Токуо J. Матн. Vol. 25, No. 2, 2002

Isogenies of Degree *p* of Elliptic Curves over Local Fields and Kummer Theory

Mayumi KAWACHI

Tokyo Metropolitan University (Communicated by K. Nakamula)

Abstract. Let *p* be a prime number. In order to calculate the Selmer group of a *p*-isogeny $\nu : E \to E'$ of elliptic curves, we determine the image of a local Kummer map $E'(K)/\nu E(K) \to H^1(K, \ker \nu)$ over a finite extension *K* of \mathbf{Q}_p . We describe the image using a filtration on a unit group of a local field and the valuation of a coefficient of a leading term in a formal power series of an isogeny.

1. Introduction.

Let $\nu : E \to E'$ be an isogeny of elliptic curves over a number field \mathcal{K} . We are interested in its Selmer group Sel(ν) which is a subgroup of $H^1(\mathcal{K}, \ker \nu)$ generated by the elements whose local images in $H^1(\mathcal{K}_v, \ker \nu)$ are in Im δ_v for all primes v. Here δ_v is a connecting homomorphism of an exact sequence over \mathcal{K}_v

$$1 \longrightarrow \ker \nu \longrightarrow E \xrightarrow{\nu} E' \longrightarrow 1.$$

So δ_v fits in an exact sequence

$$1 \longrightarrow E'(\mathcal{K}_{v})/\nu E(\mathcal{K}_{v}) \xrightarrow{\delta_{v}} H^{1}(\mathcal{K}_{v}, \ker \nu) \longrightarrow H^{1}(\mathcal{K}_{v}, E)$$

for each v. Let p be a prime number. We assume v is a p-isogeny, namely ker v is a group of order p. In order to study such Selmer group Sel(v), one of the difficult problems is to know Im δ_v for primes v over p. If E has good reduction at v and v does not divide p, then Im $\delta_v = H^1_{ur}(\mathcal{K}_v, \ker v)$, where $H^1_{ur}(\mathcal{K}_v, \ker v) = \ker(H^1(\mathcal{K}_v, \ker v)) \rightarrow H^1(\mathcal{K}_v^{ur}, \ker v))$. But if v divides p then the equation does not hold. This paper is devoted to the study of Im δ_v for v over p. In [1], Berkovič treated the case when E has a complex multiplication and $v \in \operatorname{End}(E)$, and expressed Im δ_v as a subgroup of $\mathcal{K}_v^{\times}/\mathcal{K}_v^{\times p}$, under the assumption $\mathcal{K}_v \supset \mu_p$ and $E(\mathcal{K}_v) \supset \ker v$. In this paper we treat the case when v is a general p-isogeny.

We also assume that $\mathcal{K}_v \supset \mu_p$ and $E(\mathcal{K}_v) \supset \ker v$. Let \mathcal{O}_v be the ring of integers of $\mathcal{K}_v, \mathfrak{M}_v$ the maximal ideal of \mathcal{O}_v and U the unit group of \mathcal{O}_v . Let $U^0 = U$ and $U^i = 1 + \mathfrak{M}_v^i$ for $i \ge 1$. This gives a filtration on the unit group of $\mathcal{K}_v, \mathcal{K}_v^{\times} \supset U^0 \supset U^1 \supset U^2 \supset \cdots$. It also induces a filtration $\mathcal{K}_v^{\times}/\mathcal{K}_v^{\times p} \supset C^0 \supset C^1 \supset \cdots \supset C^{pe_0+1} = \{1\}$, where $C^i = U^i/K^{\times p} \cap U^i$ for $i \ge 0$ and e_0 is the ramification index of \mathcal{K}_v over $\mathbf{Q}_p(\zeta_p)$. On the other hand let E

Received March 22, 2000; revised March 5, 2002

be a minimal Weierstrass model over \mathcal{O}_v , E_0 be the set of points with nonsingular reduction and $E_i = \{(x, y) \in E(\mathcal{K}_v) | v(x) \leq -2i, v(y) \leq -3i\}$ for $i \geq 1$. This gives filtrations $E(\mathcal{K}_v) \supset E_0 \supset E_1 \cdots$ and $E'(\mathcal{K}_v) \supset E'_0 \supset E'_1 \supset \cdots$. The filtration on $E'(\mathcal{K}_v)$ induces the filtration $E'(\mathcal{K}_v)/vE(\mathcal{K}_v) \supset D^0 \supset D^1 \supset \cdots$, where $D^i = E'_i(\mathcal{K}_v)/vE(\mathcal{K}_v) \cap E'_i(\mathcal{K}_v)$ for $i \geq 0$. Let *t* be the index such that the generator of ker *v* is contained in $E_t(\mathcal{K}_v) \setminus E_{t+1}(\mathcal{K}_v)$. We regard δ_v as a homomorphism

$$\delta_v: E'(\mathcal{K}_v)/\nu E(\mathcal{K}_v) \longrightarrow \mathcal{K}_v^{\times}/\mathcal{K}_v^{\times p}$$

by identifying

$$H^1(\mathcal{K}_v, \ker v) \simeq H^1(\mathcal{K}_v, \mu_p) \simeq \mathcal{K}_v^{\times} / \mathcal{K}_v^{\times p}.$$

Then δ_v maps the filtration on $E'(\mathcal{K}_v)/\nu E(\mathcal{K}_v)$ to that on $\mathcal{K}_v^{\times}/\mathcal{K}_v^{\times p}$. By investigating this map, we will show the following theorem.

THEOREM. 1) If *E* has ordinary good reduction over \mathcal{K}_v , then

$$\operatorname{Im} \delta_{v} = \begin{cases} C^{1} & \text{if } \pi(\ker v) = \{0\} \\ C^{e_{0}p} & \text{if } \pi(\ker v) \neq \{0\} \end{cases}$$

where π is the reduction map.

2) If E has supersingular good reduction over \mathcal{K}_{ν} , then

 $\operatorname{Im} \delta_v = C^{1 + (e_0 - t)p} \,.$

3) If *E* has multiplicative reduction over \mathcal{K}_v and $p \neq 2$, then *E* has split multiplicative reduction and

$$\operatorname{Im} \delta_{v} = \begin{cases} \mathcal{K}_{v}^{\times} / \mathcal{K}_{v}^{\times p} & \text{if } \ker v = \langle \zeta_{p} \rangle \\ 1 & \text{if } \ker v = \langle \zeta_{p}^{i} \sqrt[p]{q} \rangle & \text{for } i = 0, \cdots, p-1 \,. \end{cases}$$

We here remark that if *E* has bad reduction, $\text{Im } \delta_v$ is not necessarily contained in C^1 , as in the case 3). In the case 2), $\text{Im } \delta_v$ can be written by using the parameter *t*. In §5, we give some examples and calculate that values of *t* for them.

ACKNOWLEDGMENT. The author wishes to thank Professor M. Kurihara for many valuable comments and suggestions.

