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Introduction.

Hilbert’s idea of null forms appeared again as the stability and plays an important role
in constructing the moduli space and its compactification in Geometric Invariant Theory of
Mumford [7]. By virtue of the numerical criterion, one can determine the stable objects
explicitly. For example, Hilbert proved the following. (See [3, §19] and [8, p15].)

THEOREM. Let S be a cubic surface in the projective space P3.
(1) S is stable if and only if it has only rational double points of type A1.
(2) S is semi-stable if and only if it has only rational double points of type A1 or A2.
(3) The moduli of stable ones is compactified by adding one point corresponding to the

semi-stable cubic xyz + w3 = 0 with 3 A2 singularities.

The stability of quartic surfaces is studied by Shah [11]. In this paper applying the same
criterion to cubic 3-folds, i.e. hypersurfaces of degree 3 in P4, we prove the following.

MAIN THEOREM. Let X be a cubic 3-fold.
(1) X is stable if and only if it has only double points of type An : v2+w2+x2+yn+1 =

0 with n ≤ 4.
(2) X is semi-stable if and only if it has only double points of type An with n ≤ 5,

D4 : v2 + w2 + x3 + y3 = 0 or A∞ : v2 + w2 + x2 = 0. And if a semi-stable cubic 3-fold
has A∞ singularity, then it is isomorphic to the secant 3-fold, that is, the secant variety of
rational normal curve in P4.

(3) The moduli of stable ones is compactified by adding two components. One is iso-
morphic to P1 and the other is an isolated point corresponding to the semi-stable cubic 3-fold
xyz + v3 + w3 = 0 with 3 D4 singularities.

We remark that Collino [1] studies the degeneration of intermediate Jacobians for a fam-
ily of cubic 3-folds approaching to the secant 3-fold.
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According to the numerical criterion for hypersurfaces in Pn, in order to classify sta-
ble ones, it is enough to determine certain finite number of hyperplane sections in an n-
dimensional simplex. In Hilbert’s and Shah’s cases, since the dimension n is 3, we can deter-
mine these hyperplanes by intuition. In our case n = 4, it becomes more difficult for us. The
author determined such ones by aid of computer. In this paper, we use a combinatorial way to
prove that without an assistant of computer.

As for the moduli of Fano 3-folds, we want to know whether it can be compactified by
adding 3-folds with canonical singularities. (See [5] and [6, §8].) By (2) of Main Theorem,
the answer is affirmative for cubic 3-folds. Moreover, by virtue of (3), except for one point
corresponding to the secant 3-fold, the moduli is compactified by adding 3-folds with terminal
singularities. Similar results are obtained for cubic 4-folds in [12].

This paper consists of 5 sections. In Section 1 we determine six 1-PS’s characterizing the
(semi-)stability by the numerical criterion. In Section 2 we show that, modulo SL(5)-action,
two 1-PS’s are maximal among them. In Section 3 we determine cubic 3-folds with a closed
orbit in the space of cubic polynimials and prove (3) in Main Theorem. We note that Luna’s
criterion [4] is useful to prove it. In Section 4 we consider cubic 3-folds with A∞ singularity
and prove the latter half of (2) in Main Theorem. In Section 5 we translate two 1-PS’s above
into the analytic local condition, that is, we prove (1) and the first half of (2) in Main Theorem.

ACKNOWLEDGEMENT. The author would like to thank Professor S. Mukai who intro-
duced him this problem and gave useful advises and suggestions.

1. Numerical criterion for cubic 3-folds.

(1.1) Numerical criterion of hypersurfaces. A one-parameter subgroup, 1-PS for short,
of SL(n+1) is a homomorphism λ : Gm → SL(n+1) of algebraic groups. Such λ can always
be diagonalized in a suitable basis:

λ(t) = diag (tr0, tr1 , · · · , trn ) and r0 ≥ r1 ≥ · · · ≥ rn .

It is simply expressed by λ = [r0, r1, · · · , rn]. Since [r0, r1, · · · , rn] �= [0, 0, · · · , 0], r0 is
positive and rn is negative.

A hypersurface of degree d in Pn defined by a homogeneous polynomial f (x0, x1, · · · , xn)

of degree d is not stable (resp. semi-stable) if and only if there exists an element σ of SL(n+1)

and a 1-PS λ(t) = diag (tr0, tr1 , · · · , trn) ∈ SL(n+1) such that limt→0 λ(t)(σf ) exists (resp.
exists and is equal to 0). Expressing σf = ∑

aij ···kxi
0x

j

1 · · · xk
n , this is equivalent to the con-

dition

∃ 1-PS [r0, r1, · · · , rn] s.t. r0i + r1j + · · · + rnk ≥ 0 (resp. > 0) if aij ···k �= 0 .

Let I be the set of exponents of monomilas xi
0x

j

1 · · · xk
n, that is,

I = {(i, j, · · · , k) ∈ Zn+1 | i, j, · · · , k ≥ 0 and i + j + · · · + k = d} .
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Then the determination of all non-stable (resp. unstable) hypersurfaces is reduced to that
of the subsets in I

M⊕(r) = {i ∈ I | i · r ≥ 0} (resp. M+(r) = {i ∈ I | i · r > 0})
for all 1-PS r = [r0, r1, · · · , rn]. We seek for only maximal ones instead of all such subsets.

From now on, we suppose n = 4 and d = 3.

(1.2) THEOREM.
(1) The maximal subsets of {M⊕(r) | r is a 1-PS } are M⊕(γ i) for i = 1, 2, · · · , 6,

where

γ 1 = [1, 1, 1,−1,−2] , γ 2 = [2, 1,−1,−1,−1] , γ 3 = [2, 1, 0,−1,−2] ,

γ 4 = [1, 0, 0, 0,−1] , γ 5 = [1, 1, 0, 0,−2] , γ 6 = [2, 0, 0,−1,−1] .

(2) For a sufficiently small number 1 	 ε > 0 (e.g. ε = 0.1 is sufficient), the maximal
subsets of {M+(r) | r is a 1-PS } are M+(λi) for i = 1, 2, · · · , 6, where

λ1 = γ 1+[1, 1, 1,−2,−1]ε , λ2 = γ 2+[3, 0,−1,−1,−1]ε ,

λ3 = γ 3+[7, 2,−3,−3,−3]ε , λ4 = γ 4 + [1, 1, 1, 1,−4]ε ,

λ5 = γ 5 + [0, 0, 2,−3, 1]ε , λ6 = γ 4 + [2, 2, 2,−3,−3]ε .

To prove (1.2), we prepare Table. The symbols +, −, ⊕ and 
 mean i · r > 0, i · r < 0,
i · r ≥ 0 and i · r ≤ 0 for i ∈ I, respectively.

We define the partial order of I as follows.

(a, b, c, d, e) ≥ (a′, b′, c′, d ′, e′)
def⇐⇒ (a, b, c, d, e)r ≥ (a′, b′, c′, d ′, e′)r for any 1-PS r (r0 ≥ r1 ≥ · · · ≥ r4)

⇐⇒ a ≥ a′, a + b ≥ a′ + b′, a + b + c ≥ a′ + b′ + c′, a + b + c + d ≥ a′ + b′ + c′ + d ′ ,
a + b + c + d + e ≥ a′ + b′ + c′ + d ′ + e′ .

