Iwasawa Theory for Extensions with Restricted p-Ramification

Yoshitaka HACHIMORI

Gakushuin University
(Communicated by T. Kawasaki)

1. Introduction

Let p be a prime number. For an algebraic number field K of finite degree, consider an (arbitrary) subset T of P(K), where P(K) is the set of all primes above p of K:

$$T \subset P(K)$$
.

Let K_{∞} be the cyclotomic \mathbb{Z}_p -extension of K and $T_{\infty} \subset P(K_{\infty})$ the set of primes above T of K_{∞} . Then, by $\mathcal{M}_{T_{\infty}}(K_{\infty})$, we denote the maximal abelian p-extension of K_{∞} unramified outside T_{∞} . We call such an extension "the extension with restricted p-ramification".

Since $\Gamma := \operatorname{Gal}(K_{\infty}/K)$ acts on the Galois group

$$\mathcal{Y}_{T_{\infty}}(K_{\infty}) := \operatorname{Gal}(\mathcal{M}_{T_{\infty}}(K_{\infty})/K_{\infty})$$

by conjugation, it is regarded as a module over the power series ring $\Lambda := \mathbf{Z}_p[[T]]$ in the usual manner. This is finitely generated over Λ .

In this article, we investigate the following question: What are the Λ -rank of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ and the μ -invariant of its Λ -torsion part $\mu(\mathcal{Y}_{T_{\infty}}(K_{\infty})_{\Lambda-tor})$?

When $T=\varnothing$ (empty set), it is well known that $\mathcal{Y}_\varnothing(K_\infty)$ has Λ -rank zero by a result of Iwasawa and that it is conjectured that its μ -invariant vanishes. This is verified when K is an abelian field by Ferrero and Washington [FeWa]. It is also known that $\operatorname{rank}_\Lambda(\mathcal{Y}_{T_\infty}(K_\infty))=r_2$ if T=P(K), where r_2 is the number of complex primes of K. The μ -invariant of the Λ -torsion part of $\mathcal{Y}_{T_\infty}(K_\infty)$ is also conjectured to be zero and proved if K is abelian.

In case of *CM*-fields, the answer to the above question is known completely (cf. [JaMa]. See also Theorem 4.5 below).

On the other hand, for a general base field K and $T \subset P(K)$, we have a trivial lower bound of the Λ -rank (Proposition 2.3):

$$\operatorname{rank}_{A}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) \geq r_{2} - \sum_{v \in P(K) - T} [K_{v} : \mathbf{Q}_{p}].$$

However, we do not know how the Λ -rank should be in general. We give the following partial result by applying the methods of Ax and Brumer.

Received June 10, 2002

THEOREM 1.1 (Theorem 6.2). Assume there exists a subfield $k \subset K$ such that K/k is Galois and $K \cap k_{\infty} = k$. Let $G := \operatorname{Gal}(K/k)$. Assume that there exists a prime $u \in P(k)$ such that

$$T' := \{ v \in P(K) | v|u \}$$

is contained in T. Then we have

$$\operatorname{rank}_{A}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) \leq \left(\sum_{v \in T} [K_{v} : \mathbf{Q}_{p}]\right) - \left(\sum_{\chi \in \Delta_{K/k}} \deg \chi\right) - \delta.$$

Here, $\Delta_{K/k}$ is the set of the distinct irreducible characters of G over $\bar{\mathbf{Q}}$ which appear in the $\bar{\mathbf{Q}}[G]$ -module $\mathcal{E}_K \otimes_{\mathbf{Z}} \bar{\mathbf{Q}}$ where \mathcal{E}_K is the group of global units of K. We put

$$\delta = \begin{cases} 0 & \text{if } \Delta_{K/k} \text{ contains the trivial character,} \\ 1 & \text{otherwise.} \end{cases}$$

Note that the right hand side in the Theorem is larger than or equal to the above trivial lower bound.

Next, we consider the special case where $K = \mathbf{Q}(\sqrt[3]{a})$ ($a \in \mathbf{Z}$, cube free), as a first example of the case of non abelian base fields.

THEOREM 1.2 (Theorem 7.3, Proposition 7.8). (i) Let $K = \mathbf{Q}(\sqrt[3]{a})$. Let p be an odd prime such that $(p) = \mathfrak{p}_1\mathfrak{p}_2$ in K where $K_{\mathfrak{p}_1} = \mathbf{Q}_p$ and $[K_{\mathfrak{p}_2} : \mathbf{Q}_p] = 2$. Let $T = \{\mathfrak{p}_2\}$. Then $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ is Λ -torsion.

(ii) Further, there is a sufficient condition for the vanishing of $\mu(\mathcal{Y}_{T_{\infty}}(K_{\infty}))$.

The another reason why we consider this special example is that $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ in the above theorem for p=3 is related with the Selmer group $\mathrm{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\infty})$ of a certain elliptic curve E/\mathbb{Q} concerning with the μ -invariant ([Ha1], [Ha2]).

There is another application of the theory of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$. Let $\lambda_p(K)$, $\mu_p(K)$ and $\nu_p(K)$ be the classical Iwasawa invariants of K. (See §8 for the definition.) We give a criterion for the vanishing of these invariants for special non abelian fields. This is a generalization of a result of Fukuda-Komatsu([FuKo]).

THEOREM 1.3 (Theorem 8.1). Let K be a number field. Assume that there are exactly two primes \mathfrak{p}_1 and \mathfrak{p}_2 of K above p such that $K_{\mathfrak{p}_1} = \mathbb{Q}_p$ and that they are totally ramified in K_{∞} . Then the following are equivalent.

(i)
$$\lambda_p(K) = \mu_p(K) = \nu_p(K) = 0$$

(ii)
$$\operatorname{Cl}(K)[p^{\infty}] = 0$$
 and $(1 + p\mathbf{Z}_p) = \overline{\mathcal{E}_K \cap (1 + p\mathbf{Z}_p)}$.

Here, $Cl(K)[p^{\infty}]$ is the p-part of the ideal class group of K and \mathcal{E}_K is the group of global units of K which we embed in $K_{\mathfrak{p}_1} = \mathbf{Q}_p$.

The outline of this article is as follows. From §2 to §4 we give general facts on $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ in the context of the classical Iwasawa theory. After seeing an application of the methods of

Ax and Brumer in §5, we give an upper bound of the Λ -rank of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ (Theorem 6.2) in §6. Then, in §7 we consider a special case where $K = \mathbf{Q}(\sqrt[3]{a})$ and apply the above results to this case. In §8, we give a proof of Theorem 1.3.

ACKNOWLEDGMENTS. I am grateful to Professor Shoichi Nakajima and Professor Humio Ichimura for leading and guiding me to Iwasawa theory. I thank Kazuo Matsuno and Takae Tsuji for valuable discussions. Finally, I would like to express my sincere gratitude to my supervisor, Professor Takayuki Oda for valuable advices.

This article is based on a part of my thesis. I was supported by JSPS Research Fellowships for Young Scientists.

2. Extensions with restricted p-ramification

In this section, we define some notions related to extensions with restricted p-ramification. Then we recall known results and easy consequences.