2. Preliminaries from formal groups.

2.1. The map δ of formal groups. Let *K* be a finite extension of \mathbf{Q}_p , *v* be a normalized valuation on *K*, \mathcal{O}_K the ring of integers of *K*, \mathfrak{M}_K the maximal ideal in \mathcal{O}_K and $k = \mathcal{O}_K/\mathfrak{M}_K$ the residue field. We put e = v(p). Let ζ_p be a primitive *p*-th root of unity. Let $\mathfrak{F}_K, \mathfrak{F}'_K$ be formal groups over \mathcal{O}_K . Assume that there is an isogeny $v : \mathfrak{F}_K \to \mathfrak{F}'_K$ over *K*. We regard *v* as a power series $v(z) = a_1 z + a_2 z^2 + \cdots \in \mathcal{O}_K[[z]]$.

LEMMA 2.1.1 (cf. [1], Lemma 1.1.1). Let $\varphi(z)$ be an isogeny of formal groups defined over a commutative ring of characteristic p. Then there exists an integer $h \ge 0$ such that $\varphi(z)$ is a power series in z^{p^h} .

PROOF. See [3], Chap. 1, §3, Theorem 2.

By the above lemma, we define the height of an isogeny over \mathcal{O}_K as follows.

1) If there is a positive integer h such that $v(z) \equiv \psi(z^{p^h}) \mod \mathfrak{M}_K$, where $\psi(z) = b_1 z + b_2 z^2 + \cdots \in \mathcal{O}_K[[z]]$, $b_1 \notin \mathfrak{M}_K$ and $b_i \in \mathcal{O}_K$, then the height of v is defined to be h. We denote h by ht(v).

2) If $v(z) \equiv 0 \mod \mathfrak{M}_K$, then the height of v is defined to be infinity.

We also define a height of a formal group \mathfrak{F}_K to be the height of [p], the multiplication by p on \mathfrak{F}_K . We assume that ht(v) = 1 and that the points of ker v are defined over K. For an algebraic extension L, we define $\mathfrak{F}_K(L) = \mathfrak{F}_K(\mathfrak{M}_L)$. For a point P of $\mathfrak{F}_K(L)$, we denote by z(P) the corresponding element of \mathfrak{M}_L . We will denote $\mathfrak{F}_K(K)$ simply by \mathfrak{F}_K . We define a decreasing filtration on \mathfrak{F}_K by $\mathfrak{F}_K^i = \mathfrak{F}(\mathfrak{M}_K^i)$. So we have $\mathfrak{F}_K = \mathfrak{F}_K^i \supset \mathfrak{F}_K^2 \supset \cdots$. Put $\mathfrak{D}_K =$ $\mathfrak{F}_K'/v\mathfrak{F}_K$. The filtration on \mathfrak{F}_K induces a filtration on \mathfrak{D}_K . Namely put $\mathfrak{D}_K^i = \mathfrak{F}_K'/v\mathfrak{F}_K \cap \mathfrak{F}_K'$, then we have a filtration $\mathfrak{D}_K = \mathfrak{D}_K^1 \supset \mathfrak{D}_K^2 \supset \cdots$.

LEMMA 2.1.2 (cf. [1], Lemma 2.1.1). For *i* such that $p \nmid i$, we have $a_1 \mid a_i$.

PROOF. If $a_1 \notin \mathfrak{M}_K$, it is obvious. In the case $a_1 \in \mathfrak{M}_K$, by Corollary 1 in p. 112 of [3], there exists a dual isogeny \check{v} of v, that is $\check{v} \circ v = [p]$. So we have $a_1 | p$. Put $R = \mathcal{O}_K/(a_1)$ and consider an isogeny $\bar{v} = v \mod(a_1) : \mathfrak{F}_K/(a_1) \to \mathfrak{F}'_K/(a_1)$. Then R is a ring of characteristic p, and we have an isogeny $\bar{v}(z) = v(z) \mod(a_1) = \overline{a_1}z + \cdots + \overline{a_p}z^p + \cdots$ over R. Since $\overline{a_1} = 0$, ht $(\bar{v}) \neq 0$. By Lemma 2.1.1, $\bar{v}(z)$ is a power series in z^p . Hence for i such that $p \nmid i$, $\overline{a_i} = 0$, that is $a_1 | a_i$.

We define

$$t = \frac{v(a_1)}{p-1} \, .$$

The following lemma shows that *t* is an integer.

LEMMA 2.1.3 (cf. [1], Lemma 1.1.2). For any non-zero point $P \in \ker v$, the valuation of z(P) does not depend on the choice of P. In fact P is in $\mathfrak{F}_K^t \setminus \mathfrak{F}_K^{t+1}$, where t is in the number defined above.

PROOF. Let z = z(P), then $v(z) = a_1z + a_2z^2 + \cdots + a_pz^p + \cdots = 0$. By Lemma 2.1.2, we have $a_1 | a_i$ for $p \nmid i$. So $v(a_1z) = v(a_pz^p)$. Hence we have $v(z) = \frac{v(a_1)}{p-1} = t$, since $v(a_p) = 0$.

LEMMA 2.1.4 (cf. [1], Lemma 1.1.2). 1) If $1 \le i < pt$, then

$$\mathfrak{D}_{K}^{i}/\mathfrak{D}_{K}^{i+1} \simeq \begin{cases} k & \text{if } p \nmid i \\ 1 & \text{if } p \mid i \end{cases}$$

2) If $i \ge pt + 1$, then $\mathfrak{D}_K^i = 1$. 3)

$$\mathfrak{D}_{K}^{pt}/\mathfrak{D}_{K}^{pt+1}\simeq \mathbf{Z}/p\mathbf{Z}$$

PROOF. 1) If $1 \leq j < t$, then $\nu(\mathfrak{F}^j) \subset \mathfrak{F}'^{pj}$. So $\tilde{\nu} : \mathfrak{F}^j/\mathfrak{F}^{j+1} \to \mathfrak{F}'^{pj}/\mathfrak{F}'^{pj+1}$ is induced by ν . This is identified with $\tilde{\nu} : k \to k$, $\tilde{\nu}(x) = a_p x^p$, for $x \in k$. Since k is perfect, $\tilde{\nu}$ is an isomorphism. If i = pj, then $\mathfrak{D}_K^{pj}/\mathfrak{D}_K^{pj+1} = 1$. If $p \nmid i$ then $\mathfrak{D}_K^i/\mathfrak{D}_K^{i+1} \simeq \mathfrak{F}_K^i/\mathfrak{F}_K^{i+1} \simeq$ k.

