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Abstract. It is known that there are no Einstein real hypersurfaces in complex space forms equipped with the
Kähler metric. In the present paper we classified the ∗-Einstein real hypersurfaces M in complex space forms Mn(c)

and such that the structure vector is a principal curvature vector.

1. Introduction.

The study of real hypersurfaces in complex space forms has been an active field over the
past decade. Let M2n−1 be a connected real hypersurface of complex space forms Mn(c), n ≥
2, c �= 0 with the Kähler metric of constant holomorphic sectional curvature 4c. Then M has
an almost contact metric structure (φ, ξ, η, g ) induced from the Kähler structure (J,G) of
Mn(c). T. E. Cecil and P. J. Ryan proved that there are no Einstein real hypersurfaces of
Pn(C)[2]. And many differential geometers studied the real hypersurfaces of Mn(c) in terms
of Ricci tensor.

On the other hand, S. Tachibana introduced the notion of Ricci ∗-tensor field on almost
Hermitian manifolds [11]. We apply this notion of Ricci ∗-tensor to almost contact manifolds.
Moreover, we investigate the ∗-Einstein real hypersurfaces of complex space forms.

THEOREM 1.1. Let M be a connected ∗-Einstein real hypersurface of Pn(C) of con-
stant holomorphic sectional curvature 4c > 0, whose structure vector field ξ is a principal
curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere,
(ii) a tube over a totally geodesic complex projective space Pk(C) of radius πr/4,

where 0 < k < n − 1 and r is a positive number satisfying 4c = 4/r2,
(iii) a tube over a complex quadric Qn−1 and Pn(R).

THEOREM 1.2. Let M be a connected ∗-Einstein real hypersurface of Hn(C) of con-
stant holomorphic sectional curvature 4c < 0, whose structure vector field ξ is a principal
curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere,
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(ii) a tube over a totally geodesic complex hyperbolic hyperplane,
(iii) a tube over a totally real hyperbolic space Hn(R),
(iv) a horosphere.

The author would like to express his sincere gratitude to Prof. J. Inoguchi for his valuable
suggestions and continuous encouragement during the preparation of this paper, and also
thank the referee for his kindly comments.

2. Preliminaries.

A complex n-dimensional Kähler manifold of constant holomorphic sectional curvature
4c is called a complex space form, which is denoted by Mn(c). A complete and simply
connected complex space form is a complex projective space Pn(C), a complex Euclidean
space Cn or a complex hyperbolic space Hn(C), according as c > 0, c = 0 or c < 0. Let
M be a real hypersurface of complex space forms Mn(c), c �= 0 . In a neighborhood of each
point, we take a unit normal vector field N in Mn(c). The Riemannian connections ˜∇ in
Mn(c) and ∇ in M are related by the following formulas for arbitrary vector fields X and Y

on M .

˜∇XY = ∇XY + g (AX, Y )N ,

˜∇XN = −AX ,

where g denotes the Riemannian metric of M induced from the Kähler metric G of Mn(c)

and A is the shape operator of M in Mn(c). We denote by T M the tangent bundle of M .
An eigenvector X of the shape operator A is called a principal curvature vector. Also an
eigenvalue λ of A is called a principal curvature. We know that M has an almost contact
metric structure induced from the Kähler structure (J,G) on Mn(c): We define a (1, 1)-
tensor field φ, a vector field ξ and a 1-form η on M by g (φX, Y ) = G(JX, Y ) and g (ξ,X) =
η(X) = G(JX,N). Then we have

φ2X = −X + η(X)ξ , η(ξ) = 1 , φξ = 0 .(1)

It follows from (1.1) that

∇Xξ = φAX .

Let ˜R and R be the curvature tensors of Mn(c) and M , respectively. From the expression of
the curvature tensor ˜R of Mn(c), we have the following equations of Gauss and Codazzi:

R(X, Y )Z = c(g (Y,Z)X − g (X,Z)Y

+g (φY,Z)φX − g (φX,Z)φY − 2g (φX, Y )φZ)

+g (AY,Z)AX − g (AX,Z)AY ,

(∇XA)Y − (∇Y A)X = c(η(X)φY − η(Y )φX − 2g (φX, Y )ξ) .
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By the Gauss equation, the Ricci tensor of M is defined by

S(X, Y ) = trace(Z �→ R(Z,X)Y )

as

S(X, Y ) = c((2n + 1)g (X, Y ) − 3η(X)η(Y )) + hg (AX, Y ) − g (A2X,Y ) ,

where h denotes the trace of the shape operator A. Now we prepare without proof the follow-
ing in order to prove our results.