Let p be a prime. For an algebraic number field K, let P(K) be the set of all primes of K above p. For an arbitrary subset

$$T \subset P(K)$$
,

we denote by $\mathcal{M}_T(K)$ the maximal abelian p-extension of K which is unramified outside T. Let

$$\mathcal{Y}_T(K) := \operatorname{Gal}(\mathcal{M}_T(K)/K)$$
.

We also denote by $\mathcal{M}'_T(K)$ the maximal subfield of $\mathcal{M}_T(K)$ all of whose primes above P(K) - T are completely decomposed and put

$$\mathcal{Y}'_T(K) := \operatorname{Gal}(\mathcal{M}'_T(K)/K)$$
.

Let K be a number field of finite degree and K_{∞} the cyclotomic \mathbb{Z}_p -extension of K. For $T \subset P(K)$, let $T_{\infty} \subset P(K_{\infty})$ be the set of primes above T. Then

$$\Gamma = \operatorname{Gal}(K_{\infty}/K)$$

acts on $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ and $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$ by conjugation in the usual way. Therefore $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ and $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$ are endowed with the action of

$$\Lambda := \mathbf{Z}_p[[\Gamma]].$$

By fixing a topological generator of Γ , we identify Λ with the power series ring $\mathbf{Z}_p[[T]]$ in the usual manner.

For $T = \emptyset$ (empty set), we put

$$H(K) := \mathcal{M}_{\varnothing}(K), \ H'(K) := \mathcal{M}'_{\varnothing}(K)$$

and

$$A(K) := \mathcal{Y}_{\varnothing}(K), \quad A'(K) := \mathcal{Y}'_{\varnothing}(K).$$

For T = P(K), we put $M(K) := \mathcal{M}_{P(K)}(K)$ and

$$\mathfrak{X}(K) := \mathcal{Y}_{P(K)}(K).$$

We define similarly $A(K_{\infty})$, $A'(K_{\infty})$ and $\mathfrak{X}(K_{\infty})$ for K_{∞} . These modules are well studied in Iwasawa theory.

THEOREM 2.1 (Iwasawa [Iw], see also [Wa]). (i) $\mathfrak{X}(K_{\infty})$ is a finitely generated Λ -module and $\operatorname{rank}_{\Lambda}(\mathfrak{X}(K_{\infty})) = r_2$, where r_2 is the number of complex infinite primes of K.

(ii) Both
$$A(K_{\infty})$$
 and $A'(K_{\infty})$ are Λ -torsion. Further, $\mu(A(K_{\infty})) = \mu(A'(K_{\infty}))$.

Note that

$$H(K_{\infty}) \subset \mathcal{M}_T(K_{\infty}) \subset M(K_{\infty})$$
 and $H'(K_{\infty}) \subset \mathcal{M}'_T(K_{\infty}) \subset M(K_{\infty})$.

Thus $\mathcal{Y}_T(K_\infty)$ and $\mathcal{Y}_T'(K_\infty)$ are finitely generated over Λ .

Let v be a prime of K dividing p and w a prime of K_{∞} above v. Denote K_v by the completion of K at v and by $K_{\infty,w}$ the composite field K_vK_{∞} in $\overline{K_v}$ where we identify K_{∞} with its image of the embedding $K_{\infty} \hookrightarrow \overline{K_v}$ corresponding to w. Let

$$\begin{cases} X(K_{\infty,w}) := \operatorname{Gal}(K_{\infty,w}^{\operatorname{ab},p}/K_{\infty,w}) \\ X'(K_{\infty,w}) := \operatorname{Gal}(K_{\infty,w}^{\operatorname{ab},p}/K_{\infty,w}^{\operatorname{ur},p}) \end{cases}$$

where $K_{\infty,w}^{\mathrm{ab},p}$ is the maximal abelian p-extension of $K_{\infty,w}$ and $K_{\infty,w}^{\mathrm{ur},p}$ is the maximal unramified p-extension of $K_{\infty,w}$. Then $\Gamma_w := \mathrm{Gal}(K_{\infty,w}/K_v) (\cong \mathbf{Z}_p)$ acts on $X(K_{\infty,w})$ and $X'(K_{\infty,w})$ by conjugation and thus these are $\Lambda_w := \mathbf{Z}_p[[\Gamma_w]]$ -modules. Further,

$$\bigoplus_{w\mid v} X(K_{\infty,w}) \cong \Lambda \otimes_{\Lambda_w} X(K_{\infty,w}) \quad \text{and} \quad \bigoplus_{w\mid v} X'(K_{\infty,w}) \cong \Lambda \otimes_{\Lambda_w} X'(K_{\infty,w})$$

as Λ -modules and it is known that

THEOREM 2.2 ([Iw] Theorem 25).

$$\operatorname{rank}_{\varLambda}\bigg(\bigoplus_{w\mid v}X(K_{\infty,w})\bigg)=\operatorname{rank}_{\varLambda}\bigg(\bigoplus_{w\mid v}X'(K_{\infty,w})\bigg)=[K_{v}:\mathbf{Q}_{p}]\,.$$

Further, $\mu((\bigoplus_{w|v} X(K_{\infty,w}))_{\Lambda\text{-tor}}) = 0$. Here, $(\bigoplus_{w|v} X(K_{\infty,w}))_{\Lambda\text{-tor}}$ is the maximal Λ -torsion submodule of $\bigoplus_{w|v} X(K_{\infty,w})$.

In particular, if p is odd and K does not contain the group of p-th roots of unity μ_p , then $\bigoplus_{w|v} X(K_{\infty,w}) \cong \Lambda^{\bigoplus [K_v: \mathbf{Q}_p]}$.

Since we have the exact sequences

(1)
$$\bigoplus_{v \in P(K) - T} \left(\bigoplus_{w \mid v} X'(K_{\infty, w}) \right) \to \mathfrak{X}(K_{\infty}) \to \mathcal{Y}_{T_{\infty}}(K_{\infty}) \to 0 \quad \text{and} \quad$$

(2)
$$\bigoplus_{v \in P(K) - T} \left(\bigoplus_{w \mid v} X(K_{\infty, w}) \right) \to \mathfrak{X}(K_{\infty}) \to \mathcal{Y}'_{T_{\infty}}(K_{\infty}) \to 0,$$

we have

Proposition 2.3.

$$\operatorname{rank}_{A}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) \geq r_{2} - \sum_{v \in P(K) - T} [K_{v} : \mathbf{Q}_{p}].$$

We also have

$$(3) \qquad \bigoplus_{v \in P(K) - T} \left(\bigoplus_{w \mid v} X(K_{\infty, w}) / X'(K_{\infty, w}) \right) \to \mathcal{Y}_{T_{\infty}}(K_{\infty}) \to \mathcal{Y}_{T_{\infty}}'(K_{\infty}) \to 0.$$

Because $X(K_{\infty,w})/X'(K_{\infty,w})$ is isomorphic to \mathbb{Z}_p , we have:

Proposition 2.4.

$$\operatorname{rank}_{\Lambda} \mathcal{Y}_{T_{\infty}}(K_{\infty}) = \operatorname{rank}_{\Lambda} \mathcal{Y}_{T_{\infty}}'(K_{\infty}) \quad and \quad \mu(\mathcal{Y}_{T_{\infty}}(K_{\infty})_{\Lambda - tor}) = \mu(\mathcal{Y}_{T_{\infty}}'(K_{\infty})_{\Lambda - tor}).$$

REMARK 2.5. When K is abelian over an imaginary quadratic field k in which p splits and when T is the set of all the primes above one of the primes of k dividing p, $\mathcal{Y}_{T_{\infty}}(\tilde{K})$ has been considered in relation with the Iwasawa theory of CM-elliptic curves. Here \tilde{K}/K is a certain \mathbb{Z}_p -extension which is not cyclotomic (cf. [Co]).