2) If $j \ge t+1$, $\nu(\mathfrak{F}_K^j) \subset \mathfrak{F}_K^{\prime j+(p-1)t}$. So $\tilde{\nu} : \mathfrak{F}_K^j/\mathfrak{F}_K^{j+1} \to \mathfrak{F}_K^{\prime j+(p-1)t}/\mathfrak{F}_K^{\prime j+(p-1)t+1}$ is induced by ν . Put $a_1 = \pi_K^{t(p-1)}u$, where π_K is a prime element of K and $u \in \mathcal{O}_K^{\times}$. Then

is induced by \tilde{v} . Fut $a_1 = \pi_K$ u, where π_K is a prime element of K and $u \in \mathcal{O}_K$. Then $\tilde{v} : k \to k$ can be regarded as $\tilde{v}(x) = ux$ for $x \in k$. So \tilde{v} is an isomorphism. Hence $v : \mathfrak{F}_K^j \to \mathfrak{F}_K^{\prime j+(p-1)t}$ is an isomorphism. So if $i \ge pt + 1$, then $\mathfrak{D}_K^i = 1$. 3) For i = pt, $v(\mathfrak{F}_K^t) \subset \mathfrak{F}_K^{\prime pt}$. So v induces $\tilde{v} : \mathfrak{F}_K^t/\mathfrak{F}_K^{t+1} \to \mathfrak{F}_K^{\prime pt}/\mathfrak{F}_K^{\prime pt+1}$ and $\tilde{v}(x) = ux + a_p x^p$ for $x \in k$. This is extended to $\tilde{v} : \bar{k} \to \bar{k}$. Because $H^1(k, \bar{k}) = 1$, we have $k/\tilde{v}(k) \simeq H^1(k, \ker \tilde{v})$. Since $\ker v \subset \mathfrak{F}_K^t \setminus \mathfrak{F}_K^{t+1}$, $\ker \tilde{v} \simeq \mathbf{Z}/p\mathbf{Z}$ as $\operatorname{Gal}(\bar{k}/k)$ -modules. Using the fact that k is finite, we have $k/\tilde{v}(k) \simeq H^1(k, \ker \tilde{v}) \simeq H^1(k, \mathbf{Z}/p\mathbf{Z}) \simeq \mathbf{Z}/p\mathbf{Z}$.

For $[P] \in \mathfrak{D}_K$, let $Q \in \mathfrak{F}_K(\overline{K})$ be a point such that $P = \nu(Q)$. Let K' = K(Q) be a definition field of Q over K. We prepare the next lemma for Theorem 2.1.6 which is the general p-isogenies' case of Theorem 2.1.1 in Berkovič [1]. Since ht(v) = 1, we can write

$$v(z) - z(P) = (b_0 + b_1 z + \dots + z^p)U(z),$$

where $b_i \in \mathcal{O}_K$ and $U(z) \in \mathcal{O}_K[[z]]^{\times}$, by Weierstrass preparation theorem. So z(Q) is a solution of the equation of degree p. Since ker $\nu \subset \mathfrak{F}_K(K), K'/K$ is a Galois extension of degree $\leq p$. Let G = Gal(K'/K). For $\sigma \in G$, $\sigma(Q)$ can be written as $\sigma(Q) = Q \oplus T$, where $T \in \ker \nu$ and \oplus is the formal group law of \mathfrak{F} . For a prime element π of K', define $i_G(\sigma) = v_{K'}(\sigma(\pi) - \pi)$. Then it does not depend on the choice of π . By calculating $i_G(\sigma)$, we give a simpler proof of Theorem 2.1.6 than that of [1]. The idea of this proof is adviced by Kurihara.

LEMMA 2.1.5. Let $[P] \in \mathfrak{D}_{K}^{i} \setminus \mathfrak{D}_{K}^{i+1}$, then

1) If $1 \le i < pt$ and $p \nmid i$, then K'/K is a totally ramified extension of degree p and $i_G(\sigma) = pt - i + 1$ for $\sigma \in G$.

2) If i = pt, then K'/K is an unramified extension of degree p.

PROOF. 1) Let $v_{K'}(z(Q)) = j$ then $v_{K'}(z(v(Q))) = pj$. If $v_K = v_{K'}$ then i = i $v_K(z(P)) = pj$. This contradicts to $p \nmid i$. So K'/K is a totally ramified extension of degree p. Let y = z(Q) and π_K be a prime element of K. We can choose integers a, b such that ai+bp=1. Then $\pi = y^a \pi_K^b$ is a prime element of K'. We have $i_G(\sigma) = v_{K'}(\frac{\sigma(\pi)}{\pi}-1)+1 =$ $v_{K'}(\frac{\sigma(y)^a \pi_K^b}{y^a \pi_K^b} - 1) + 1$. Let ker $v \ni T \neq 0$ and $\xi = z(T)$. Then $v_{K'}(y) = i$, $v_{K'}(\xi) = tp$ and $\sigma(y) = y \oplus \xi = y + \xi + \gamma, \text{ where } v_{K'}(\gamma) > v_{K'}(y + \xi). \text{ Therefore } \sigma(\pi) = \sigma(y)^a \pi_K^b = (y + \xi + \gamma)^a \pi_K^b = (y^a + ay^{a-1}\xi + \gamma')\pi_K^b, \text{ where } v_{K'}(\gamma') > v_{K'}(ay^{a-1}\xi) > v_{K'}(y^a). \text{ So}$ $v_{K'}(\frac{\sigma(\pi)}{\pi}-1) = v_{K'}(\frac{y^a + ay^{a-1}\xi + \gamma'}{y^a}-1) = v_{K'}(\xi) - v_{K'}(y) = pt - i. \text{ Hence } i_G(\sigma) = pt - i + 1.$ 2) Since $a_1 = \pi_K^{(p-1)t} u$, where $u \in \mathcal{O}_K^{\times}, v(\pi_K^t x) = \pi_K^{pt}(ux + \dots + a_p x^p + \dots).$

Let $z(P) = \pi_K^{pt} \beta$, where $\beta \in \mathcal{O}_K^{\times}$. Because $P \notin v\mathfrak{F}_K$, by Hensel's lemma, the solution

of $\beta \equiv ux + a_p x^p \mod \mathfrak{M}_K$ is not contained in k. So the solution is contained in a finite extension over k of degree p. Since $u \neq 0 \mod \mathfrak{M}_K$, $ux + a_p x^p \mod \mathfrak{M}_K$ is separable. So we have a solution in an unramified extension over K of degree p.

We will consider the special case that \mathfrak{F}_K is isomorphic to \mathbf{G}_m , that is $\mathfrak{F}_K = U^1 = 1 + \mathfrak{M}_K$. We take ν to be the *p*-th power. We assume $K \ni \zeta_p$ and let $e_0 = \frac{e}{p-1}$, $\mathfrak{F}_K^i = U^i = 1 + \mathfrak{M}_K^i$, $\mathfrak{D}_K^i = C_K^i = U^i/K^{\times p} \cap U^i$ and $t = e_0$. We fix an arbitrary formal group and denote it by \mathfrak{F}_K again. Then we will consider the correspondence of \mathfrak{F}_K to \mathbf{G}_m . We use the same notation ν , t and \mathfrak{D}_K for \mathfrak{F}_K . Let $[P] \in \mathfrak{D}_K$ and $\nu(Q) = P$. If $\mathfrak{F}_K(K) \supset \ker \nu$ and $K \ni \zeta_p$, the definiton field K' of Q is a Kummer extension over K, that is $K' = K(\mathfrak{N}_{\alpha})$, where $[\alpha] \in K^{\times}/K^{\times p}$. We can define the map $\delta : \mathfrak{D}_K \to K^{\times}/K^{\times p}$ by $\delta([P]) = [\alpha]$. Then we have the next theorem.