LEMMA 2.1 ([7]). If ξ is a principal curvature vector, then the corresponding princi-
pal curvature α is locally constant.

LEMMA 2.2 ([7]). Assume that ξ is a principal curvature vector and the correspond-
ing principal curvature is α. If AX = λX for X ⊥ ξ, then we have (2λ − α)AφX =
(αλ + 2c)φX.

This result is due to M. Okumura for Pn(C) and to S. Montiel and A. Romero for Hn(C).

PROPOSITION 2.3 ([6], [9]). Let M , where n ≥ 2, be a real hypersurface in Mn(c) of
constant holomorphic sectional curvature 4c �= 0. Then φA = Aφ if and only if M is an open
subset of the following:

(i) a geodesic hypersphere,
(ii) a tube over totally geodesic complex space form Mk(c), where 0 < k ≤ n − 1.

These real hypersurfaces of Mn(c) are homogeneous one. R. Takagi classified the ho-
mogeneous real hypersurfaces of Pn(C).

PROPOSITION 2.4 ([12]). Let M be a homogeneous real hypersurface of Pn(C) of
constant holomorphic sectional curvature 4c > 0. Then M is locally congruent to the follow-
ing:

A1: Geodesic hyperspheres.
A2: Tubes over totally geodesic complex projective spaces Pk(C), where 0 < k < n − 1.
B: Tubes over complex quadrics Qn−1 and Pn(R).
C: Tubes over the Segre embedding of P1(C) × P(n−1)/2(C), and n(≥ 5) and is odd.
D: Tubes over the Plücker embedding of the complex Grassmann manifold G2,5(C). Occur

only for n = 9.
E: Tubes over the canonical embedding of the Hermitian symmetric space SO(10)/U(5).

Occur only for n = 15.

We know that there are three types of homogeneous real hypersurfaces in Pn(C) with at
most three distinct principal curvatures. We will list the principal curvatures of these real
hypersurfaces, see [10]. Here, r is a positive number and the holomorphic sectional curvature
of Pn(C) is 4c = 4/r2. The parameter u is chosen so that the tubes have radius ru.
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PROPOSITION 2.5. The geodesic hyperspheres (Type A1) in Pn(C) have two distinct
principal curvatures: λ = (1/r) cotu of multiplicity 2n − 2 and α = (2/r) cot 2u of multi-
plicity 1, where 0 < u < π/2.

PROPOSITION 2.6. The Type A2 real hypersurfaces in Pn(C) have three distinct prin-
cipal curvatures: λ1 = −(1/r) tan u of multiplicity 2k, λ2 = (1/r) cotu of multiplicity 2l,

and α = (2/r) cot 2u of multiplicity 1, where k > 0, l > 0, and k + l = n− 1, 0 < u < π/2.

PROPOSITION 2.7. The Type B real hypersurfaces in Pn(C) have three distinct prin-
cipal curvatures: λ1 = −(1/r) cotu of multiplicity n − 1, λ2 = (1/r) tan u of multiplicity
n − 1, and α = (2/r) tan 2u of multiplicity 1, where 0 < u < π/4.

PROPOSITION 2.8. The Type C, D and E real hypersurfaces in Pn(C) have five dis-
tinct principal curvatures.

In addition, many authors contributed to this result.

PROPOSITION 2.9 ([3]). Let M be a real hypersurface of Pn(C). Then M has constant
principal curvatures and ξ is a principal curvature vector if and only if M is locally congruent
to a homogeneous real hypersurface.

In complex hyperbolic space Hn(C), this classification was begun by S. Montiel and
completed by J. Berndt.

PROPOSITION 2.10 ([1]). Let M be a real hypersurface of Hn(C) of constant holo-
morphic sectional curvature 4c < 0. Then M has constant principal curvatures and ξ is a
principal curvature vector if and only if M is locally congruent to the following:

A1: Geodesic hyperspheres (Type A11) and tubes over totally geodesic complex hyperbolic
hyperplanes (Type A12).

A2: Tubes over totally geodesic Hk(C), where 0 < k < n − 1.
B: Tubes over totally real hyperbolic space Hn(R).
N : Horospheres.

These real hypersurfaces have at most three constant principal curvatures. Here r is a positive
number and the holomorphic sectional curvature of Hn(C) is 4c = −4/r2. The parameter u

is chosen so that the tubes have radius ru.

PROPOSITION 2.11. The geodesic hyperspheres (Type A11) in Hn(C) have two dis-
tinct principal curvatures: λ = (1/r) coth u of multiplicity 2n − 2 and α = (2/r) coth 2u of
multiplicity 1, where u > 0.