Put M−(r) = I \ M⊕(r) and M
(r) = I \ M+(r). Then we have

M⊕(r) ⊂ M⊕(γ i) ⇔ M−(γ i) ⊂ M−(r)

⇔ i · r < 0 for any i ∈ M−(γ i)

⇔ i · r < 0 for any maximal element i ∈ M−(γ i) .

Hence we obtain the following:

(1.3) CRITERION. Let r be an arbitrary 1-PS.
(1) M⊕(r) ⊂ M⊕(γ i) if and only if i · r < 0 for all the maximal elements i ∈ M−(γ i).

(2) M+(r) ⊂ M+(λi) if and only if i · r ≤ 0 for all the maximal elements i ∈ M
(λi).
We mark † on the maximal elements of M−(γ i) and M
(λi) in Table. For example, the
maximal element of M−(γ 3) are (0, 0, 2, 1, 0), (0, 1, 0, 2, 0), (0, 1, 1, 0, 1) and (1, 0, 0, 1, 1),
which are marked.
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TABLE.

i \ r γ 1 γ 2 γ 3 γ 4 γ 5 γ 6 λ1 λ2 λ3 λ4 λ5 λ6

(0, 0, 0, 0, 3) − − − − − − 
 
 
 
 
 

(0, 0, 0, 1, 2) − − − − − − 
 
 
 
 
 

(0, 0, 0, 2, 1) − − − − − − 
 
 
 
 
 

(0, 0, 0, 3, 0) − − − ⊕ ⊕ − 
 
 
 + 
 

(0, 0, 1, 0, 2) − − − − − − 
 
 
 
 
 

(0, 0, 1, 1, 1) − − − − − − 
 
 
 
 
 

(0, 0, 1, 2, 0) − − − ⊕ ⊕ − 
 
 
 + 
† 

(0, 0, 2, 0, 1) ⊕ − − − − − + 
 
 
 
 

(0, 0, 2, 1, 0) ⊕ − −† ⊕ ⊕ − + 
 
 + + +
(0, 0, 3, 0, 0) ⊕ − ⊕ ⊕ ⊕ ⊕ + 
 
† + + +
(0, 1, 0, 0, 2) − − − − − − 
 
 
 
 
 

(0, 1, 0, 1, 1) − − − − − − 
 
 
 
 
 

(0, 1, 0, 2, 0) − − −† ⊕ ⊕ − 
 
 
 + + 
†
(0, 1, 1, 0, 1) ⊕ − −† − − − + 
 
 
 
 

(0, 1, 1, 1, 0) ⊕ − ⊕ ⊕ ⊕ − + 
 
† + + +
(0, 1, 2, 0, 0) ⊕ −† ⊕ ⊕ ⊕ ⊕ + 
† + + + +
(0, 2, 0, 0, 1) ⊕ ⊕ ⊕ −† ⊕ − + + + 
 + 
†
(0, 2, 0, 1, 0) ⊕ ⊕ ⊕ ⊕ ⊕ −† + + + + + +
(0, 2, 1, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(0, 3, 0, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(1, 0, 0, 0, 2) − ⊕ − −† − ⊕ 
 + 
 
 
 

(1, 0, 0, 1, 1) − ⊕ −† ⊕ − ⊕ 
 + 
† 
 
 
†
(1, 0, 0, 2, 0) −† ⊕ ⊕ ⊕ ⊕ ⊕ 
† + + + + +
(1, 0, 1, 0, 1) ⊕ ⊕ ⊕ ⊕ −† ⊕ + + + 
 
† +
(1, 0, 1, 1, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(1, 0, 2, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(1, 1, 0, 0, 1) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + 
† + +
(1, 1, 0, 1, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(1, 1, 1, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(1, 2, 0, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(2, 0, 0, 0, 1) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(2, 0, 0, 1, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(2, 0, 1, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(2, 1, 0, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
(3, 0, 0, 0, 0) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + +
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(1.4) PROOF OF (1) OF (1.2). Assume that M⊕(r) �⊂ M⊕(γ i) for any i �= 3. It is
enough to show that M⊕(r) ⊂ M⊕(γ 3), that is, (0, 0, 2, 1, 0)r < 0, (0, 1, 0, 2, 0)r < 0,
(0, 1, 1, 0, 1)r < 0 and (1, 0, 0, 1, 1)r < 0 by (1.3). Since M⊕(r) �⊂ M⊕(γ i) for i = 1, 2, 5,
6, we have (1, 0, 0, 2, 0)r, (0, 1, 2, 0, 0)r, (1, 0, 1, 0, 1)r, (0, 2, 0, 1, 0)r ≥ 0 respectively by
(1.3). We note that ri − rj ≤ 0 for i > j , and r4 < 0 by the assumption in (1.1). From

4(1, 0, 0, 0, 2)r + 2(0, 1, 2, 0, 0)r + (0, 2, 0, 1, 0)r = (4, 4, 4, 1, 8)r

= (0, 0, 0,−3, 4)r = 3(r4 − r3) + r4 < 0,

we obtain (1, 0, 0, 0, 2)r < 0. Since M⊕(r) �⊂ M⊕(γ 4), we have (0, 2, 0, 0, 1)r ≥ 0. From

(0, 0, 0, 3, 0)r + (0, 2, 0, 0, 1)r + (1, 0, 1, 0, 1)r = (1, 2, 1, 3, 2)r

= (−1, 0,−1, 1, 0)r = −r0 + (r3 − r2) < 0 ,

we deduce (0, 0, 0, 3, 0)r < 0. From the equations

3(0, 1, 0, 2, 0)r + 3(1, 0, 1, 0, 1)r − (0, 0, 0, 3, 0)r = (3, 3, 3, 3, 3)r = 0 ,

3(0, 1, 1, 0, 1)r + 3(1, 0, 0, 2, 0)r − (0, 0, 0, 3, 0)r = (3, 3, 3, 3, 3)r = 0 ,

3(0, 0, 2, 1, 0)r + 6(1, 0, 1, 0, 1)r + 6(1, 0, 0, 2, 0)r + 6(0, 2, 0, 0, 1)r

−(0, 0, 0, 3, 0)r = 0

we have (0, 1, 0, 2, 0)r, (0, 1, 1, 0, 1)r, (0, 0, 2, 1, 0)r < 0, respectively. Hence from

15(1, 0, 0, 1, 1)r + 5(0, 2, 0, 0, 1)r + 8(0, 1, 2, 0, 0)r = (15, 18, 16, 15, 20)r

= (−2, 1,−1,−2, 3)r = −r0 + (r1 − r0) + (r4 − r2) + 2(r4 − r3) < 0.

Therefore, we have (1, 0, 0, 1, 1)r < 0. �

(1.5) PROOF OF (2) OF (1.2). Assuming M+(r) �⊂ M+(λi) for 1 ≤ i ≤ 5, we show
that M+(r) ⊂ M+(λ6), that is,

(0, 1, 0, 2, 0)r ≤ 0, (0, 2, 0, 0, 1)r ≤ 0 and (1, 0, 0, 1, 1)r ≤ 0 .