3. The extensions over finite number fields

Let p, K and $T \subset P(K)$ be as in §2. Let

$$Z_T(K) := \operatorname{Gal}(\mathcal{M}_T(K)/H(K))$$
.

Then, we have the exact sequence

(4)
$$0 \to Z_T(K) \to \mathcal{Y}_T(K) \to A(K) \to 0.$$

Assume $[K:\mathbf{Q}] \leq \infty$. Let \mathcal{E}_K be the group of global units of K. For a prime v of K, let \mathcal{U}_v be the group of principal units in K_v . Put

$$\mathcal{U}_{K,T} := \prod_{v \in T} \mathcal{U}_v.$$

Then we have the following:

PROPOSITION 3.1. $Z_T(K) \cong \mathcal{U}_{K,T}/(\overline{\mathcal{E}_K \cap \mathcal{U}_{K,T}})$. Here, $\overline{\mathcal{E}_K \cap \mathcal{U}_{K,T}}$ is the topological closure of $\mathcal{E}_K \cap \mathcal{U}_{K,T}$ in $\mathcal{U}_{K,T}$.

PROOF. The proof goes exactly on similar line to the proof of [Wa] Theorem 13.4. Let \tilde{H} be the maximal unramified abelian extension of K and \tilde{M}_T the maximal abelian extension

of K unramified outside T. By the class field theory,

$$\operatorname{Gal}(\tilde{M}_T/\tilde{H}) \cong \left(K^{\times} \prod_{v:all} U_v\right) \middle/ \left(\overline{K^{\times} \prod_{v \notin T} U_v}\right).$$

Here $(K^{\times}\prod_{v:all}U_v)$ and $(\overline{K^{\times}\prod_{v\notin T}U_v})$ are considered as subgroups of the idele group of K, where U_v denotes the group of whole local units of K_v . The right hand side is isomorphic to $\prod_{v\in T}U_v/(\overline{K^{\times}\prod_{v\notin T}U_v}\cap\prod_{v\in T}U_v)$. By the same argument as in [Wa] Lemma 13.5, $(\overline{K^{\times}\prod_{v\notin T}U_v}\cap\prod_{v\in T}U_v)=\overline{\mathcal{E}_K}$. By taking the p-part, we have the proposition.

For $\mathcal{Y}'_T(K)$, we see the following: let $H_T(K)$ be the maximal unramified abelian p-extension of K whose primes above P(K)-T are all completely decomposed. Let $A_T(K) := \operatorname{Gal}(H_T(K)/K)$. Then $A_T(K)$ is a quotient of A(K) and A'(K) is a quotient of $A_T(K)$. Let $Z'_T(K) := \operatorname{Gal}(\mathcal{M}'_T(K)/H_T(K))$. Then we have

$$(5) 1 \to Z'_T(K) \to \mathcal{Y}'_T(K) \to A_T(K) \to 1.$$

PROPOSITION 3.2. Let $\mathcal{E}_{K,(P(K)-T)}$ be the group of (P(K)-T)-units of K. Then we have $Z_T'(K) \cong \mathcal{U}_{K,T}/(\overline{\mathcal{E}_{K,(P(K)-T)} \cap \mathcal{U}_{K,T}})$.

For the proof, let \tilde{H}_T be the maximal unramified abelian extension of K whose primes above P(K)-T are all completely decomposed and \tilde{M}_T' the maximal abelian extension of K which is unramified outside T and all of whose primes above P(K)-T are completely decomposed. Then

$$\operatorname{Gal}(\tilde{M}'_{T}/\tilde{H}_{T}) \cong \left(K^{\times} \prod_{v \notin P(K) - T} U_{v} \prod_{v \in P(K) - T} K_{v}^{\times}\right) / \left(\overline{K^{\times} \prod_{v \notin P(K)} U_{v} \prod_{v \in P(K) - T} K_{v}^{\times}}\right)$$

$$\cong \prod_{v \in T} U_{v} / \left(\left(\overline{K^{\times} \prod_{v \notin P(K)} U_{v} \prod_{v \in P(K) - T} K_{v}^{\times}}\right) \cap \prod_{v \in T} U_{v}\right).$$

Thus we have the above fact in a similar manner as the proof of Proposition 3.1.

4. Relation between $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ and $\mathcal{Y}_{T_n}(K_n)$

First we prepare a Lemma on $\Lambda = \mathbf{Z}_p[[T]]$ -modules. Let

(6)
$$\begin{cases} \omega_n := (1+T)^{p^n} - 1 \\ \nu_{m,n} := \omega_m/\omega_n \text{ for } m \ge n . \end{cases}$$

LEMMA 4.1. Let $\{X_n\}_n$ be a projective system of Λ -modules. Let $X := \varprojlim X_n$ and assume $pr_n : X \to X_n$ are surjective for any $n \ge n_0$. Suppose that there exist Λ -modules D_n

and that there exist commutative diagrams

$$D_{n} \longrightarrow X/\omega_{n} \longrightarrow X_{n} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow^{\nu_{n+1,n}} \qquad \downarrow$$

$$D_{n+1} \longrightarrow X/\omega_{n+1} \longrightarrow X_{n+1} \longrightarrow 1$$

for any $n \ge n_0$, whose rows are exact. Further, assume that the left vertical maps $D_n \to D_{n+1}$ are surjective. Then, $X_n = X/\nu_{n,n_0}I$ where $I = \text{Ker}(pr_{n_0})$.

PROOF. Let $I_n := \operatorname{Ker}(pr_n)$. Then the map $v_{n+1,n} : I_n/\omega_n X \to I_{n+1}/\omega_{n+1} X$ is surjective. Thus, we have $v_{n+1,n}I_n + \omega_{n+1}X = I_{n+1}$. Since $v_{n+1,n}I_n + \omega_{n+1}X = v_{n+1,n}(I_n + \omega_n X) = v_{n+1,n}I_n$, we have $v_{n+1,n}I_n = I_{n+1}$.

Let K_n be the n-th layer of K_{∞}/K . Let T_n be the set of primes of K_n above T. Then we have

$$\mathcal{Y}_{T_{\infty}}(K_{\infty}) = \underbrace{\lim_{n}}_{n} \mathcal{Y}_{T_{n}}(K_{n})$$

where the inverse limit is taken w.r.t. the natural restrictions. Let n_0 be the minimal number such that all of the primes in $P(K_{n_0}) - T_{n_0}$ are totally ramified in K_{∞}/K_{n_0} . Let

(7)
$$W_T := \operatorname{Gal}(\mathcal{M}_{T_{\infty}}(K_{\infty})/K_{\infty}\mathcal{M}_{T_{n_0}}(K_{n_0})).$$

This is a Λ -submodule of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$. We see that $\mathcal{Y}_{T_{\infty}}(K_{\infty})/W_T$ is isomorphic to a submodule of $\mathcal{Y}_{T_{n_0}}(K_{n_0})$ which is a finitely generated \mathbf{Z}_p -module. Let ω_n and $\nu_{m,n}$ be the elements of Λ defined by (6).