PROPOSITION 2.12. The tubes around complex hyperbolic hyperplanes (Type A12) in
Hn(C) have two distinct principal curvatures: λ = (1/r) tanh u of multiplicity 2n − 2 and
α = (2/r) coth 2u of multiplicity 1, where u > 0.
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PROPOSITION 2.13. The Type A2 real hypersurfaces in Hn(C) have three distinct
principal curvatures: λ1 = (1/r) tanhu of multiplicity 2k, λ2 = (1/r) cothu of multiplicity
2l, and α = (2/r) coth 2u of multiplicity 1, where k > 0, l > 0, k + l = n − 1 and u > 0.

PROPOSITION 2.14. The Type B real hypersurfaces in Hn(C) have three distinct prin-
cipal curvatures: λ1 = (1/r) coth u of multiplicity n − 1, λ2 = (1/r) tanh u of multiplic-
ity n − 1, and α = (2/r) tanh 2u of multiplicity 1. These curvatures are distinct unless
coth u = √

3 in which case λ1 and α coincide to make a principal curvature of multiplicity n,

where u > 0.

PROPOSITION 2.15. The horospheres (Type N) are real hypersurfaces of Hn(C) that
have two distinct principal curvatures: λ = 1/r of multiplicity 2n − 2, and α = 2/r of
multiplicity 1.

3. ∗-Einstein real hypersurfaces.

We denote by S∗ the Ricci ∗-tensor of M defined by

S∗(X, Y ) = 1

2
trace(Z �→ R(X, φY )φZ) ,

as

S∗(X, Y ) = 2cn(g (X, Y ) − η(X)η(Y )) − g (φAφAX, Y ) ,(2)

for any X,Y ∈ T M .
Further we denote by ρ∗ the ∗-scalar curvature of M which is the trace of the linear

endomorphism Q∗ defined by g (Q∗X,Y ) = S∗(X, Y ) for any X,Y ∈ T M .
We get immediately

S∗(X, ξ) = 0 ,(3)

S∗(ξ, Y ) = −η(AφAφY) ,(4)

for any X,Y ∈ T M , and

S∗(φX, φY ) = S∗(Y,X) + η(AφAφX)η(Y ) ,

for any X,Y ∈ T M .
Let T 0M be a distribution defined by a subspace

T 0
x M = {X ∈ TxM : X ⊥ ξx}

in the tangent space TxM . From (1), this distribution T 0M is invariant with φ and called the
holomorphic distribution. If Ricci ∗-tensor is a constant multiple of the Riemannian metric
for the holomorphic distribution, i.e.

S∗(X, Y ) = ρ∗

2(n − 1)
g (X, Y )

for X,Y ∈ T 0M on M , then M is called a ∗-Einstein real hypersurface.
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LEMMA 3.1. If M is ∗-Einstein if and only if Ricci ∗-tensor S∗ of M satisfies the
following equation:

S∗(X, Y ) = ρ∗

2(n − 1)
(g (X, Y ) − η(X)η(Y )) − η(X)η(AφAφY) ,(5)

for any X,Y ∈ T M .

PROOF. By the assumption, we have

S∗(X − η(X)ξ, Y − η(Y )ξ) = ρ∗

2(n − 1)
g (X − η(X)ξ, Y − η(Y )ξ) ,(6)

for X,Y ∈ T M . On the other hand, we calculate

S∗(X − η(X)ξ, Y − η(Y )ξ) =S∗(X, Y ) − η(X)S∗(ξ, Y ) − η(Y )S∗(X, ξ)

+ η(X)η(Y )S∗(ξ, ξ) .

From the equation (3) and (4), we get

S∗(X − η(X)ξ, Y − η(Y )ξ) = S∗(X, Y ) + η(X)η(AφAφY) .(7)

Combine (6) and (7), we have the conclusion.

We now discuss the standard examples of ∗-Einstein real hypersurfaces in Mn(c).

Case 1. We will show that the real hypersurfaces of Type A1 are ∗-Einstein. By Propo-
sition 2.5, 2.11 and 2.12 AX = λX for any X ∈ T 0M . By Lemma 2.2, we have

φAφAX = −λ2X ,

for X ∈ T 0M . Calculating the equation (2), we have

S∗(X, Y ) = (2cn + λ2)g (X, Y ) ,

for any X,Y ∈ T 0M .
From Proposition 2.5, we calculate Ricci ∗-tensor of geodesic hyperspheres (Type A1)

in Pn(C) with radius ru,

S∗(X, Y ) = c(2n + cot2 u)g (X, Y ) ,

for any X,Y ∈ T 0M .
On the other hand, by Proposition 2.11, we have Ricci ∗-tensor of geodesic hyperspheres

(Type A11) in Hn(C) with radius ru,

S∗(X, Y ) = c(2n − coth2 u)g (X, Y ) ,

for any X,Y ∈ T 0M . And using Proposition 2.12 we get Ricci ∗-tensor of tubes over totally
geodesic complex hyperbolic hyperplanes (Type A12) in Hn(C) with radius ru,

S∗(X, Y ) = c(2n − tanh2 u)g (X, Y ) ,

for any X,Y ∈ T 0M .