For M+(r) �⊂ M+(λ1), M+(λ2), M+(λ4), we have (1, 0, 0, 2, 0)r, (0, 1, 2, 0, 0)r,
(1, 1, 0, 0, 1)r > 0 respectively by (1.3). From

2(0, 0, 1, 2, 0)r + 3(1, 1, 0, 0, 1)r = (3, 3, 2, 4, 3)r = (0, 0,−1, 1, 0)r = r3 − r2 ≤ 0 ,

we have (0, 0, 1, 2, 0)r < 0, and since M+(r) �⊂ M+(λ5), we obtain (1, 0, 1, 0, 1)r > 0 by
(1.3). From

3(0, 1, 0, 2, 0)r + 2(1, 1, 0, 0, 1)r + (0, 1, 2, 0, 0)r + 4(1, 0, 1, 0, 1)r

= (6, 6, 6, 6, 6)r = 0 , 3(1, 0, 0, 1, 1)r + 2(0, 1, 2, 0, 0)r = (3, 2, 4, 3, 3)r

= (0,−1, 1, 0, 0)r = r2 − r1 ≤ 0 ,

we deduce (0, 1, 0, 2, 0)r and (1, 0, 0, 1, 1)r < 0 respectively. Because M+(r) �⊂ M+(λ3)

and (1, 0, 0, 1, 1)r ≤ 0, either (0, 0, 3, 0, 0)r > 0 or (0, 1, 1, 1, 0)r > 0 by (1.3). In any case,
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from

3(0, 2, 0, 0, 1)r + (0, 0, 3, 0, 0)r + 3(1, 0, 0, 2, 0)r + 3(1, 0, 1, 0, 1)r

= (6, 6, 6, 6, 6)r = 0 , (0, 2, 0, 0, 1)r + (0, 1, 1, 1, 0)r

+ (1, 0, 0, 2, 0)r + 2(1, 0, 1, 0, 1)r = (3, 3, 3, 3, 3)r = 0 ,

Therefore we have (0, 2, 0, 0, 1)r < 0. �

2. Inclusion relations modulo SL(5)-action.

In this section we prove the following proposition by writing the linear transformation of
polynomials explicitly.

(2.1) PROPOSITION. Modulo SL(5)-action, there exist following inclusions.

M⊕(γ 2) M⊕(γ 3) M⊕(γ 4) = M⊕(γ 5) ⊃ M⊕(γ 6) M⊕(γ 1)

‖ ∪ ∪ ∪ ‖
M+(λ2) ⊂ M+(λ3) M+(λ4) ⊂ M+(λ5) ⊃ M+(λ6) ⊃ M+(λ1) .

Here M ⊂ N mod SL(5) means that SL(5) · M ⊂ SL(5) · N . Let [1.k] and [2.k] be linear
combinations of monomials of M⊕(γ k) and M+(λk) respectively where k = 1, 2, · · · , 6. We
take (v:w:x:y:z) as a homogeneous coordinate system of P4. Then we have the following list.

(2.2) List.

[1.1] yq1(v,w, x) + zq2(v,w, x) + c(v,w, x);
[1.2] xq1(v,w) + yq2(v,w) + zq3(v,w) + vq4(x, y, z) + c(v,w);
[1.3] a1vy

2 + xyl1(v,w) + yq1(v,w) + zq2(v,w) + a2vxz + c(v,w, x);
[1.4] vzl(v,w, x, y) + c(v,w, x, y);
[1.5] zq(v,w) + c(v,w, x, y);
[1.6] vyl1(v,w, x) + vzl2(v,w, x) + vq(y, z) + c(v,w, x);

[2.1] = [1.1];
[2.2] = [1.2];
[2.3] avxz + vyl1(x, y) + xq1(v,w) + zq2(v,w) + yq3(v,w) + c(v,w) + x2l2(v,w);
[2.4] av2z + c(v,w, x, y);
[2.5] y2l(v,w) + yq1(v,w, x) + zq2(v,w) + c(v,w, x);
[2.6] avy2 + vzl(v,w, x) + yq(v,w, x) + c(v,w, x).

The symbols l, q and c denote a linear, quadratic and cubic homogeneous polynomi-
als respectively. By (2.1), modulo SL(5)-action, all the maximal subsets among M⊕(r) are
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M⊕(γ 3) and M⊕(γ 5), and all the maximal subsets among M+(r) are M+(λ3) and M+(λ5).
In other words:

(2.3) COROLLARY. Let X be a cubic 3-fold defined by a homogeneous polynomial F .
(1) X is not stable if and only if F is either [1.3] or [1.5] for a suitable coordinate.
(2) X is unstable, i.e. not semi-stable, if and only if F is either [2.3] or [2.5] for a

suitable coordinate.
In particular, if a cubic 3-fold has a double point of rank 2 (resp. 1), then it is not stable

(resp. not semi-stable).

We begin to prove (2.1). The following inclusions are obvious by List.

M+(λ3) ⊂ M⊕(γ 3) , M+(λ4) ⊂ M⊕(γ 4) and M+(λ5) ⊂ M⊕(γ 5) .

Both [1.4] and [1.5] define all cubic 3-folds with a double point of rank < 3, so we have:

(2.4) PROPOSITION. M⊕(γ 4) = M⊕(γ 5) mod SL(5).

Here f ≡ g means that f = σg for some linear transformation σ .

(2.5) PROPOSITION. M⊕(γ 6) ⊂ M⊕(γ 5) mod SL(5).

PROOF. Since q(y, z) ≡ y(c1y + c2z) by a suitable linear transformation (y, z) �→
(a1y + b1z, a2y + b2z) by (2.6) below, we have

[1.6] =vyl1(v,w, x) + vzl2(v,w, x) + vq(y, z) + c(v,w, x)

≡vl3(y, z)l1(v,w, x) + vl4(y, z)l2(v,w, x) + vy(c1y + c2z) + c(v,w, x)

=zv{l′1(v,w,x) + l′2(v,w,x) + c2y} + vyl′3(v,w,x) + vyl′4(v,w,x)

+ avy2 + c(v,w,x)

which has a double point (0:0:0:0:1) of rank < 3. Therefore [1.6] ⇒ [1.5]. �

(2.6) LEMMA. For a suitable linear transformation σ of (x1, x2, · · · , xn), q(x1, x2,

· · · , xn) = σq ′(x1, x2, · · · , xn) if and only if

rank q(x1, x2, · · · , xn) = rank q ′(x1, x2, · · · , xn) .

(2.7) PROPOSITION. M+(λ2) ⊂ M+(λ3) mod SL(5).

PROOF. Since q4(x, y, z) ≡ axz+yl1(x, y) by a suitable linear transformation (x, y, z)

�→ (l′1(x, y, z), l′2(x, y, z), l′3(x, y, z)), we have

[2.2] = xq1(v,w) + yq2(v,w) + zq3(v,w) + c(v,w) + vq4(x, y, z)

≡ xq1(v,w) + zq2(v,w) + yq3(v,w) + c(v,w) + v{axz + yl1(x, y)}
⇒ xq1(v,w) + zq2(v,w) + yq3(v,w) + c(v,w) + v{axz + yl1(x, y)}

+ x2l2(v,w)

= avxz+vyl1(x, y)+xq1(v,w)+zq2(v,w)+yq3(v,w)+c(v,w)

+x2l2(v,w) = [2.3]. �
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(2.8) PROPOSITION. M+(λ4) ⊂ M+(λ5) mod SL(5).