PROPOSITION 4.2. Assume $T \neq P(K)$. Then, for any $n > n_0$, we have

$$\mathcal{Y}_{T_n}(K_n) \cong \mathcal{Y}_{T_\infty}(K_\infty)/\nu_{n,n_0}W_T$$
.

If $n_0 = 0$ and $\sharp (P(K) - T) = 1$, then

$$\mathcal{Y}_{T_n}(K_n) \cong \mathcal{Y}_{T_\infty}(K_\infty)/\omega_n \mathcal{Y}_{T_\infty}(K_\infty)$$

for all n.

REMARK 4.3. When $T=\varnothing$, this is a well known result of Iwasawa ([Iw], [Wa] Lemma 13.18). On the other hand, when T=P(K), it is also well known that $\operatorname{Gal}(\mathcal{M}_{T_n}(K_n)/K_\infty)\cong \mathcal{Y}_{T_\infty}(K_\infty)/\omega_n$.

PROOF. Let $\tilde{\mathcal{M}}_n$ be the subfield of $\mathcal{M}_{T_\infty}(K_\infty)/K_\infty$ corresponding to the subgroup $\omega_n \mathcal{Y}_{T_\infty}(K_\infty)$. This is the maximal subfield which is abelian over K_n . Then the following is exact:

$$1 \to \bigoplus_{\mathfrak{p}_n \in P(K_n) - T_n} T(\mathfrak{p}_n) \to \operatorname{Gal}(\tilde{\mathcal{M}}_n/K_n) \to \mathcal{Y}_{T_n}(K_n) \to 1.$$

Here, $T(\mathfrak{p}_n)$ is the inertia group of \mathfrak{p}_n in $\operatorname{Gal}(\tilde{\mathcal{M}}_n/K_n)$. For $n \geq n_0$, the restriction map $T(\mathfrak{p}_n) \to \operatorname{Gal}(K_\infty/K_n) (\cong \mathbf{Z}_p)$ is an isomorphism. Thus, for $\mathfrak{p}_{n+1} \in P(K_{n+1}) - T_{n+1}$ the image of $T(\mathfrak{p}_{n+1})$ by the restriction map

$$\phi_n : \operatorname{Gal}(\tilde{\mathcal{M}}_{n+1}/K_{n+1}) \to \operatorname{Gal}(\tilde{\mathcal{M}}_n/K_n)$$

is $pT(\mathfrak{p}_n)$ where $\mathfrak{p}_n = \mathfrak{p}_{n+1}|_{K_n}$. Consider the transfer map

$$\psi_n : \operatorname{Gal}(\tilde{\mathcal{M}}_n/K_n) \to \operatorname{Gal}(\tilde{\mathcal{M}}_{n+1}/K_{n+1})$$
.

Then we see that the image of $T(\mathfrak{p}_n)$ by ψ_n is contained in $T(\mathfrak{p}_{n+1})$. Further, $\psi_n|_{T(\mathfrak{p}_n)}$ is an isomorphism. In fact, since $\phi_n \circ \psi_n = p$, $\phi_n(\psi_n(T(\mathfrak{p}_n))) = pT(\mathfrak{p}_{n+1}) = \phi_n(T(\mathfrak{p}_{n+1}))$. Thus, since ϕ_n is injective on $T(\mathfrak{p}_{n+1})$, $\psi_n(T(\mathfrak{p}_n)) = T(\mathfrak{p}_{n+1})$. Therefore we have the diagram for $n \geq n_0$

$$\bigoplus_{\mathfrak{p}_{n}\in P(K_{n})-T_{n}} T(\mathfrak{p}_{n}) \longrightarrow \operatorname{Gal}(\tilde{\mathcal{M}}_{n}/K_{n}) \longrightarrow \mathcal{Y}_{T_{n}}(K_{n}) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{\mathfrak{p}_{n+1}\in P(K_{n+1})-T_{n+1}} T(\mathfrak{p}_{n+1}) \longrightarrow \operatorname{Gal}(\tilde{\mathcal{M}}_{n+1}/K_{n+1}) \longrightarrow \mathcal{Y}_{T_{n+1}}(K_{n+1}) \longrightarrow 1.$$

The vertical maps are transfers. The left vertical map is an isomorphism by the above. From this and the facts that $\operatorname{Gal}(\tilde{\mathcal{M}}_n/K_\infty) \cong \mathcal{Y}_{T_\infty}(K_\infty)/\omega_n$ and $\mathcal{M}_{T_n}(K_n) \cap K_\infty = K_n$ (since $T \neq P(K)$), we have the diagram

$$D_{n} \longrightarrow \mathcal{Y}_{T_{\infty}}(K_{\infty})/\omega_{n} \longrightarrow \mathcal{Y}_{T_{n}}(K_{n}) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow^{\nu_{n+1,n}} \qquad \qquad \downarrow$$

$$D_{n+1} \longrightarrow \mathcal{Y}_{T_{\infty}}(K_{\infty})/\omega_{n+1} \longrightarrow \mathcal{Y}_{T_{n+1}}(K_{n+1}) \longrightarrow 1.$$

where $D_n := \operatorname{Ker}(\bigoplus_{\mathfrak{p}_n \in P(K_n) - T_n} T(\mathfrak{p}_n) \to \operatorname{Gal}(K_\infty/K_n))$. The left vertical map is an isomorphism. Thus we have Proposition 4.2 by Lemma 4.1. When $\sharp(P(K) - T) = 1$, then $D_n = 0$. Thus $\mathcal{Y}_{T_\infty}(K_\infty)/\omega_n \cong \mathcal{Y}_{T_n}(K_n)$.

A result of the same type can be verified for $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$. In fact, in the above proof, if we replace $\mathcal{M}_{T_{\infty}}(K_{\infty})$ by $\mathcal{M}'_{T_{\infty}}(K_{\infty})$ and $T(\mathfrak{p}_n)$ by the decomposition group $Z(\mathfrak{p}_n)$, we have:

PROPOSITION 4.4. For any $n \ge n_0$, we have

$$\mathcal{Y}'_{T_n}(K_n) \cong \mathcal{Y}'_{T_\infty}(K_\infty)/\nu_{n,n_0}W'_T$$

where $W_T':=\operatorname{Gal}(\mathcal{M}_{T_\infty}'(K_\infty)/K_\infty\mathcal{M}_{T_{n_0}}'(K_{n_0})).$ If $n_0=0$ and $\sharp(P(K)-T)=1,$ then

$$\mathcal{Y}'_{T_n}(K_n) \cong \mathcal{Y}'_{T_\infty}(K_\infty)/\omega_n$$

for all n.

In concluding this section, we note the following explicit formula when K is a CM field.