THEOREM 2.1.6. Assume that $\mathfrak{F}_K \supset \ker v$ and $K \ni \zeta_p$. If $[P] \in \mathfrak{D}_K^i \setminus \mathfrak{D}_K^{i+1}$ for $1 \leq i < pt$ and $p \nmid i$ or i = pt, then $\delta([P]) \in C_K^{i+(e_0-t)p} \setminus C_K^{i+(e_0-t)p+1}$.

PROOF. Let K' be a definition field of Q, where v(Q) = P. If $1 \le i < pt$ and $p \nmid i$, then by Lemma 2.1.5, 1), K'/K is a totally ramified extension and $i_G(\sigma) = pt - i + 1$. On the other hand K' is regarded as a Kummer extension $K(\sqrt[p]{\alpha})$, where $\alpha \in C_K^j \setminus C_K^{j+1}$. Then $[\alpha] = \delta([P])$. Since K'/K is a totally ramified extension, by applying the Lemma 2.1.5, 1) to the case when $\mathfrak{F}_K = \mathbf{G}_m$, that is, v is p-th power map and $t = e_0$, we have $i_G(\sigma) = pe_0 - j + 1$. So by comparing the two representation of $i_G(\sigma)$, we have $j = i + (e_0 - t)p$. If i = pt then by Lemma 2.1.5, 2), K' is an unramified extension. So $\delta([P]) = [\alpha]$, where $[\alpha] \in C_{K}^{e_0p} \setminus C_K^{e_0p+1}$.

COROLLARY 2.1.7. $\delta(\mathfrak{D}_K^1) = C_K^{1+(e_0-t)p}$.

PROOF. By Theorem 2.1.6, δ induces an injection and by Lemma 2.1.4 this ia an isomorphism of finite groups,

$$\begin{aligned} \mathfrak{D}_{K}^{i}/\mathfrak{D}_{K}^{i+1} &\simeq C_{K}^{i+(e_{0}-t)p}/C_{K}^{i+(e_{0}-t)p+1} \simeq \begin{cases} k & \text{if } p \nmid i, 1 \leq i < pt \\ 1 & \text{if } p \mid i, 1 \leq i < pt \end{cases}, \\ \mathfrak{D}_{K}^{i} &= C_{K}^{i+(e_{0}-t)p} = 1 & \text{for } i \geq tp+1 \end{aligned}$$

and

$$\mathfrak{D}_{K}^{pt}/\mathfrak{D}_{K}^{pt+1}\simeq C_{K}^{e_{0}p}/C_{K}^{e_{0}p+1}\simeq \mathbf{Z}/p\mathbf{Z}.$$

Hence we have $\delta(\mathfrak{D}_K^1) = C_K^{1+(e_0-t)p}$.

3. Elliptic curves over K.

3.1. The map δ of elliptic curves. Let *E* and *E'* be elliptic curves defined over *K*, $\nu : E \to E'$ be an isogeny of degree *p* defined over *K* and $\check{\nu} : E' \to E$ be a dual isogeny of ν . We assume $E(K) \supset \ker \nu$ and $E'(K) \supset \ker \check{\nu}$. Then we easily see $K \ni \zeta_p$ by using Weil pairing.

An exact sequence

$$1 \longrightarrow \ker \nu \longrightarrow E \longrightarrow E' \longrightarrow 1$$

induces an exact sequence

$$1 \longrightarrow E'(K)/\nu E(K) \xrightarrow{\delta_1} H^1(K, \ker \nu) \longrightarrow H^1(K, E)$$

where δ_1 is a connecting homomorphism. We fix an isomorphism ker $\nu \simeq \mu_p$. Then we have an isomorphism

$$\kappa: H^1(K, \ker \nu) \xrightarrow{\sim} H^1(K, \mu_p).$$

By Kummer theory, there is an isomorphism

$$\delta_2: K^{\times}/K^{\times P} \xrightarrow{\sim} H^1(k, \mu_p)$$

Let $\delta = \delta_2^{-1} \circ \kappa \circ \delta_1$.

Put $\overline{K}' = K(\nu^{-1}(E(K)))$. Then K'/K is an abelian extension of exponent p, hence a Kummer extension. So there is a subgroup B of $K^{\times}/K^{\times p}$ such that $K' = K(\sqrt[p]{B})$. Put $D_K = E'(K)/\nu E(K)$.

LEMMA 3.1.1. The image $\delta(D_K)$ does not depend on the choice of the isomorphism κ . In fact we have $\delta(D_K) = B$.

PROOF. Let $[P] \in D_K$, $[P] \neq 0$ and $\nu(Q) = P$. Put L = K(Q) and $\delta([P]) = [\alpha]$. By a commutative diagram

we have $\alpha \in L^{\times p}$. So $L = K(\sqrt[p]{\alpha})$ since [L : K] = p, this implies $\alpha \in B$. Conversely let $\alpha \in B$ and $L = K(\sqrt[p]{\alpha})$. Then there exists $Q \in \nu^{-1}(E(K))$ such that L = K(Q). By the above diagram, $\delta([\nu(Q)]) = [\alpha]$.

3.2. The case of good reduction. Let *E* be a minimal Weierstrass model over \mathcal{O}_K and $\pi : E(K) \to \tilde{E}(k)$ be a reduction map. Define $E_0(K) = \pi^{-1}(\tilde{E}_{ns}(k)), E_1(K) = \ker \pi$ and for $i \ge 1, E_i(K) = \{(x, y) \in E(K) | v(x) \le -2i, v(y) \le -3i\}$. Let $v : E \to E'$ be an isogeny of degree *p* over *K* such that *E'* is a minimal Weierstrass model over \mathcal{O}_K . Assume that ker $v \subset E(K)$ and ker $\check{v} \subset E'(K)$. We define $E'_i(K)$ by the same way of $E_i(K)$ for $i \ge 1$. Let $D_K = E'(K)/vE(K)$ and $D^i_K = E'_i(K)/vE(K) \cap E'_i(K)$ for $i \ge 0$, then we have a filtration $D_K \supset D^0_K \supset D^1_K \supset \cdots$.

We make change of variable z = -x/y. By mapping (x, y) to z, $E_1(K)$ (resp. $E'_1(K)$) is isomorphic to the formal group $\hat{E}(\mathfrak{M}_K)$ (resp. $\hat{E}'(\mathfrak{M}_K)$). Let Φ be a finite subgroup of $\hat{E}(\mathfrak{M}_K)$ such that ker $v \cap E_1(K) \simeq \Phi$. Then there exists a formal group \mathfrak{G} and an isogeny $\hat{v} : \hat{E} \to \mathfrak{G}$ both defined over \mathcal{O}_K such that ker $\hat{v} = \Phi$ by Theorem 4 in p. 112 of [3]. Since E' is a minimal model over \mathcal{O}_K , $\mathfrak{G} = \hat{E}'$. Since $\Phi \simeq \ker v$ or $\Phi = \{0\}$, ht $(\hat{v}) = 1$ or 0.