PROOF. For any cubic form c(w, x, y) there exist a, q(w, x) and c′(w, x) such that

{c(w, x, y) = 0} ≡ {awy2 + q(w, x)y + c′(w, x) = 0} in P2(w:x:y) .

Hence c(v,w, x, y) ≡ y2l(v,w) + yq(v,w, x) + c′(v,w, x) by a suitable linear transforma-
tion (w:x:y) �→ (l1(w, x, y):l2(w, x, y):l3(w, x, y)). So we have

[2.4] = av2z + c(v,w, x, y)

≡ av2z + y2l(v,w) + yq(v,w, x) + c′(v,w, x)

= y2l(v,w) + yq(v,w, x) + av2z + c′(v,w, x)

⇒ y2l(v,w) + yq1(v,w, x) + zq2(v,w) + c′(v,w, x) = [2.5] . �

(2.9) PROPOSITION. M+(λ6) ⊂ M+(λ5) mod SL(5).

PROOF. We put

[2.6] = avy2 + vz(a1v + a2w + a3x) + yq(v,w, x) + c(v,w, x) .

If a2 = a3 = 0, then our proposition is obvious. In case (a2, a3) �= (0, 0), exchanging w and
x if necessary, we may assume a2 �= 0. So we have

[2.6] ≡ avy2 + vz(a1v + a4w) + yq ′(v,w, x) + c′(v,w, x) by a2w + a3x �→ a4w

⇒ y2l(v,w) + zq2(v,w) + yq1(v,w, x) + c′(v,w, x)

= y2l(v,w) + yq1(v,w, x) + zq2(v,w) + c′(v,w, x) = [2.5] . �

(2.10) PROPOSITION. M+(λ1) ⊂ M+(λ6) mod SL(5).

PROOF. Let F be a polynomial of type [2.1]. Then we have

F = yq1(v,w, x) + zq2(v,w, x) + c(v,w, x)

≡ y{aq1(v,w, x) + bq2(v,w, x)} + z{a′q1(v,w, x) + b′q2(v,w, x)} + c(v,w, x)

by (y, z) �→ (ay + a′z, by + b′z)
= yq ′

1(v,w, x) + zl1(v,w, x)l2(v,w, x) + c(v,w, x) by (2.11) below

≡ yq ′(v,w, x) + zvl′2(v,w, x) + c′(v,w, x) by l1(v,w, x) �→ v

⇒ yq ′(v,w, x) + vzl′2(v,w, x) + c′(v,w, x) + avy2

= avy2 + vzl′2(v,w, x) + yq(v,w, x) + c′(v,w, x) = [2.6] . �

(2.11) LEMMA. For any pair of non-zero quadratic forms q1(v,w, x) and q2(v,w, x)

there exists a pair of complex number a and b such that aq1(v,w, x) + bq2(v,w, x) =
l1(v,w, x)l2(v,w, x).
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Now the proof of (2.1) has completed. A cubic 3-fold defined by any polynomial in List
(2.2) is singular. We describe the geometric situation of (2.1) associating it with a space sextic
curve.

(2.12) DEFINITION. Let p be a singular point of a cubic 3-fold X. We choose a
homogeneous coordinate of P4 such that p = (0:0:0:0:1). Then the defining equation of X is

q(v,w, x, y)z + c(v,w, x, y) .

The projection X · · · → P3 from p is a birational map. The indeterminacy set of its inverse
map is defined by

q(v,w, x, y) = c(v,w, x, y) = 0 in P3(v:w:x:y) ,

which we denote by I(X, p). We note that dimI(X, p) = 1 if and only if X is irreducible
and p is not a triple point.

FIGURE.
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(2.13) In Figure, the illustrations of the sextic curve Fi.j are corresponding to general
cubic 3-folds defined by [i.j ].

F1.4 and F1.5 are two plane cubics C and C′ with common three points. F1.4 and F1.5
become F1.6 if C′ degenerates the union of 3 lines. F1.4 and F1.5 become F2.4 if C = C′.
F1.4 and F1.5 become F2.5 if C and C′ touch at a point p. F2.5 becomes F2.6 if C is singular
at p. F2.6 becomes F1.1 and F2.1 if C′ is also singular at p.

F1.3 is a complete intersection C of a quadratic cone Q with a vertex q and a cubic
surface S passing through q such the tangent cone of Q ∩ S at q is a double line L, and L ∩ S

is a (triple) point. F1.3 becomes F2.3 if C degenerate the union of a line L and a curve C ′
with L ∩ C′ = {p}. F2.3 becomes F1.2 and F2.2 if C′ = L ∪ C′′.

3. Closed orbits of cubic 3-folds.

In this section we consider cubic 3-fold with a closed orbit in Sym3C5 and prove the
following theorem, where SymdCn is the family of homogeneous polynomials in n variables
of degree d . As a corollary we obtain (3) in Main Theorem.

(3.1) THEOREM. (1) A semi-stable cubic 3-fold is contained in a closed orbit in
Sym3C5 if and only if either it is stable or its defining equation is projectively equivalent to:

[3.1] φα,β = vy2 + w2z − vxz − αwxy + βx3 with (α, β) �= (0, 0) or

[3.2] ϕ = vwz + x3 + y3 .

(2) Equations φα,β and φα′,β ′ are equivalent under the SL(5)-action if and only if α2 : β =
α′2 : β ′.

First we show the ‘only if’ part of (1) in (3.1).

(3.2) PROPOSITION. If a semi-stable cubic 3-fold X is contained in a closed orbit,
then either it is stable or its defining equation is projectively equivalent to φα,β or ϕ.

PROOF. Since X is not stable, we may assume that the defining equation f is either
[1.3] or [1.5] by (2.3). If f = [1.5], then

lim
t→0

γ 5(t)(f ) = lim
t→0

diag (t, t, 1, 1, t−2)(f ) = zq(v,w)+c(0, 0, x, y) ≡ vwz+x3 +y3 = ϕ

because X is semi-stable. If f = [1.3], then

lim
t→0

γ 3(t)(f ) = lim
t→0

diag (t2, t, 1, t−1, t−2)(f ) = a1vy
2 + a2w

2z + a3vxz + a4wxy + a5x
3

which is projectively equivalent to φα,β for some α and β by (3.3). �

We put S(
∑

aij ···kviwj · · · zk) = {(i, j, · · · , k) ∈ I | aij ···k �= 0}.
(3.3) LEMMA. If a homogeneous cubic polynomial f = a1vy

2 + a2w
2z + a3vxz +

a4wxy + a5x
3 is semi-stable, then f ≡ φα,β for some (α, β) �= (0, 0).
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PROOF. We show that a1, a2, a3 �= 0 and (a4, a5) �= (0, 0). If a4 = a5 = 0, then

S(f ) = {(0, 2, 0, 0, 1), (1, 0, 0, 2, 0), (1, 0, 1, 0, 1)} ⊂ M+(λ2) ,

so f is not semi-stable. Hence we must have that (a4, a5) �= (0, 0). Similarly a1, a2, a3 �= 0
follows from

{(0, 0, 3, 0, 0), (0, 1, 1, 1, 0), (0, 2, 0, 0, 1), (1, 0, 1, 0, 1)} ⊂ M+(λ1),

{(0, 0, 3, 0, 0), (0, 1, 1, 1, 0), (1, 0, 0, 2, 0), (1, 0, 1, 0, 1)} ⊂ M+(λ6),

{(0, 0, 3, 0, 0), (0, 2, 0, 0, 1), (1, 0, 0, 2, 0), (1, 0, 1, 0, 1)} ⊂ M+(λ5).