THEOREM 4.5 (cf. [JaMa]). Assume p is odd and K is a CM-field. Let

$$T_0 := \{ v \in T | \sigma v \in T \}$$

where σ is the complex conjugation. Then,

$$\operatorname{rank}_{\Lambda}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) = \sum_{v \in T_0} [K_v : \mathbf{Q}_p]/2.$$

Further, we have $\mu(\mathcal{Y}_{T_{\infty}}(K_{\infty})_{\Lambda-tor}) = 0$ if $\mu(\mathcal{Y}_{\varnothing}(L_{\infty})) = 0$ where $L = K(\mu_p)$. Here, $\mathcal{Y}_{T_{\infty}}(K_{\infty})_{\Lambda-tor}$ is the maximal Λ -torsion submodule of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$.

When K is abelian, we have $\mu(\mathcal{Y}_{\varnothing}(L_{\infty})) = 0$ since $K(\mu_p)$ is abelian. This gives a complete answer to our problem in this case.

5. A bound for the \mathbb{Z}_p -rank of global units: an application of Ax and Brumer's method

In this section, we consider the \mathbb{Z}_p -rank of $\overline{\mathcal{E}_K \cap \mathcal{U}_{K,T}}$ in $\mathcal{U}_{K,T}$ after the methods of Ax and Brumer ([Ax] and [Br]). We also use the formulation of [EKW].

Let K be an algebraic number field of finite degree. Let p be a prime and $T \subset P(K)$ a non-empty subset. Assume there exists a subfield $k \subset K$ such that K/k is Galois. Assume that there exists a prime $u \in P(k)$ such that

(8)
$$T' := \{ v \in P(K) | v | u \}$$

is contained in T. Let G be the Galois group of K over k. We prove the following:

THEOREM 5.1. Let K/k and $T \subset P(K)$ be as above. Let $\overline{\mathcal{E}_K \cap \mathcal{U}_{K,T}}$ be the topological closure of $\mathcal{E}_K \cap \mathcal{U}_{K,T}$ in $\mathcal{U}_{K,T}$. Then,

$${\rm rank}_{{\bf Z}_p}\overline{\mathcal{E}_K\cap\mathcal{U}_{K,T}}\geq \sum_{\chi\in\Delta_{K/k}}\deg(\chi)\,.$$

Here, $\Delta_{K/k}$ is the set of the distinct irreducible characters of G over $\bar{\mathbf{Q}}$ which appears in the $\bar{\mathbf{Q}}[G]$ -module $\mathcal{E}_K \otimes_{\mathbf{Z}} \bar{\mathbf{Q}}$. That is,

$$\mathcal{E}_K \otimes_{\mathbf{Z}} \bar{\mathbf{Q}} \cong \bigoplus_{\chi \in \Delta_{K/k}} V_{\chi}^{n_{\chi}}$$

where V_{χ} is the irreducible $\bar{\mathbf{Q}}[G]$ -module corresponding to χ with $n_{\chi} > 0$ and if $\chi \neq \chi'$ in $\Delta_{K/k}$ then $V_{\chi} \ncong V_{\chi'}$.

REMARK 5.2. The same result is obtained by C. Maire in [Ma] by the same method. But we prove this here for the completeness.

To prove Theorem 5.1, we need the following:

LEMMA 5.3 ([EKW] Lemme 1). Let X be a finite dimensional $\mathbf{C}_p[G]$ -module. Let $A \subset X$ be a $\bar{\mathbf{Q}}[G]$ -submodule. Let A^{cl} be the topological closure of A in X. Then $\dim_{\mathbf{C}_p} A^{\operatorname{cl}} \geq \sum_{\chi \in \Delta_A} \deg(\chi)$. Here, Δ_A is the set of the distinct irreducible characters of G over $\bar{\mathbf{Q}}$ which appears in A.

PROOF. Let V_{χ} be an irreducible component of A corresponding to χ . Then $V_{\chi} \otimes_{\bar{\mathbf{Q}}} \mathbf{C}_p$ is irreducible over \mathbf{C}_p . Thus, the induced map $V_{\chi} \otimes \mathbf{C}_p \to X$ should be injective. If $\chi \neq \chi'$, then we see the intersection of the images of $V_{\chi} \otimes \mathbf{C}_p$ and $V_{\chi'} \otimes \mathbf{C}_p$ is 0. Thus we have the conclusion.

Let $T' \subset T$ be as (8). For $v \in T'$, we denote the corresponding embedding by $\iota_v : K \hookrightarrow K_v$. Let $G_v := \operatorname{Gal}(K_v/k_u) \subset G$ where v|u. Let

$$\log_p: K_v^{\times} \to K_v$$

be the p-adic logarithm map. This is a G_v -homomorphism. Then we have the following theorem due to Brumer:

THEOREM 5.4 (Brumer[Br]). Let $\mathcal{E}_K \to \mathbb{C}_p$ be the composition of the map $\iota_v|_{\mathcal{E}_K}$, \log_p and the inclusion $K_v \hookrightarrow \mathbb{C}_p$. Then the induced map

$$\mathcal{E}_K \otimes \bar{\mathbf{Q}} \to \mathbf{C}_p$$

is injective.

PROOF OF THEOREM 5.1. We note that $\mathcal{E}_K \cap \mathcal{U}_{K,T}$ is of finite index in \mathcal{E}_K . We see that the \mathbb{Z}_p -rank of $\overline{\mathcal{E}_K \cap \mathcal{U}_{K,T}}$ in $\mathcal{U}_{K,T}$ is not less than that of $\overline{\mathcal{E}_K \cap \mathcal{U}_{K,T'}}$ in $\mathcal{U}_{K,T'}$. Thus, we only need to prove Theorem for T'. For $v \in T'$, let \mathcal{U}_v be the principal local units of K_v . Let

$$\ell_v: \mathcal{U}_v \to K_v \otimes_{k_u} \mathbf{C}_p$$

be the map defined by $u \mapsto \log_p(u) \otimes 1$. We have $K_v \otimes_{k_u} \mathbb{C}_p \cong \mathbb{C}_p[G_v]$ as a $\mathbb{C}_p[G_v]$ -module and ℓ_v is a $\mathbb{Z}_p[G_v]$ -module homomorphism. Here we consider \mathbb{C}_p as a trivial G_v -module. Let

$$X:=\bigoplus_{v\in T'}(K_v\otimes_{k_u}\mathbf{C}_p)$$

and

$$\theta := \bigoplus_{v \in T'} \ell_v : \mathcal{U}_{K,T'} \to X.$$

Then we have $X \cong \mathbb{C}_p[G]$ and θ is a $\mathbb{Z}_p[G]$ -homomorphism. By Theorem 5.4, we see that the induced map

$$(\theta|_{(\mathcal{E}_K \cap \mathcal{U}_{K,T'})}) \otimes \bar{\mathbf{Q}} : (\mathcal{E}_K \cap \mathcal{U}_{K,T'}) \otimes \bar{\mathbf{Q}} \to X.$$

is injective. Since the above map is a G-homomorphism, we have

$$\dim_{\mathbf{C}_p}(\theta(\mathcal{E}_K\cap\mathcal{U}_{K,T'})\otimes\bar{\mathbf{Q}})^{\mathrm{cl}}\geq \sum_{\chi\in\Delta_{K/k}}\deg(\chi)$$

by Lemma 5.3. Therefore we get the inequality

$$\mathrm{rank}_{\mathbf{Z}_p}\overline{\mathcal{E}_K\cap\mathcal{U}_{K,T'}}\geq\sum_{\chi\in\Delta_{K/k}}\deg(\chi)$$

since θ is a \mathbb{Z}_p -homomorphism.