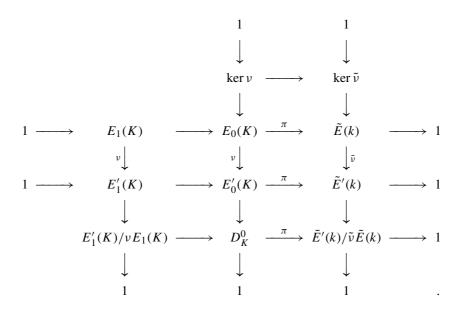
If ht(\hat{v}) = 1, we denote \hat{v} by v. Then we define $\mathfrak{D}_K = \hat{E}'(\mathfrak{M}_K)/v\hat{E}(\mathfrak{M}_K) \cap \hat{E}'(\mathfrak{M}_K)$. By mapping (x, y) to z, $E_i(K) \simeq \hat{E}(\mathfrak{M}_K^i)$ and $E'_i(K) \simeq \hat{E}'(\mathfrak{M}_K^i)$, for $i \ge 1$. Then the map induces $D_K^i \simeq \mathfrak{D}_K^i$, where $\mathfrak{D}_K^i = \hat{E}'(\mathfrak{M}_K^i)/v\hat{E}(\mathfrak{M}_K) \cap \hat{E}'(\mathfrak{M}_K^i)$. By Lemma 3.1.1, $\delta(D_K^1) = \delta(\mathfrak{D}_K)$.

LEMMA 3.2.1. If E has ordinary (resp. supersingular) good reduction, then E' has ordinary (resp. supersingular) good reduction.

PROOF. By Cor. 7.2 of Chap. 7 in [9], isogenous elliptic curves both have good reduction or neither have. Let $\dot{\hat{\nu}}$ be a dual isogeny of $\hat{\nu}$. Since $\dot{\hat{\nu}} \circ \hat{\nu} = [p] : \hat{E} \to \hat{E}$ and $\hat{\nu} \circ \dot{\hat{\nu}} = [p] : \hat{E}' \to \hat{E}'$, \hat{E} and \hat{E}' have the same height.

In this case $E = E_0$ and $E' = E'_0$. We define $\tilde{\nu} : \tilde{E} \to \tilde{E}'$ to be an isogeny such that ker $\tilde{\nu} = \pi$ (ker ν). By Remark 4.13.2 of Chap. 3 of [9], $\tilde{\nu}$ is defined over k. Then we have a commutative diagram,

(3.1)



LEMMA 3.2.3. If ker $\tilde{\nu} = \{0\}$, then $D_K^0/D_K^1 = 1$.

PROOF. Since $\tilde{\nu}$ is injective and $\#\tilde{E}(k) = \#\tilde{E}'(k)$ (see e.g. [2], Chap. 25), $\tilde{\nu}$ is an isomorphism. So $D_K^0/(E_1'(K)/\nu E_1(K)) = 1$ by (3.1). Hence $D_K^0/D_K^1 \simeq \nu E_0(K) \cap E_1'(K)/\nu E_1(K)$. Let $x \in E_0(K)$. If $\nu(x) \in \nu E_0(K) \cap E_1'(K)$ then $\pi(\nu(x)) = 1$. Since $\tilde{E}(k) \simeq \tilde{E}'(k), \pi(x) = 1$. Hence $x \in E_1(K)$. So $\nu E_0(K) \cap E_1'(K)/\nu E_1(K) = 1$.

LEMMA 3.2.4. If ker $\tilde{\nu} \neq \{0\}$, then $E'_1(K)/\nu E_1(K) = 1$ and $E'_1(K_{ur})/\nu E_1(K_{ur}) = 1$.

PROOF. If ker $\tilde{\nu} \neq \{0\}$ then ker $\tilde{\nu} \simeq \ker \nu$. So $\nu : E_1(K) \to E'_1(K)$ is injective. Then the isogeny $\hat{\nu} : \hat{E}(\mathfrak{M}_K) \to \hat{E}'(\mathfrak{M}_K)$ as formal groups is height 0. By the similar argument of Lemma 2.1.4, 2), $\hat{\nu}$ is an isomorphism. Hence $E'_1(K)/\nu E_1(K) = 1$. Let $\pi' : E_0(K_{ur}) \to \tilde{E}(\bar{k})$ be a reduction map. The minimal model of $E/\mathcal{O}_{K_{ur}}$ is equal to that of E/\mathcal{O}_K . So $\pi'(\ker \nu) = \pi(\ker \nu) \neq \{0\}$. Therefore we can apply the same argument to $E_1(K_{ur})$.

LEMMA 3.2.5. If ker $\tilde{\nu} \neq \{0\}$, then $\delta(D_K^0) = C_K^{e_0 p}$.

PROOF. Let Res₁ be a restriction map of $H^1(K, \ker \nu)$ to $H^1(K_{ur}, \ker \nu)$. Then we will first prove that $\delta_1(D_K^0) = \ker(\operatorname{Res}_1)$, where δ_1 was defined in §3.1. Since $E'_1(K_{ur})/\nu E_1(K_{ur}) = 1$ by Lemma 3.2.4 and $\tilde{E}'(\bar{k})/\tilde{\nu}\tilde{E}(\bar{k}) = 1$, $D_{K_{ur}}^0 = 1$ by the exact sequence

$$E'_1(K_{ur})/\nu E_1(K_{ur}) \longrightarrow D^0_{K_{ur}} \xrightarrow{\pi} \tilde{E}'(\bar{k})/\tilde{\nu}\tilde{E}(\bar{k}) \longrightarrow 1$$

Since the diagram below is commutative

$$\begin{array}{ccc} H^{1}(K, \ker \nu) & \stackrel{\operatorname{Res}_{1}}{\longrightarrow} & H^{1}(K_{ur}, \ker \nu) \\ & & & & \uparrow \\ & & & \uparrow \\ & & & D^{0}_{K} & \longrightarrow & D^{0}_{K_{ur}}, \end{array}$$

 $\delta_1(D_K^0) \subset \ker(\operatorname{Res}_1)$. In order to prove equatility, we consider an exact sequence

$$1 \longrightarrow \tilde{E}'(k)/\tilde{\nu}\tilde{E}(k) \xrightarrow{\tilde{\delta_1}} H^1(k, \ker \tilde{\nu}) \longrightarrow H^1(k, \tilde{E}) \,.$$

Since $H^1(k, \tilde{E}) = 1$ (see e.g. [2], Chap. 25), $\tilde{\delta_1}$ is an isomorphism. By Lemma 3.2.4, $E'_1(K)/\nu E_1(K) = 1$. So $D_K^0 \simeq \tilde{E}'(k)/\tilde{\nu}\tilde{E}(k) \simeq H^1(k, \ker \tilde{\nu}) \simeq \ker(\operatorname{Res}_1)$. Here, the last isomorphism is a consequence of the exact sequence

$$1 \longrightarrow H^1(k, \ker \tilde{\nu}) \longrightarrow H^1(K, \ker \nu) \longrightarrow H^1(K_{ur}, \ker \nu)$$

Hence $\delta_1(D_K^0) = \ker(\operatorname{Res}_1)$.