Our lemma follows from (3.4) below immediately. �

(3.4) LEMMA. For any non-zero constant k, the diagonal transformation

diag (k, (ka2)
−1/2, (k2a3)

−1, (ka1)
−1/2, k) ,

sends the polynomial f = a1vy
2 + a2w

2z + a3vxz + a4wxy + a5x
3 to

vy2 + w2z + vxz + (k−3a
−1/2
1 a

−1/2
2 a−1

3 a4)wxy + (k−6a−3
3 a5)x

3 .

The following Lemmas are useful to show (3.7).

(3.5) LEMMA (Luna’s criterion [4] or [9, 6.17]). Suppose that a reductive group G

acts on an affine variety X, H is a reductive subgroup of G, and x belongs to the set XH of
fixed points of H . Then the following are equivalent:

(1) the orbit Gx is closed;
(2) the orbit NG(H)x over the normalizer is closed;
(3) the orbit ZG(H)x over the centralizer is closed.

(3.6) LEMMA ([9, 6.15]). Suppose that T is an algebraic torus acting linearly on a
finite-dimensional vector space V and v ∈ V be a vector. Then the following conditions are
equivalent:

(1) the orbit T v is closed in V ;
(2) 0 is an interior point of the set supp v in X(T ) ⊗Z Q, where X(T ) is the group of

character of T .

In our case, X(T ) is Z⊕5/Z(1, 1, 1, 1, 1) and supp ϕ is the convex hull of S(ϕ) in
X(T ) ⊗Z Q. Obviously the composite I ↪→ Z⊕5 → X(T ) is injective. We begin to prove the
‘if part’ of (1) in (3.1).

(3.7) PROPOSITION. The orbits of φα,β and ϕ are closed. Hence they are semi-stable.

PROOF. First we show that the orbit of ϕ is closed. Put

H = {diag (t2, t, ω, ω2, t−3) | t ∈ C∗, ω3 = 1} .

Then φα,β is invariant under H and the center ZG(H) is the maximal torus

T = {diag (t0, t1, t2, t3, t4) | t0t1 · · · t4 = 1} .
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By Luna’s criterion (3.5), it is enough to check that T ϕ is closed, which is equivalent to that
0 is an interior point of the set supp ϕ by (3.6). This is immediately from

S(ϕ) = {(1, 1, 0, 0, 1), (0, 0, 3, 0, 0), (0, 0, 0, 3, 0)} and

3(1, 1, 0, 0, 1) + (0, 0, 3, 0, 0) + (0, 0, 0, 3, 0) = (3, 3, 3, 3, 3) = 0 in X(T ) .

The closedness of the orbit of φα,β similarly follows if we put

H = {γ 3 = diag (t2, t, 1, t−1, t−2) | t ∈ C∗}. �

We complete the proof of (3.1). For the symbol I(X, p) refer to (2.12).

(3.8) PROOF OF (2) IN (3.1). If α2
1 : β1 = α2

2 : β2, then φα1,β1 and φα2,β2 are
isomorphic by (3.4). To prove the converse, in view of (3.4), it is enough to show that if
φ2,1−t2 and φ2,1−s2 are isomorphic then t = ±s.

We note that singular points of cubic 3-fold X defined by φ2,1−t2 are only p = (1:0:0:0:0)

and q = (0:0:0:0:1) for t �= 0. Since I(X, p) is defined by y2 − xz = w2z − 2wxy + (1 −
t2)x3 = 0, the projection from q = (0:0:0:1) is defined by the following polynomial in
P2(w:x:y)

w2y2 − 2wyx2 + (1 − t2)x4 = {wy − (1 + t)x2}{wy − (1 − t)x2} .

Hence its image consists of two conics. If φ2,1−t2 ≡ φ2,1−s2 , then for a suitable linear trans-
formation σ we have either:

(i)

{
σ {wy−(1+t)x2} = wy−(1−s)x2

σ {wy−(1−t)x2} = wy−(1+s)x2
or (ii)

{
σ {wy−(1+t)x2} = wy−(1+s)x2(1)

σ {wy−(1−t)x2} = wy−(1−s)x2(2)

In case (ii) we have from (1) × (1 − t) − (2) × (1 + t)

−2tσ (wy) = −2twy + 2(t − s)x2 .

Since σ preserves the rank of a quadric form, we obtain t = s.
In case (i) we similarly have t = −s. �

(3.9) If α2 = 4β, then the space sextic I(X, p) of φα,β is a twisted cubic with a double
structure and X is the secant variety of rational normal curve R4 in P4, it is called the secant
3-fold in [1]. Since the stabilizer group of X coincides with that of the rational curve R4, it is
PGL (2). If φα,β defines the secant 3-fold, then its singular locus is the curve R4. Otherwise,
its singular locus consists of 2 points (1:0:0:0:0), (0:0:0:0:1).

4. Non-isolated singular loci of cubic 3-folds.

In this section we consider cubic 3-fold with non-isolated singular locus and prove the
following theorem.

(4.1) THEOREM. Let X be a cubic 3-fold with non-isolated singular locus. Then the
following conditions are equivalent:
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(i) X is semi-stable;
(ii) X is the secant 3-fold;

(iii) X has only double points of type A∞ : v2 + w2 + x2 = 0.

We begin to list up the defining equation of cubic 3-folds with non-isolated singular
locus.

(4.2) PROPOSITION. Let X be an irreducible cubic 3-fold.
(i) If SingX contains a surfaces S, then S is a plane and X is defined by

[4.0] vq1(y, z) + wq2(y, z) + xq3(y, z) + c(y, z) .

(ii) Assume that SingX does not contains a surface. If SingX contains a curve C, then
it is either a line, a conic or a rational normal curve of degree 4 and X is defined by one of
the following:

[4.1] vq1(x, y, z) + wq2(x, y, z) + c(x, y, z) ;
[4.2] c(y, z) + vq1(y, z) + wq2(y, z) + xq3(y, z) + l(y, z)q(v,w, x) ;
[4.3] vy2 + w2z − vxz − 2wxy + x3 (the secant 3-fold) .

PROOF. (i) Put d = deg S ≥ 1. Cutting X by 2 general hyperplanes, we obtain an
irreducible cubic curve with d singular points and pa = 1. Since d ≤ pa , d = 1 and we have
[4.0].