Next, we recall the well-known structure of $\mathcal{E}_K \otimes \mathbf{Q}$ as a $\mathbf{Q}[G]$ -module.

DEFINITION 5.5. Let K/k be a Galois extension and $G := \operatorname{Gal}(K/k)$. Let V_1 be the set of all real primes of k which remain real in K, V_2 the set of real primes of k which become complex in K and V_3 the set of all complex primes. For a prime u in V_2 , choose v, a prime of K above u. Let $\operatorname{Gal}(K_v/k_u) = \langle \sigma_v \rangle \subset G$. We define a $\mathbb{Q}[G]$ -module $M_{K/k}$ as

$$M_{K/k} := \left(\bigoplus_{u \in V_1 \cup V_3} \mathbf{Q}[G]\right) \oplus \left(\bigoplus_{u \in V_2} \mathbf{Q}[G/\langle \sigma_v \rangle]\right).$$

DEFINITION 5.6. Let K/k, G, V_1 , V_2 , V_3 and σ_v be as above. Let

$$r_1: \mathbf{Q}[G] \to \mathbf{Q} \quad (\text{resp.} \quad r_2: \mathbf{Q}[G/\langle \sigma_v \rangle] \to \mathbf{Q})$$

be the map defined by $\sum_{\tau} a_{\tau} \tau \mapsto \sum_{\tau} a_{\tau}$ (resp. $\sum_{\tau \in G/\langle \sigma_n \rangle} a_{\tau} \tau \mapsto \sum_{\tau \in G/\langle \sigma_n \rangle} a_{\tau}$). Let

$$\psi_K := \left(\sum_{u \in V_1 \cup V_3} r_1\right) + \left(\sum_{u \in V_2} r_2\right) : M_{K/k} \to \mathbf{Q}.$$

PROPOSITION 5.7 (see also [EKW]). As $\mathbf{Q}[G]$ -modules,

$$\mathcal{E}_K \otimes \mathbf{Q} \cong \operatorname{Ker}(\psi_K)$$
.

PROOF. Let us consider the regulator map

$$r_K: \mathcal{E}_K \to M_{K/k} \otimes \mathbf{R}$$

defined by

$$\epsilon \mapsto \left(\bigoplus_{u \in V_1 \cup V_3} \sum_{\tau} (|\log \epsilon^{(\tau v)}|\tau)\right) \oplus \left(\bigoplus_{u \in V_2} \sum_{\tau} (|\log \epsilon^{(\tau v)}|\tau)\right)$$

where v|u and $\epsilon^{(\tau v)} \in \mathbf{R}$ or \mathbf{C} is the image of ϵ under the embedding corresponding to τv . This is a G-homomorphism. Dirichlet's unit theorem states that $r_K \otimes \mathbf{R}$ is injective and

$$\mathcal{E}_K \otimes \mathbf{R} \cong \operatorname{Ker}(\psi_K) \otimes \mathbf{R}$$
.

For $\mathbf{Q}[G]$ -modules A and B, if $A \otimes \mathbf{R} \cong B \otimes \mathbf{R}$ as $\mathbf{R}[G]$ -modules, then $A \cong B$ as $\mathbf{Q}[G]$ -modules (cf. [ANT] Chapter IV p.110 Lemma for the proof of Proposition 12). Thus we have the Proposition.

6. A bound for the Λ -rank of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$

Let M be a finitely generated Λ -module. As for the Λ -rank of M, we see the following: Let $\omega_n := (1+T)^{p^n} - 1$ and $\nu_{m,n} := \omega_m/\omega_n$ be the elements of Λ as (6).

LEMMA 6.1. Let M be a finitely generated Λ -module. Then we have

$$\operatorname{rank}_{\Lambda}(M) = \lim_{m \to \infty} \frac{1}{p^m} (\operatorname{rank}_{\mathbf{Z}_p}(M/\nu_{m,n}))$$

for any $n \geq 0$.

PROOF. By the structure theorem of Λ -modules, there exists

$$M \to \Lambda^r \oplus \left(\bigoplus_i \Lambda/p^{n_i}\right) \oplus \left(\bigoplus_j \Lambda/(f_j)^{e_j}\right)$$

with finite kernel and cokernel, where f_j 's are irreducible distinguished polynomials. Thus we have

$$\operatorname{rank}_{\mathbf{Z}_{p}}(M/\nu_{m,n}) = r(\operatorname{rank}_{\mathbf{Z}_{p}}(\Lambda/\nu_{m,n})) + \sum_{i} \operatorname{rank}_{\mathbf{Z}_{p}}(\Lambda/(p^{n_{i}}, \nu_{m,n})) + \sum_{i} \operatorname{rank}_{\mathbf{Z}_{p}}(\Lambda/(f_{j}^{e_{j}}, \nu_{m,n})).$$

We see $\operatorname{rank}_{\mathbf{Z}_p}(\Lambda/\nu_{m,n}) = p^m - p^n$, $\sum_j \operatorname{rank}_{\mathbf{Z}_p}(\Lambda/(f_j^{e_j}, \nu_{m,n})) \leq \sum_j \operatorname{rank}_{\mathbf{Z}_p}(\Lambda/(f_j)^{e_j})$ and that $(\Lambda/(p^{n_i}, \nu_{m,n}))$ is finite. Thus we have the lemma since $r = \operatorname{rank}_{\Lambda}(M)$.

We now consider K/k and $T \subset P(K)$ satisfying the conditions stated at the beginning of §5. Let K_{∞} (resp. k_{∞}) be the cyclotomic \mathbb{Z}_p -extension of K (resp. k). We further assume here that

$$K \cap k_{\infty} = k$$
.

Then.

$$Gal(K_{\infty}/k) \cong G \times \Gamma$$
.

Let $T_{\infty} \subset P(K_{\infty})$ be the set of primes above T. Then we see that

THEOREM 6.2. Assume K/k and $T \subset P(K)$ satisfy the above conditions. Then we have

$$\operatorname{rank}_{\Lambda}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) \leq \left(\sum_{v \in T} [K_v : \mathbf{Q}_p]\right) - \left(\sum_{\chi \in \Delta_{K/k}} \deg \chi\right) - \delta.$$

Here, $\Delta_{K/k}$ is the set of the distinct irreducible characters of G over \mathbf{Q} which appear in the $\mathbf{\bar{Q}}[G]$ -module $\mathcal{E}_K \otimes_{\mathbf{Z}} \mathbf{\bar{Q}}$. We put

$$\delta = \begin{cases} 0 & \text{if } \Delta_{K/k} \text{ contains the trivial character }, \\ 1 & \text{otherwise} \,. \end{cases}$$

PROOF. First, we consider the case where $T \neq P(K)$. Let $W_T \subset \mathcal{Y}_{T_\infty}(K_\infty)$ be the Λ -submodule defined by (7). We know that $\mathcal{Y}_{T_\infty}(K_\infty)/W_T$ is a finitely generated \mathbf{Z}_p -module. Thus, $\operatorname{rank}_{\Lambda}(\mathcal{Y}_{T_\infty}(K_\infty)) = \operatorname{rank}_{\Lambda}(W_T)$ and

$$\operatorname{rank}_{\mathbf{Z}_p}(W_T/\nu_{n,n_0}) = \operatorname{rank}_{\mathbf{Z}_p}(\mathcal{Y}_{T_\infty}(K_\infty)/\nu_{n,n_0}W_T) - \operatorname{rank}_{\mathbf{Z}_p}(\mathcal{Y}_{T_\infty}(K_\infty)/W_T).$$