Next, let δ_2 be defined in §3.1 and Res₂ be a restriction map of $H^1(K, \mu_p)$ to $H^1(K_{ur}, \mu_p)$. By Lemma 2.1.5, 2), $\delta_2(C_K^{e_0p}) \subset \ker(\operatorname{Res}_2)$. Since $C_K^{e_0p} \simeq \mathbb{Z}/p\mathbb{Z}$ by Lemma 2.1.4, 3) and $|\ker(\operatorname{Res}_2)| = |H^1(K_{ur}/K, \mu_p)| = p$, we have $\delta_2(C_K^{e_0p}) = \ker(\operatorname{Res}_2)$.

We fix an isomorphism ker $\nu \simeq \mu_p$. Then we have an isomorphism κ and a commutative diagram

$$\begin{array}{ccc} H^{1}(K, \ker \nu) & \stackrel{\kappa}{\longrightarrow} & H^{1}(K, \mu_{p}) \\ & & & & \downarrow \\ & & & \downarrow \\ Res_{1} \downarrow & & \downarrow \\ H^{2}(K_{ur}, \ker \nu) & \longrightarrow & H^{1}(K_{ur}, \mu_{p}) \end{array}$$

Therefore $\kappa \circ \delta_1(D_K^0) = \kappa (\ker(\operatorname{Res}_1)) = \ker(\operatorname{Res}_2) = \delta_2(C_K^{e_0p})$. Since $\delta = \delta_2^{-1} \circ \kappa \circ \delta_1$ and Im δ does not depend on the choice of κ by Lemma 3.1.1, we have $\delta(D_K^0) = C_K^{e_0p}$.

$$\delta(D_K) = \begin{cases} C_K^{e_0 p} & \text{if } \ker \tilde{\nu} \neq \{0\} \\ C_K^1 & \text{if } \ker \tilde{\nu} = \{0\}. \end{cases}$$

2) If *E* has supersingular good reduction over *K* and the generator of ker *v* is contained in $E_t(K) \setminus E_{t+1}(K)$, then

$$\delta(D_K) = C_K^{1 + (e_0 - t)p} \,.$$

PROOF. 1) If *E* has ordinary good reduction, then there is an exact sequence

$$1 \longrightarrow X_p \longrightarrow E[p] \stackrel{\bar{\pi}}{\longrightarrow} \tilde{E}[p] \longrightarrow 1$$

where $\bar{\pi}$ is a reduction mod $\mathfrak{M}_{\bar{K}}$ and the kernel X_p is a cyclic group order p. If ker $\tilde{\nu} = \{0\}$ then $D_K^0 = D_K^1$ by Lemma 3.2.3. Since $t = e_0$, $\delta(D_K) = C_K^1$ by Corollary 2.1.7. If ker $\tilde{\nu} \neq \{0\}$ then we can apply Lemma 3.2.5 to this case.

2) If *E* has supersingular good reduction then $\tilde{E}[p] = \{0\}$, so ker $\tilde{\nu} = \{0\}$. By Lemma 3.2.3, $D_K^0 = D_K^1$. So $\delta(D_K) = C_K^{1+(e_0-t)p}$ by Corollary 2.1.7.

4. Multiplicative reduction case.

4.1. Multiplicative reduction case.

LEMMA 4.1.1. If *E* has multiplicative (resp. additive) reduction over *K*, then *E'* has multiplicative (resp. additive) reduction.

PROOF. Let *l* be a prime number distinct from *p*, and let $T_l(E)$ and $T_l(E')$ be the Tate modules. Then $\nu : T_l(E) \to T_l(E')$ is an isomorphism. The action of $\text{Gal}(\bar{K}/K)$ is compatible with ν . So the representations $\rho : \text{Gal}(\bar{K}/K) \to \text{Aut}(T_l(E))$ and $\rho' : \text{Gal}(\bar{K}/K) \to \text{Aut}(T_l(E'))$ have the same images. By [4], *E* has semistable reduction if and only if $\text{Im } \rho|_I$ is unipotent, where *I* is the inertia group of $\text{Gal}(\bar{K}/K)$. This is equivalent to the unipotentness of $\text{Im } \rho'|_I$. Hence *E'* has semistable reduction. By Lemma 3.2.1 the reduction type of *E* is equal to that of *E'*.

If *E* has multiplicative reduction, then v(j(E)) < 0. So by [10], Chap. 5, Theorem 5.3, there exists a unique $q \in K^{\times}$, with v(q) > 0 such that *E* is isomorphic over \overline{K} to the Tate curve E_q . Then we define the isomorphism by $\psi : E_q \to E$. By Lemma 4.1.1, E' also has multiplicative reduction. So we can define an isomorphism $\psi' : E_{q'} \to E'$ over \overline{K} for a unique $q' \in K^{\times}$ with v(q') > 0. Let *L* be a unique quadratic extension over *K* which is unramified. Since E_q (resp. $E_{q'}$) is defined over *K* by [10], Chap. 5, Theorem 3.1 (a), E_q (resp. $E_{q'}$) is a quadratic twist of *E* (resp. *E'*) that is, ψ (resp. ψ') is defined over *K*. If ψ (resp. ψ') is defined over *K*, *E* (resp. *E'*) has split multiplicative reduction, otherwise it has non-split multiplicative reduction.

Let $\phi : \overline{K}^{\times}/\langle q \rangle \to E_q$ (resp. $\phi' : \overline{K}^{\times}/\langle q' \rangle \to E_{q'}$) be an isomorphism defined by a power series of q (resp. q') as in [10], Chap. 5, Theorem 3.1 (c). This isomorphism is compatible with the action of Gal(\overline{K}/K).

For $\psi^{-1}(\ker \nu)$, there exists a Tate curve $E_q/\psi^{-1}(\ker \nu)$ and an isogeny $E_q \to E_q/\psi^{-1}(\ker \nu)$. Then ψ induces an isomorphism $E_q/\psi^{-1}(\ker \nu) \to E/\ker \nu$. So $E_q/\psi^{-1}(\ker \nu)$ must be $E_{q'}$, since $E_{q'}$ is a unique Tate curve isomorphic to E'.

