ ≥ 3,

2σ(q − 1) ≤ n+ 4(q − 1)

and so σ(D) = σ ≤ 2 + n/(2q − 2). Recalling σ ≥ 6, we have n ≥ 8(q − 1) > 4(q − 1).
This completes the proof of Theorem 3.
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