By Proposition 4.2, we have $\operatorname{rank}_{\mathbf{Z}_p}(\mathcal{Y}_{T_\infty}(K_\infty)/\nu_{n,n_0}W_T) = \operatorname{rank}_{\mathbf{Z}_p}(\mathcal{Y}_{T_n}(K_n))$, where $T_n \subset P(K_n)$ is the set of primes above T. On the other hand,

$$\operatorname{rank}_{\mathbf{Z}_n}(\mathcal{Y}_{T_n}(K_n)) = \operatorname{rank}_{\mathbf{Z}_n}(\mathcal{U}_{K_n,T_n}/(\overline{\mathcal{E}_{K_n} \cap \mathcal{U}_{K_n,T_n}}))$$

by (4) and Proposition 3.1. We claim here that

$$\operatorname{rank}_{\mathbf{Z}_p}(\mathcal{U}_{K_n,T_n}/(\overline{\mathcal{E}_{K_n}\cap\mathcal{U}_{K_n,T_n}})) \leq p^n \left(\left(\sum_{v\in T} [K_v:\mathbf{Q}_p] \right) - \left(\sum_{\chi\in\Lambda_{K/k}} \deg\chi \right) - \delta \right) + \delta.$$

By this claim, we have

$$\operatorname{rank}_{\mathbf{Z}_{p}}(W_{T}/\nu_{n,n_{0}}) \leq p^{n} \left(\sum_{v \in T} [K_{v} : \mathbf{Q}_{p}] - \sum_{\chi \in \Delta_{K/k}} \operatorname{deg} \chi - \delta \right) + \delta$$
$$- \operatorname{rank}_{\mathbf{Z}_{p}}(\mathcal{Y}_{T_{\infty}}(K_{\infty})/W_{T}).$$

Thus by Lemma 6.1, we have

$$\operatorname{rank}_{\Lambda}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) = \operatorname{rank}_{\Lambda}(W_T) \leq \sum_{v \in T} [K_v : \mathbf{Q}_p] - \sum_{\chi \in \Delta_{K/k}} \deg \chi - \delta.$$

So it remains to prove the claim above.

Since $\operatorname{rank}_{\mathbf{Z}_n}(\mathcal{U}_{K_n,T_n}) = p^n \sum_{v \in T} [K_v : \mathbf{Q}_p]$, we see from Theorem 5.1 that

$$\operatorname{rank}_{\mathbf{Z}_p}(\mathcal{U}_{K_n,T_n}/(\overline{\mathcal{E}_{K_n}\cap\mathcal{U}_{K_n,T_n}})) \leq p^n \left(\sum_{v\in T} [K_v:\mathbf{Q}_p]\right) - \sum_{\chi\in\Delta_{K_n/k}} \deg\chi.$$

We calculate $\sum_{\chi \in \Delta_{K_n/k}} \deg \chi$. Since $\operatorname{Gal}(K_n/k) \cong G \times \Gamma/\Gamma^{p^n}$, we have

$$M_{K_n/k} = \left(\bigoplus_{v \in V_1 \cup V_3} \mathbf{Q}[G \times \Gamma/\Gamma^{p^n}]\right) \oplus \left(\bigoplus_{v \in V_2} \mathbf{Q}[(G \times \Gamma/\Gamma^{p^n})/\langle \sigma_v \rangle]\right),$$

and $\mathcal{E}_{K_n} \otimes \mathbf{Q} \cong \operatorname{Ker}(\psi_{K_n})$ by Proposition 5.7. Let $(\Gamma/\Gamma^{p^n})^{\wedge}$ be the set of characters of Γ/Γ^{p^n} . Since Γ/Γ^{p^n} is abelian, we see that if $\Delta_{K/k}$ contains the trivial character, then

$$\Delta_{K_n/k} = \{ \chi \otimes \chi' | \chi \in \Delta_{K/k}, \chi' \in (\Gamma/\Gamma^{p^n})^{\wedge} \}.$$

If $\Delta_{K/k}$ does not contain the trivial character, then

$$\Delta_{K_n/k} = \{ \chi \otimes \chi' | \chi \in \Delta_{K/k}, \chi' \in (\Gamma/\Gamma^{p^n})^{\wedge} \} \cup \{ 1 \otimes \chi' | \chi' \in (\Gamma/\Gamma^{p^n})^{\wedge} \text{ and } \chi' \neq 1' \}.$$

where 1 and 1' are the trivial characters of G and Γ/Γ^{p^n} . Since each χ' is of degree one, we have $\deg(\chi \otimes \chi') = \deg \chi$. Thus, $\sharp \Delta_{K_n/k} = (p^n \sharp \Delta_{K/k}) + \delta(p^n - 1)$ and

$$\sum_{\chi \in \Delta_{K_n/k}} \deg \chi = \left(p^n \sum_{\chi \in \Delta_{K/k}} \deg \chi \right) + \delta(p^n - 1).$$

This proves the claim.

In the case where T = P(K), we have

$$\operatorname{rank}_{\mathbf{Z}_p}(\mathcal{Y}_{T_\infty}(K_\infty)/\omega_n) = \operatorname{rank}_{\mathbf{Z}_p}(\mathcal{Y}_{T_n}(K_n)) - 1$$

by Remark 4.3. We calculate $\operatorname{rank}_{\mathbb{Z}_p}(\mathcal{Y}_{T_n}(K_n))$ similarly as above, and get the same conclusion. Note, however, that our estimate for the Λ -rank is weaker than Iwasawa's *equality* (Theorem 2.1), in this case.

7. Λ -torsionness and μ -invariant of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ for $K = \mathbb{Q}(\sqrt[3]{a})$

In this section, we consider a special base field

$$K = \mathbf{Q}(\sqrt[3]{a})$$

where $a \in \mathbf{Z}$ and cube free. Let $k = \mathbf{Q}(\zeta_3)$ and

$$L = \mathbf{Q}(\sqrt[3]{a}, \zeta_3),$$

the Galois closure of K. Let σ be a generator of Gal(L/K) and τ that of Gal(L/k). Then

$$G := Gal(L/\mathbf{Q}) \cong \mathfrak{S}_3$$

and G is generated by σ and τ , satisfying $\sigma^2 = 1$, $\tau^3 = 1$ and $\sigma \tau = \tau^{-1} \sigma$.

Let p be an odd prime satisfying the following: p inerts in k and π splits in L where π is the unique prime of k above p. This is equivalent to the assumption that K has two primes \mathfrak{p}_1 and \mathfrak{p}_2 above p.