Then there exists an isogeny $\bar{K}^{\times}/\langle q \rangle \rightarrow \bar{K}^{\times}/\langle q' \rangle$ whose kernel is $(\psi \circ \phi)^{-1}(\ker \nu)$. The kernel of multiplication-by-p map of $\bar{K}^{\times}/\langle q \rangle$ is $\langle \zeta_p^i, \sqrt[p]{q} \rangle$, where $i = 0, \dots, p-1$. So $(\psi \circ \phi)^{-1}(\ker \nu)$ is one of the 1-dimensional subspaces of this \mathbf{F}_p -vector space $\langle \zeta_p^i, \sqrt[p]{q} \rangle$. Hence it is $\langle \zeta_p^i, \sqrt[p]{q} \rangle$ or $\langle \zeta_p \rangle$.

LEMMA 4.1.2. Assume that $p \neq 2$, ker $v \subset E(K)$ and $\zeta_p \in K$. Then both E and E' have split multiplicative reduction.

PROOF. Assume that *E* has non-split multiplicative reduction. Let $N_{L/K} : L^{\times}/q^{\mathbb{Z}} \to K^{\times}/q^{\mathbb{Z}\mathbb{Z}}$ be a norm map. Then by [10], Chap. 5, Corollary 5.4, for $u \in L^{\times}/q^{\mathbb{Z}}$, $\psi \circ \phi(u) \in E(K)$ is equivalent to $N_{L/K}(u) \in q^{\mathbb{Z}}/q^{2\mathbb{Z}}$. Since $(\psi \circ \phi)^{-1}(\ker v) = \langle \xi_p^i / \sqrt[n]{q} \rangle$ for $i = 0, \dots, p-1$ or $\langle \zeta_p \rangle$ and $\ker v \subset E(K)$, it must be $N_{L/K}(/\sqrt[n]{q}) \in q^{\mathbb{Z}}/q^{2\mathbb{Z}}$ or $N_{L/K}(\zeta_p) = \zeta_p^2 \in q^{\mathbb{Z}}/q^{2\mathbb{Z}}$. Since $p \neq 2$, this is a contradiction. So *E* has split multiplicative reduction.

In this case, ψ is an isomorphism over K. So the induced isomorphism $E_q/\psi^{-1}(\ker \nu) \rightarrow E/\ker \nu$ is defined over K, that is, ψ' is an isomorphism over K. Hence E' has split multiplicative reduction.

By the above lemma, we can identify E (resp. E') with E_q (resp. $E_{q'}$). Hence we have the next proposition.

PROPOSITION 4.1.3. Assume that $p \neq 2$, ker $v \subset E(K)$ and $\zeta_p \in K$. Then $\begin{cases}
\operatorname{Im} \delta = K^{\times}/K^{\times p} & \text{if ker } v = \langle \zeta_p \rangle \\
\operatorname{Im} \delta = 1 & \text{if ker } v = \langle \zeta_p^i \ p / q \rangle & \text{for } i = 0, \cdots, p-1.
\end{cases}$

PROOF. If ker $\nu = \langle \zeta_p \rangle$, then $q' = q^p$ and the isogeny is written by

$$\nu: \bar{K}^{\times}/\langle q \rangle \longrightarrow \bar{K}^{\times}/\langle q' \rangle$$
$$z \mod \langle q \rangle \longmapsto z^p \mod \langle q^p \rangle.$$

For any $[z] \in K^{\times}/\langle q \rangle$, we have $K(\nu^{-1}([z])) = K(\sqrt[p]{z})$. Hence by Lemma 3.1.1, $\text{Im}\,\delta = K^{\times}/K^{\times p}$.

If ker $\nu = \langle \zeta_p^i \, p/\overline{q} \rangle$, then $q' = \zeta_p^i \, p/\overline{q}$ and ν is written by

$$\nu: \bar{K}^{\times}/\langle q \rangle \longrightarrow \bar{K}^{\times}/\langle q' \rangle$$
$$z \mod \langle q \rangle \longmapsto z \mod \langle \zeta_{p}^{i} \sqrt[p]{q} \rangle$$

For $[z] \in K^{\times}/\langle \zeta_p^i / q \rangle$, $K(\nu^{-1}([z])) = K(\sqrt[p]{q})$. Our assumption ker $\nu \subset E(K)$ implies $\langle \zeta_p^i / q \rangle \subset K^{\times}/\langle q \rangle$. So we have $\sqrt[p]{q} \in K$. Hence $K(\nu^{-1}([z])) = K$. So by Lemma 3.1.1, Im $\delta = 1$.

5. The calculation of Im δ .

5.1. *p*-isogenies over **Q**. In this section we consider elliptic curves *E* and *E'* over **Q** and a *p*-isogeny $\nu : E \to E'$ over **Q**. Take $\mathcal{K} = \mathbf{Q}(\ker \nu, \mu_p)$. Let *K* be a completion of \mathcal{K} at a place of \mathcal{K} above *p*.

LEMMA 5.1.1 $K/\mathbf{Q}_p(\mu_p)$ is an unramified extension. So $e_0 = v_K(p)/(p-1) = 1$.

PROOF. Following Mazur [6], §5, we consider the following character. Let χ : $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}(\ker \nu) \simeq \mathbf{F}_p^{\times}$ be defined by $T^{\sigma} = \chi(\sigma)T$, where $\langle T \rangle = \ker \nu$. Since $\mathbf{Q}(\ker \nu)/\mathbf{Q}$ is an abelian extension, χ factors through $\operatorname{Gal}(\mathbf{Q}_p^{ab}/\mathbf{Q})$. By local class field theory, there exists an isomorphism ρ : $U(\mathbf{Q}_p) \simeq \operatorname{Gal}(\mathbf{Q}_p^{ab}/\mathbf{Q}_p^{ur})$ and we restrict χ to $\operatorname{Gal}(\mathbf{Q}_p^{ab}/\mathbf{Q}_p)$. So we have a homomorphism

$$\varepsilon: U(\mathbf{Q}_p) \xrightarrow{\rho} \operatorname{Gal}(\mathbf{Q}_p^{ab}/\mathbf{Q}_p) \xrightarrow{\chi} \mathbf{F}_p^{\times}.$$

Since $U(\mathbf{Q}_p) \simeq \mathbf{Z}_p^{\times} \simeq \operatorname{Gal}(\mathbf{Q}_p(\mu_{p^{\infty}})/\mathbf{Q}_p)$, ε is the cyclotomic character. Then there exists $k \in \mathbf{Z}$ such that $\chi = \varepsilon^k \alpha$, where α is an unramified character at p. Then the character group which corresponds to $\mathbf{Q}(\mu_p)$ (resp. $\mathbf{Q}(\ker \nu)$) is $\langle \varepsilon \rangle$ (resp. $\langle \chi \rangle$). So the character group which corresponds to \mathcal{K} is $\langle \varepsilon, \chi \rangle = \langle \varepsilon, \alpha \rangle$.