(ii) If C is a line x = y = z = 0, then we have [4.1] immediately. If C lies in a
plane P : y = z = 0, then it is defined by y = z = f (v,w, x) = 0. If deg f > 2,
then we have P ⊂ SingX, because Fv, Fw, Fx, Fy, Fz ∈ (y, z, f (v,w, x)). Hence we have
deg f (v,w, x) = 2. If we write

F = c0(y, z)+vq1(y, z)+wq2(y, z)+xq3(y, z)+yq3(v,w, x)+zq4(v,w, x)+c(v,w, x) ,

then we have Fy = Fz = 0 because Fy = q3(v,w, x), Fz = q4(v,w, x) ∈ (y, zf (v,w, x)).
Since the cubic curve {c(v,w, x) = 0} in P3(v:w:x) is singular along conic {f (v,w, x) = 0},
we have c(v,w, x) = 0. Hence we obtain F = [4.2].

Assume C spans a 3-space, say, z = 0. We may suppose that C contains 4 points
(1:0:0:0:0), (0:1:0:0:0), (0:0:1:0:0), (0:0:0:1:0). So we can write

F = a1vwx + a2vwy + a3vxy + a4wxy + zq(v,w, x, y, z) .

Since a4Fv−a3Fw | z=0 = (a1x+a2y)(a4w−a3v), C is a plane curve. This is a contradiction.
Assume that C is a non-degenerate curve of degree d . Then we have d ≥ 4. Since the

general hyperplane section of X is a cubic surface with d singular points, we have d = 4 by
(4.3) below and C is a rational normal curve of degree 4. Since a cubic 3-fold X contains the
secant variety of SingX, X is the secant 3-fold (of C). �

(4.3) LEMMA (See [2, p. 644] for example). A cubic surfaces cannot contain more
than 4 isolated singularities.

In [13] we list up the defining equations of cubic n-folds X’s with codimSingX ≤ 3.
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(4.4) PROPOSITION. Let X be a cubic 3-fold with non-isolated singular locus. If it
is not the secant 3-fold, then it has a non-isolated double point of rank ≤ 2. In particular, if
SingX contains either a line or a conic, then X has a non-isolated double point of rank ≤ 2.

PROOF. If X is reducible, then we may assume F = z{vl(w, x, y, z) + q(w, x, y, z)}.
Hence p = (1:0:0:0:0) is a double point of rank < 3 and p ∈ SingX.

Assume that X is irreducible. Then F is either [4.0], [4.1] or [4.2] according to (4.2).
[4.0] has a non-isolated double point of rank 2 at (1:0:0:0:0). [4.1] has a double point of rank
2 on the line x = y = z = 0 by (2.11).

We show [4.2] has a non-isolated double point of rank ≤ 2. Since vq1(y, z)+wq2(y, z)+
xq3(y, z) ≡ vq ′

1(y, z)+wyl1(y, z)+xyl2(y, z) by a suitable linear transformation (v,w, x) �→
(l(v,w, x), l′(v,w, x), l′′(v,w, x)), we have

F ≡ c(y, z) + vq1(y, z) + wq2(y, z) + xq3(y, z) + yq(v,w, x)

≡ c(y, z) + vq ′
1(y, z) + wyl1(y, z) + xyl2(y, z) + yq(v,w, x)

= c(y, z) + vq ′
1(y, z) + y{wl1(y, z) + xl2(y, z) + q(v,w, x)}

≡ c(y, z) + vq ′
1(y, z) + y{wl′1(y, z) + xl′2(y, z) + awx + vl3(v,w, x)}

by (w, x) �→ (l4(w, x), l5(w, x)) .

Hence both p = (0:1:0:0:0) and q = (0:0:1:0:0) are double points of rank < 3 and

p, q ∈ {y = z = awx + vl3(v,w, x) = 0} ⊂ SingX . �

(4.5) PROOF OF (4.1). Since a non-isolated double point of rank 2 is of type v2 +
w2 + xn (n > 2), (4.4) means that (iii) implies (ii) in (4.1). According to (3.9), the converse
is obvious.

We show (i) and (ii) are equivalent. The secant 3-fold is semi-stable by (3.7). It is enough
to check that any cubic 3-folds defined by [4.0], [4.1] and [4.2] is unstable from (4.2). Since

[4.0] ⊂ M+([−2,−2,−2, 3, 3]) and [4.1] ⊂ M+([−3,−3, 2, 2, 2]) ,

[4.0] and [4.1] are unstable. Since

[4.2] ≡ c(y, z)+vq1(y, z)+wq2(y, z)+xq3(y, z)+zq(v,w, x) ⊂ M+([−3,−3,−3, 2, 7]) ,

[4.2] is also unstable. �

5. Analytic local characterization of stability.

So far we characterized stability in terms of global equations. Now we translate them into
local analytic conditions and prove Main Theorem. If F and G are analytically isomorphic,
then we denote F ∼ G.

Let X be a cubic 3-fold which has a double point at p =(0:0:0:0:1). Then the defining
affine equation at p is F = q(v,w, x, y) + c(v,w, x, y). If the quadratic part q is of rank 4,
then we have F ∼ v2 + w2 + x2 + y2, and, p is called of type A1. If rank q = 3, then we
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have F ∼ v2 + w2 + x2 + ayn+1. When a �= 0, p is of type An with n ≥ 2. Otherwise p is
of type A∞. As for simple singularity, we refer to [14, Ch. 3] for example.

First we describe [1.3] in terms of the curve I(X, p) defined in (2.12).

(5.1) PROPOSITION. Let X be a singular cubic 3-fold which has no double points of
rank < 3. Assume I(X, p0) is an intersection of a quadric Q and cubic surface S such that

(i) Q is a cone with a vertex p,
(ii) S passes through p,

(iii) the intersection of Q and the tangent space TpS of S at p is a (double) line L,
(iv) L ∩ S = {p}.

Then X is defined by [1.3].
PROOF. We take coordinate (v:w:x:y:z) such that p0 =(0:0:0:0:1) as in (2.12) and

such that L : v = w = 0 and p =(0:0:0:1). By (i), we have

Q : q(v,w, x) = 0 , S : c(v,w, x, y) = 0 .

By (ii), c(v,w, x, y) does not contain y3, that is,

Q : q(v,w, x) = 0 , S : y2l(v,w, x) + yq ′(v,w, x) + c(v,w, x) = 0 .

We note that l(v,w, x) �= 0, otherwise SingX contains a line v = w = x = 0, which
contradicts to our assumption by (4.4). Since TpS is {l(v,w, x) = 0} and Q ∩ TpS = L by
(iii), we have

{l(v,w, x) = q(v,w, x) = 0} = {v = w = 0} ,

which implies that l(v,w, x) = l(v,w) and q(v,w, x) = q(v,w) + xl(v,w). By l(v,w) �→
v, we have

Q : q(v,w) + vx = 0 , S : vy2 + yq ′(v,w, x) + c(v,w, x) = 0 . (∗)

By (iv), q ′(v,w, x) does not contain x2, that is, q ′(v,w, x) = xl′(v,w)+q ′(v,w). Therefore,
we have

Q : q(v,w) + xl(v,w) = 0 , S : y2l(v,w) + yxl′(v,w) + yq ′(v,w) + c(v,w, x) = 0 ,

F = z{q(v,w) + xl(v,w)} + y2l(v,w) + yxl′(v,w) + yq ′(v,w) + c(v,w, x) = [1.3] . �

Now we translate this into the analytic local condition.