Case 2. The Type A2 real hypersurfaces have three distinct principal curvatures. Now
we decompose the holomorphic distribution that T 0M = Vλ1 ⊕ Vλ2 . We set {ei, ej } is an
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orthonormal basis for T 0M , such that ei (i = 1, · · · , 2k) are principal curvature vectors with
principal curvature λ1 and ej (j = 2k + 1, · · · , 2n − 2) are principal curvature vectors with
principal curvature λ2. By Proposition 2.3, we know that the principal curvature vectors are
invariant with φ, so we get

Aφei = λ1φei, (i = 1, · · · , 2k) ,

Aφej = λ2φej , (j = 2k + 1, · · · , 2n − 2) .

Any tangent vector field X ∈ T 0M may be written using Einstein’s convention as X =
aiei + bj ej , ai and bj are smooth functions on M . We calculate the Ricci ∗-tensor of Type
A2 real hypersurfaces by the equation (2), we have

S∗(X, Y ) = 2cng (aiei + bjej , Y ) + g (λ2
1a

iei + λ2
2b

jej , Y ) .

If Type A2 real hypersurfaces are ∗-Einstein, we need

λ2
1 = λ2

2 .(8)

By Proposition 2.6 we conclude that λ1 = −1/r and λ2 = 1/r . The Type A2 ∗-Einstein real
hypersurface M in Pn(C) is a tube of Pk(C), 0 < k < n − 1 of radius πr/4. Then, we have
Ricci ∗-tensor of M ,

S∗(X, Y ) = c(2n + 1)g (X, Y ) ,

for any X,Y ∈ T 0M .
On the other hand, if there exists Type A2 ∗-Einstein real hypersurfaces in Hn(C), be-

cause of Proposition 2.13 and (8), we have

tanh4 u = 1 .

It is a contradiction.

Case 3. The Type B real hypersurfaces have three distinct principal curvatures. Now
we decompose the holomorphic distribution that T 0M = Vλ1 ⊕ Vλ2 . We take an orthonormal
basis {ei, ej } for T 0M such that Aei = λ1ei (i = 1, · · · , n − 1) and Aej = λ2ej (j =
n, · · · , 2n−2). We may write X = aiei+bjej for X ∈ T 0M . By Lemma 2.2 and Proposition
2.7 and 2.14, we have the following:

Aφei = λ2φei, (i = 1, · · · , n − 1) ,

Aφej = λ1φej , (j = n, · · · , 2n − 2) .

We get

φAφAX = −λ1λ2X ,

for any X ∈ T 0M . By Proposition 2.7, we have Ricci ∗-tensor of Type B real hypersurfaces
in Pn(C),

S∗(X, Y ) = c(2n − 1)g (X, Y ) ,

for any X,Y ∈ T 0M , where c > 0.
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By Proposition 2.14, we conclude that Ricci ∗-tensor of Type B real hypersurfaces in
Hn(C),

S∗(X, Y ) = c(2n − 1)g (X, Y ) ,

for any X,Y ∈ T 0M , where c < 0.

Case 4. The Type N real hypersurfaces in Hn(C) are horospheres. By Proposition
2.15, we calculate Ricci ∗-tensor of horospheres,

S∗(X, Y ) = c(2n − 1)g (X, Y ) ,

for any X,Y ∈ T 0M , where c < 0.

4. Proof of the Theorem.

Adding the result of Lemma 3.1 to the equation (2) we get

4cn(n − 1)(g (X, Y ) − η(X)η(Y )) − 2(n − 1)g (φAφAX, Y )

= ρ∗(g (X, Y ) − η(X)η(Y )) − 2(n − 1)η(X)η(AφAφY) .

For any X ∈ T M we have

(4cn(n − 1) − ρ∗)(X − η(X)ξ) − 2(n − 1)(φAφAX − η(X)φAφAξ) = 0 .

This, together with (1), shows that

(4cn(n − 1) − ρ∗)φX

+ 2(n − 1)(AφAX − η(AφAX)ξ − η(X)AφAξ + η(X)η(AφAξ)ξ) = 0 .