5.2. The case of p = 5. We study an elliptic curve *E* over **Q** with a 5-isogeny ν over **Q**. By Lecacheux [5], the *j*-invariant of such a curve is $j = -(n^2 - 10n + 5)^3/n$, where $n \in \mathbf{Q}$ and *E* is isomorphic to a curve

$$Y^{2} = X^{3} - (5n - 10n + n^{2})\frac{d}{48}X + (-n - 4n + n^{2})\frac{d^{2}}{864}$$

with discriminant $\Delta = -nd^3$, where $d = n^2 - 22n + 125$. Let $\mathcal{K} = \mathbf{Q}(\mu_5, \ker \nu)$ and $K = \mathbf{Q}_5(\mu_5, \ker \nu)$.

EXAMPLE 5.2.1. We take n = 10, then j = -25/2, $\Delta = -2 \cdot 5^4$ and $E_{(10)}$ over **Q** is written by

$$Y^2 = X^3 - \frac{25}{48}X + \frac{1475}{864}$$

By [5], the coordinate of a generator *P* of ker ν is $(x_P, y_P) = (\frac{5+6\sqrt{5}}{12}, \frac{\sqrt{50+10\sqrt{5}}}{4})$. So $\mathcal{K} = \mathbf{Q}(\zeta_5, \sqrt{-1})$. Since $e_0 = 1$ by Lemma 5.1.1, the ramification index of K/\mathbf{Q}_5 is 4. By Tate's algorithm [11], we can verify that a minimal model of $E_{(10)}$ over \mathcal{O}_K is written by

$$Y^2 = X^3 - \frac{5}{48}X + \frac{59\sqrt{5}}{864}$$

Then $E_{(10)}$ has additive reduction over \mathcal{O}_K with type IV and $v_K(\Delta) = 4$. By this change of coordinates, we have $v_K(x_P) = v_K(y_P) = 0$. Put $z_P = -x_P/y_P$. We have $v_K(z_P) = 0$.

Let *L* be an extension over *K* with the ramification index 3. Since $j \equiv 0 \mod 5$, *E* has supersingular good reduction over \mathcal{O}_L . Let π_L be a prime element of \mathcal{O}_L . Then a minimal

model over \mathcal{O}_L is written by

$$Y^2 = X^3 - \frac{5}{48\pi_L^4}X + \frac{59}{864u_1},$$

where $u_1 = \pi_L^6 / \sqrt{5}$. By this change of coordinates, we have $v_L(x_P) = -2$ and $v_L(y_P) = -3$. Then $t = v_L(z_P) = 1$. Hence $\delta(D_L) = C_L^{1+(3-1)\cdot 5} = C_L^{11}$, by Theorem 3.2.6.

EXAMPLE 5.2.2. If $n = \frac{25}{2}$, $\Delta = -\frac{5^8}{2^6}$ and $j = -\frac{121945}{32}$ and $E_{(\frac{25}{2})}$ over **Q** is written by

$$Y^{2} = X^{3} - \frac{91 \cdot 5^{3}}{2^{8} \cdot 3}X - \frac{421 \cdot 5^{4}}{2^{11} \cdot 3^{3}}$$

If $E'_{(10)}$ is 5-isogenous to $E_{(10)}$ over \mathbf{Q} , then $E_{(\frac{25}{2})}$ is isomorphic to $E'_{(10)}$ over $\mathbf{Q}(\sqrt{-1})$. The generator of ker ν is $(x_P, y_P) = (-\frac{35}{48}, \frac{5\sqrt{5}}{4})$. So $\mathcal{K} = \mathbf{Q}(\zeta_5)$. By change of coordinates, $E_{(\frac{25}{2})}$ over \mathcal{O}_K is written by

$$Y^2 = X^3 - \frac{91 \cdot 5}{768}X - \frac{421 \cdot 5}{55296}.$$

We have $v_K(x_P) = v_K(y_P) = 0$.

Let *L* be an extension over *K* with the ramification index 3. By change of coordinates, we have $v_L(\Delta) = 0$. So $E_{(\frac{25}{2})}$ is good reduction over \mathcal{O}_L . By this change of coordinates, $v_L(x_P) = -4$ and $v_L(y_P) = -6$. So $t = v_L(z_P) = 2$. Hence $\delta(D_L) = C_L^{1+(3-2)\cdot 5} = C_L^6$.

EXAMPLE 5.2.3. If n = 7, j = 4096/7, $\Delta = -2^6 \cdot 5^3 \cdot 7$ and $E_{(7)}$ over **Q** is written by

$$Y^2 = X^3 - \frac{20}{3}X + \frac{250}{27}.$$

Then generator of ker v is $(x_P, y_P) = (\frac{5+3\sqrt{5}}{3}, \sqrt{50+20\sqrt{5}})$. So $\mathcal{K} = \mathbf{Q}(\zeta_5, \sqrt{-2})$. Since $e_0 = 1$, the ramification index of K/\mathbf{Q}_5 is 4. By change of coordinates, $v_K(\Delta) = 0$. Therefore $E_{(7)}$ has good reduction over K and a minimal model of $E_{(7)}$ is written by

$$Y^2 = X^3 - \frac{4}{3}X + \frac{10\sqrt{5}}{27}$$

By this change of coordinates, $v_K(x_P) = v_K(y_P) = 0$. So $t = v_K(z_P) = 0$. Because $j \neq 0 \mod 5$, $E_{(7)}$ has ordinary good reduction. Since ker $v \not\subset E_{(7)_1}(K)$, Im $\delta = C^{e_0 p} = C^5$ by Theorem 3.2.6.

References

- V. G. BERKOVIČ, On the division by an isogeny of the points of an elliptic curves, Math. USSR Sbornik 22 (1974), 473–492.
- [2] J. W. S. CASSELS, Lectures on Elliptic Curves, Cambridge Univ. Press. (1991).
- [3] A. FRÖHLICH, Formal Groups, Lecture Notes in Math. 74 (1968), Springer.
- [4] A. GROTHENDIECK, Modèles de Néron et monodromie, SGA71 exposé IX, Lecture Notes in Math. 288 (1972), Springer, 313–523.

ISOGENIES OF DEGREE *p* OF ELLIPTIC CURVES

- [5] O. LECACHEUX, Courbes elliptiques et groupes de classes d'idéaux de corps quartiques, C.R. Acad. Sci. Paris. t. 316, Série I (1993), 217–220.
- [6] B. MAZUR, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.
- [7] J. P. SERRE, Propriété galoisiennes des points d'order fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.
- [8] J. P. SERRE, Local Fields, Grad. Texts in Math. 67 (1979), Springer.
- [9] J. H. SILVERMAN, *The Arithmetic of Elliptic Curves*, Grad. Texts in Math. **106** (1985), Springer.
- J. H. SILVERMAN, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151 (1994), Springer.
- [11] J. TATE, Algorithm for determining the type of a singular fiber in an elliptic pencil, Moduler Functions of One Variable IV, Lecture Notes in Math. 476 (1975), Springer, 33–52.

Present Address: DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, MINAMI-OHSAWA, HACHIOJI-SHI, TOKYO, 192–0397 JAPAN. *e-mail*: kawachi@comp.metro-u.ac.jp