(5.2) PROOF OF (1) IN MAIN THEOREM. Let X be a cubic 3-fold which has no dou-
ble points of rank < 3. By (5.4) and (5.3) below, X is not defined by [1.3] if and only if X

has only the double points of type either A1, A2, A3 or A4. Since [1.5] is equivalent to the
existence of a double point of rank ≤ 2, we have proved (1) in Main Theorem.

(5.3) LEMMA. If X is not defined by [1.3], then any double point p of rank 3 on X is
of type either A2, A3 or A4.

PROOF. Let F be the affine defining equation of X at p =(0:0:0:0:1). According to
(5.1), all of (i) to (iv) do not hold. If (i) does not hold, then q(v,w, x, y) is of rank 4. If (i)
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holds but (ii) dose not, then we have

F = v2 + w2 + x2 + y3 + l(v,w, x)y2 + q(v,w, x)y + c(v,w, x)

∼ v2 + w2 + x2 + y3 ,

which is of type A2. If (i) and (ii) hold but (iii) does not, then from (i) and (ii) we have

F = v2 + w2 + x2 + 2(av + bw + cx)y2 + q(v,w, x)y + c(v,w, x) .

Since {v2 + w2 + x2 = av + bw + cx = 0} is not a (double) line by (iii), we obtain
a2 + b2 + c2 �= 0. Hence we have

F = (v + ay2)2 + (w + by2)2 + (x + cy2)2 − (a2 + b2 + c2)y4 + q(v,w, x)y + c(v,w, x)

∼ v2 + w2 + x2 − (a2 + b2 + c2)y4 by (v + ay2, w + by2, x + cy2) �→ (v,w, x)

∼ v2 + w2 + x2 + y4 ,

which is of type A3.

Finally assume that (i), (ii) and (iii) hold but (iv) does not. Then from (i), (ii) and (iii),
we have

F = {q(v,w) + vx}z + vy2 + yq ′(v,w, x) + c(v,w, x)

by (∗) in the proof of (5.1). Since (iv) does not hold, q ′(v,w, x) contains x2. Hence we have

F = {w2 + vl0(v,w, x)} + y2v + {yx2 + yxl′(v,w) + yq ′(v,w)} + c(v,w, x)

≡ {vx + w2} + vy2 + xyl1(v,w) + yq1(v,w) + c(v,w, x) + x2y by l0(v,w, x) �→ x

= w2 + v(x + y2) + xyl1(v,w) + yq1(v,w) + c(v,w, x) + x2y

∼ w2+vx+(x−y2)yl1(v,w)+yq1(v,w)+c(v,w, x−y2)+(x−y2)2y by x+y2 �→ x

∼ w2 + vx + y5 ∼ v2 + w2 + x2 + y5,

which is of type A4. �

(5.4) LEMMA. If X is defined by [1.3], then there exists a double point p of type An

with 5 ≤ n ≤ ∞.

PROOF. Let F be the affine equation of [1.3] at p =(0:0:0:0:1), that is

F ≡ w2 + vx + a0vy
2 + q(v,w)y + l(v,w)xy + c(v,w, x) .

If a0 = 0, then X is singular along the line v = w = x = 0. Hence X has a double point of
rank < 3 by (4.4). If a0 �= 0, then we have

F ≡ w2 + vx + vy2 + q(v,w)y + l(v,w)xy + c(v,w, x)

= w2 + v(x + y2) + q(v,w)y + l(v,w)xy + c(v,w, x)

∼ w2 + vx + q(v,w)y + l(v,w)(x − y2)y + c(v,w, x − y2) by x + y2 �→ x

∼ w2 + vx + ayn+1 ∼ v2 + w2 + x2 + ayn+1

with n ≥ 5. �
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Now we complete the proof of (1) in Main Theorem. Next we consider the analytic local
condition of semi-stability.

(5.5) PROPOSITION. Let X be a singular cubic 3-fold which has no double points of
rank < 3. Assume that I(X, p0) is an intersection of a quadric Q and cubic surface S such
that

(i) Q is a cone with vertex p,
(ii) Q ∩ S consists of a line L and a quintic C,

(iii) C ∩ L = {p}.
Then X is defined by [2.3].

PROOF. We take coordinate (v:w:x:y:z) such that p =(0:0:0:0:1) L : v = w = 0 and
p =(0:0:0:1) as in the proof of (5.1). By (i), we have

Q : q(v,w, x) = 0 , S : c(v,w, x, y) = 0 .

Since L ⊂ S and L ⊂ Q by (ii), we can write

Q : q(v,w)+vx = 0 , S : c(v,w)+xq1(v,w)+yq2(v,w)+vq3(x, y)+wq4(x, y) = 0 .

Since Sing(Q ∩ S) = {p} by (iii), we have

rank

⎛
⎜⎜⎝

Qv Sv

Qw Sw

Qx Sx

Qy Sy

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
v=w=0

= rank

⎛
⎜⎜⎝

x q3(x, y)

0 q4(x, y)

0 0
0 0

⎞
⎟⎟⎠ < 2 ⇔ x = 0 .

Hence q4(x, y) = ax2 and

Q : q(v,w) + vx = 0 , S : c(v,w) + xq1(v,w) + yq2(v,w) + vq3(x, y) + awx2 = 0 .

Therefore, we obtain

F = z{q(v,w) + vx} + c(v,w) + xq1(v,w) + yq2(v,w) + vq3(x, y) + awx2 = [2.3] . �

We translate this to the analytic local condition.

(5.6) PROPOSITION. Let X be a cubic 3-fold which has no double points of rank < 3.
Then X is not defined by [2.3] if and only if X has only double points of type A1, A2, A3, A4,

A5 or A∞.

PROOF. If X has only isolated double points, then our theorem follows (5.7) and (5.8)
below immediately. Assume that X has non-isolated singular locus. Then it is not defined by
[2.3] if and only if it is semi-stable by (2.3), which is also equivalent to that it has only A∞
singular points by (4.4).

(5.7) LEMMA. If it is not defined by [2.3], then any double point p of rank 3 on X is
of type An (n = 2, 3, 4, 5 or ∞).

PROOF. Let F be the affine defining equation of X at p =(0:0:0:0:1). If (i) in (5.5)
does not hold, then p is of rank 4.
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Assume (i) holds but (ii) does not hold. By (i), we can put

F = v2 + w2 + x2 + c(v,w, x, y)

= v2 + w2 + x2 + a0y
3 + (a1v + a2w + a3x)y2 + q0(v,w, x)y + c0(v,w, x) .