By the assumption, the structure vector field ξ is a principal curvature vector, we get

AφAX = ρ∗ − 4cn(n − 1)

2(n − 1)
φX .

Let X be a unit principal curvature vector in T 0M with principal curvature λ, we calculate the
following:

AφAX = λ(αλ + 2c)

2λ − α
φX .

Consequently we have

λ(αλ + 2c)

2λ − α
= ρ∗ − 4cn(n − 1)

2(n − 1)
.

We get

2(n − 1)αλ2 + 2(2c(n − 1) + 4cn(n − 1) − ρ∗)λ + α(ρ∗ − 4cn(n − 1)) = 0 .

From Lemma 2.1, α is constant and by the assumption, ∗-scalar curvature ρ∗ is also constant.
So, we conclude that M has at most three distinct constant principal curvatures. In the case
of M in Pn(C), by Proposition 2.9, M is homogeneous real hypersurface. Using the results
of Proposition 2.4, M is locally congruent to one of homogeneous real hypersurfaces of Type
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A1, A2 and B. And in the case of M in Hn(C), by Proposition 2.10, M is locally congruent
to one of real hypersurfaces of Type A1, A2, B and N . Because of the Section 3, we proved
our theorems.

5. Some remarks.

5.1. ∗-Einstein real hypersurfaces and pseudo-Einstein real hypersurfaces. A real
hypersurface in a complex space form is said to be pseudo-Einstein if there are constants a

and b such that

SX = aX + bη(X)ξ

for all tangent vectors X. The following results classify pseudo-Einstein real hypersurfaces in
Pn(C), the proof can be found in [2].

PROPOSITION 5.1. Let M, where n ≥ 3, be a real hypersurface in Pn(C) of constant
holomorphic sectional curvature 4c > 0. Suppose that there are smooth functions a and b

such that SX = aX + bη(X)ξ for X ∈ T M . Then a and b must be constant and M is an
open subset of one of

(i) a geodesic hypersphere,
(ii) a tube of radius ur over a complex projective space Pk(C), with 0 < k < n − 1,

0 < u < π/2, and cot2 u = k/l, or
(iii) a tube of radius ur over a complex quadric Qn−1 where 0 < u < π/4 and

cot2 2u = n − 2.

For complex hyperbolic space, the analogous result was proved by Montiel [8].

PROPOSITION 5.2. Let M, where n ≥ 3, be a real pseudo-Einstein hypersurface in
Hn(C) of constant holomorphic sectional curvature 4c < 0. Then M is an open subset of one
of

(i) a geodesic hypersphere,
(ii) a tube over a complex hyperbolic hyperplane, or

(iii) a horosphere.

We investigate ∗-Einstein real hypersurfaces in complex space forms in this paper. From
these results, we can consider that our results are independent from the classification of
pseudo-Einstein real hypersurfaces.

5.2. Non-homogeneous ∗-Einstein real hypersurfaces. Take a regular curve γ in
Mn(c) with tangent vector field X. At each point of γ there is a unique complex projective or
hyperbolic hyperplane cutting γ so as to be orthogonal not only to X but to JX. The union
of these hyperplanes is called a ruled real hypersurface.

We remark that the following result:

PROPOSITION 5.3. Ruled real hypersurfaces are ∗-Einstein real hypersurfaces.
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PROOF. We know that we may write the shape operator A of a ruled real hypersurface
M in Mn(c) [4]:

Aξ = µξ + νU (ν �= 0) ,

AU = νξ ,

AX = 0 (for any X ⊥ ξ,U) ,

where U is a unit tangent vector field orthogonal to ξ , µ and ν are differential functions on
M . The structure vector of ruled real hypersurface is not a principal curvature vector. By
calculating the equation (2), we can show that

S∗(X, Y ) = 2cng (X, Y ) ,

for any X,Y ∈ T 0M .

5.3. ∗-scalar curvature of ∗-Einstein real hypersurfaces. We recall from section
3, we have constant ∗-scalar curvature ρ∗ of ∗-Einstein real hypersurfaces. We can find the
different situations of the real hypersurfaces in Pn(C) and Hn(C) by the following graphs of
ρ∗.

Pn(C), c > 0

�
Ruled

4cn(n − 1)

�
A1(u)

�
A2(

π
4 )

2c(n − 1)(2n + 1)

�
B(u)

2c(n − 1)(2n − 1)

Hn(C), c < 0

�
Ruled

4cn(n − 1)

�

A12(u)

��

A11(u)

��
B(u),N

2c(n − 1)(2n − 1)
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