If a0 �= 0, then we have F ∼ w2 + v2 + x2 + y3. If a0 = a1 = a2 = a3 = 0, then
SingX contains a line v = w = x = 0, which is a contradiction by (4.4). If a0 = 0 and
a2

1 + a2
2 + a2

3 �= 0, then we have F ∼ v2 + w2 + x2 + y4.
If a0 = 0 and a2

1 + a2
2 + a2

3 = 0, then we may assume a1 = 1. By the linear transform
v + a2w + a3x �→ v, we have

F ≡ −(a3w − a2x)2 + v(v − 2a2w − 2a3x) + v2y + q1(v,w, x) + c1(v,w, x)

≡ w2 − vx + vy2 + q(v,w, x)y + c(v,w, x)

= w2 − v(x − y2) + q(v,w, x)y + c(v,w, x)

∼ w2 − vx + q(v,w, x + y2)y + c(v,w, x + y2) by x − y2 �→ x

∼ w2 − vx + ayn+1 ∼ v2 + w2 + x2 + ayn+1 ,

where n is either 4 or 5 because q(0, 0, x)y + c(0, 0, x) �= 0 by the assumption. We note that
a can be 0. For example, in the case F = w2 − vx + vy2 − 2wxy + x3, we have

F = (w − xy)2 − (x − y2)(v − x2) ∼ w2 − vx ∼ w2 + v2 + x2 .

　 Finally assume (i) and (ii) hold but (iii) does not hold. By (i) and (ii), we can write

F = w2 − vx + l(v,w)y2 + q(v,w, x)y + c(v,w, x)

where q(0, 0, x) = c(0, 0, x) = 0. If l(v,w) = 0, then SingX contains the line {v = w =
x = 0}, hence l(v,w) �= 0 by (4.4). If l(v,w) contains w, then

F ≡ w2 − vx + 2wy2 + · · · = (w − y2)2 − vx − y4 + · · ·
∼ w2 − vx − y4 ∼ w2 + v2 + x2 + y4 .

If l(v,w) = v, then q(v,w, x) contains wx since (iii) does not hold. So we have

F = w2 − vx + vy2 + 2wxy + · · · = (w + xy)2 − v(x − y2) − x2y2 + · · ·
∼ w2 − vx + (x + y2)2y2 + · · · by (w + xy, x − y2) �→ (w, x)

∼ w2 − vx + y6 ∼ w2 + v2 + x2 + y6 . �

(5.8) LEMMA. If X is defined by [2.3], then there exists a double point is of type A7.

PROOF. Since X has no double point of rank < 3, we have

[2.3] = z{a1w
2+vl1(v,w, x)}+a2vy

2+{q1(v,w)+a3vx}y+c(v,w)+xq2(v,w)+x2l2(v,w)

≡ z(w2 − vx) + vy2 + {q ′
1(v,w) + a′

2vx}y + c′(v,w) + q ′
2(v,w)x + (a′

3v + 2a′
4w)x2 .
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We claim a4 �= 0. Otherwise SingX contains a conic v = w = −zx + y2 + a1xy + a3x
2 = 0,

so X has a double point of rank 2 by (4.4). Put z = 1. Then we have

[2.3] ≡ w2 − vx + vy2 + 2wx2 + · · ·
= (w + x2) − v(x − y2)2 − x4 + · · ·
∼ w2 − vx − (x + y2)4 + · · · by (w + x2, x − y2) �→ (w, x)

∼ w2 − vx − y8 ∼ v2 + w2 + x2 + y8 ,

which is of type A7. �

Now we have completed the proof of (5.6). In the proof of (5.8), we have in fact proved
the following:

(5.9) PROPOSITION. If the double point (0 : 0 : 0 : 0 : 1) on [2.3] is of rank 3, then it
is of type either A7 or A∞.

Finally we prove (2) in Main Theorem.

(5.10) LEMMA. Assume that a cubic 3-fold X has no double points of rank < 2. Then
X is not defined by [2.5] if and only if any double point p of rank 2 on X is of type D4.

PROOF. Suppose X is not defined by [2.5]. Let p be an arbitrary double point of
rank 2 on X. We may assume that p =(0:0:0:0:1) and the defining equation of X is F =
zq ′(v,w) + c′(v,w, x, y). Since X is not defined by

[2.5] = zq2(v,w) + y2l(v,w) + yq1(v,w, x) + c(v,w, x) ,

then c′(0, 0, x, y) = 0 has no double roots. Since

F |z=1 = v2 + w2 + c0(v,w) + vq3(x, y) + wq4(x, y) + c′(0, 0, x, y)

∼ v2 + w2 + c′(0, 0, x, y) + · · · ,

p is of type D4 : v2 + w2 + x3 + y3.
If X is defined by [2.5], then (0:0:0:0:1) is a double point of rank 2 and not of type D4.

This shows ‘if’ part. �

(5.11) PROOF OF (2) IN MAIN THEOREM. In view of (2.3), a cubic 3-fold X is semi-
stable if and only if it is defined by neither [2.3] nor [2.5]. In the case that X has no double
points of rank < 3, X is semi-stable if and only if it has only double points of type An (n =1,
2, 3, 4, 5 or ∞) by (5.6).

In the case that X has no double points of rank < 2, X is semi-stable if and only if X is
not defined by [2.5] by (5.12) below. Hence the first half of (2) follows from (5.10). The latter
half of (2) is already proved in (4.1).

(5.12) LEMMA. If [2.3] has a double point of rank 2, then it is a special case of [2.5].
PROOF. If p =(0:0:0:0:1) is a double point of rank 2, then our claim is obvious. Sup-

pose that there exists a double point q �= p of rank 2 on [2.5]. According to (5.13), the
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defining equation F is either (i) or (ii). In the case (i), F is a special case of [2.5] by (5.10). In
the case (ii), since (0:0:0:0:1) is of type neither A2 nor A3 by (5.9), y3 or wy2 is not contain
in c(v,w, y). Hence F is a special case of [2.5] by (5.10). �

(5.13) LEMMA. If a cubic 3-fold has double points of rank 2 and 3, then its defining
equation is projectively equivalent to either:

(i) wxz + vq(w, x, y) + c(w, x, y) or (ii) (vx + w2)z + c(v,w, y) .

PROOF. Suppose (1:0:0:0:0) and (0:0:0:0:1) are double points of rank 2 and 3, respec-
tively. Then the defining equation can be written

F = vq1(w, x, y) + zq2(w, x, y) + vzl1(w, x, y) + c(w, x, y) ,

If l1(w, x, y) = 0, then we have

vq1(w, x, y) + zq2(w, x, y) + c(w, x, y) ≡ wxz + vq ′(w, x, y) + c′(w, x, y) ,

which is of type (i).
If l1(w, x, y) �= 0, then we may assume that l(w, x, y) = x. Since rank {q1(w, x, y) +

xz} = 2, we have q1(w, x, y) = xl2(w, x, y). Since rank {q2(w, x, y) + vx} = 3, we have
q2(w, x, y) = xl3(w, x, y) + l4(w, x, y)2. Hence we have

F = vxl2(w, x, y) + z{xl3(w, x, y) + l4(w, x, y)2} + vxz + c(w, x, y)

= vx{l2(w, x, y) + z} + z{xl3(w, x, y) + l4(w, x, y)2} + c(w, x, y)

≡ vxz + z{xl3(w, x, y) + l4(w, x, y)2} + c′(w, x, y) by l2(w, x, y) + z �→ z

= xz{v + l3(w, x, y)} + l4(w, x, y)2z + c′(w, x, y)

≡ vxz + w2z + c′′(w, x, y) by (v + l3(w, x, y), l4(w, x, y)) �→ (v,w)

= (vx + w2)z + c′′(w, x, y),

which is of type (ii). �
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