Denote the primes above p in L by v_1 , v_2 and v_3 . We see that $L_{v_i} = \mathbf{Q}_p(\zeta_3)$. We may assume that $G_{v_i} := \operatorname{Gal}(L_{v_i}/\mathbf{Q}_p)$ is $\langle \tau^{i-1}\sigma \tau^{-(i-1)} \rangle$ in G. Then, we denote the primes of K above p by \mathfrak{p}_1 and \mathfrak{p}_2 , where \mathfrak{p}_1 is below v_1 while \mathfrak{p}_2 is below v_2 and v_3 . We have $K_{\mathfrak{p}_1} = \mathbf{Q}_p$ and $K_{\mathfrak{p}_2} = \mathbf{Q}_p(\zeta_3)$, $[K_{\mathfrak{p}_2} : \mathbf{Q}_p] = 2$.

Let L_{∞} (resp. k_{∞} , K_{∞} and \mathbf{Q}_{∞}) be the cyclotomic \mathbf{Z}_p -extension of L (resp. k, K and \mathbf{Q}). Let $\Gamma = \operatorname{Gal}(L_{\infty}/L)$ and we identify this with $\operatorname{Gal}(K_{\infty}/K)$, $\operatorname{Gal}(k_{\infty}/k)$ and $\operatorname{Gal}(\mathbf{Q}_{\infty}/\mathbf{Q})$. We see that L_{∞} is Galois over \mathbf{Q} and $\operatorname{Gal}(L_{\infty}/\mathbf{Q}) \cong G \times \Gamma$. We identify $\operatorname{Gal}(L_{\infty}/\mathbf{Q}_{\infty})$ with G. We easily see the following:

LEMMA 7.1. The prime v_i (resp. \mathfrak{p}_i , π) is totally ramified in L_{∞}/L (resp. K_{∞}/K , k_{∞}/k).

We write v_i (resp. \mathfrak{p}_i , π) again for the unique prime of L_{∞} (resp. K_{∞} , K_{∞}) above v_i (resp. \mathfrak{p}_i , π).

REMARK 7.2. The reason why we consider this special case is that this situation appears in [Ha1],[Ha2] for p=3. There, $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ plays an important role in relation with the μ -invariants of Selmer groups of certain elliptic curves.

7.1. The Λ -torsionness We will prove the following:

THEOREM 7.3. Let K, L and p be as above. Put $T'_{\infty} = \{v_1\} \subset P(L_{\infty})$ and $T_{\infty} = \{\mathfrak{p}_2\} \subset P(K_{\infty})$. Then $\mathcal{Y}_{T'_{\infty}}(L_{\infty})$ and $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ are Λ -torsion.

For the proof, we need the following:

LEMMA 7.4. $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ is Λ -torsion if and only if the kernel of the restriction map

$$\operatorname{res}_{v_1}: X(L_{\infty,v_1}) \to \mathfrak{X}(L_{\infty})$$

is Λ -torsion.

PROOF. The above map is a homomorphism of $\operatorname{Gal}(L/K) = \langle \sigma \rangle$ -modules. For a $\langle \sigma \rangle$ -module M, let $M^{(\sigma=\pm 1)}$ be the maximum $\langle \sigma \rangle$ -submodule of M on which σ acts as multiplication by ± 1 . Then

$$M = M^{(\sigma=1)} \oplus M^{(\sigma=-1)}.$$

We also see that the kernel of res_{v_1} is Λ -torsion if and only if so are the kernels of $res_{v_1}^{(\sigma=\pm 1)}$. We have the commutative diagram

$$X(L_{\infty,v_1})^{(\sigma=-1)} \xrightarrow{\operatorname{res}_{v_1}^{(\sigma=-1)}} \mathfrak{X}(L_{\infty})^{(\sigma=-1)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X(k_{\infty,\pi})^{-} \xrightarrow{\operatorname{res}_{\pi}^{-}} \mathfrak{X}(k_{\infty})^{-}.$$

Here $X(k_{\infty,\pi})^-$ and $\mathfrak{X}(k_{\infty})^-$ are the minus parts of $X(k_{\infty,\pi})$ and $\mathfrak{X}(k_{\infty})$, respectively, i.e., the maximum submodules on which the complex conjugation in $\operatorname{Gal}(k/\mathbb{Q})$ acts by (-1)-multiplication. Here, π is the unique prime of k_{∞} above p. The cokernel of the bottom row is $A'(k_{\infty,\pi})^-$ which is Λ -torsion. We see that $\operatorname{rank}_{\Lambda}X(k_{\infty,\pi})^-=1$ and $\operatorname{rank}_{\Lambda}\mathfrak{X}(k_{\infty})^-=1$ by Theorems 2.2 and 2.1, since $X(k_{\infty,\pi})^+=X(k_{\infty,\pi}^+)$ and $\mathfrak{X}(k_{\infty})^+=\mathfrak{X}(k_{\infty}^+)$ where $k^+=\mathbb{Q}$. Thus the kernel of $\operatorname{res}_{\pi}^-$ is Λ -torsion. Since the left column is an isomorphism, the kernel of $\operatorname{res}_{\nu_1}^{(\sigma=-1)}$ is Λ -torsion.

On the other hand, we have another commutative diagram

$$\begin{array}{ccc} X(L_{\infty,v_1})^{(\sigma=1)} & \xrightarrow{\operatorname{res}_{v_1}^{(\sigma=1)}} & \mathfrak{X}(L_{\infty})^{(\sigma=1)} \\ \downarrow & & \downarrow \\ X(K_{\infty,\mathfrak{p}_1}) & \xrightarrow{\operatorname{res}_{\mathfrak{p}_1}} & \mathfrak{X}(K_{\infty}) \,. \end{array}$$

The vertical maps are isomorphisms. By Theorem 2.1, $\operatorname{rank}_{\Lambda}(\mathfrak{X}(K_{\infty}))=1$. Since $K_{\mathfrak{p}_1}=\mathbf{Q}_p$, $X(K_{\infty,\mathfrak{p}_1})\cong \Lambda$ by Theorem 2.2. Thus, $\operatorname{res}_{v_1}^{(\sigma=1)}$ is injective if and only if $\operatorname{res}_{\mathfrak{p}_1}$ is injective. We also see $\operatorname{res}_{\mathfrak{p}_1}$ is injective if and only if the cokernel of $\operatorname{res}_{\mathfrak{p}_1}$ is Λ -torsion. The cokernel of $\operatorname{res}_{\mathfrak{p}_1}$ is $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$. By Proposition 2.4, $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$ is Λ -torsion if and only if so is $\mathcal{Y}_{T_{\infty}}(K_{\infty})$. This proves the claim.

PROOF OF THEOREM 7.3. For the first assertion, we apply Theorem 6.2 to the extension L/K and $T' = \{v_1\} \subset P(L)$. Note here that T' is clearly $Gal(L/K) = \langle \sigma \rangle$ -stable.

We see that

$$M_{L/K} = \mathbf{Q} \oplus \mathbf{Q}[\langle \sigma \rangle]$$

since there exist two infinite primes of K one of which is the real prime becoming complex in L and the another of which is the complex prime. Thus we see

$$\operatorname{Ker}(\psi_L) \cong \mathbf{Q}[\langle \sigma \rangle]$$
.

By Proposition 5.7, we have $\sum_{\chi \in \Delta_{L/K}} \deg \chi = 2$. On the other hand, $[L_{v_1} : \mathbf{Q}_p] = 2$. Thus by Theorem 6.2,

$$\mathrm{rank}_{\varLambda}\mathcal{Y}_{T_{\infty}'}(L_{\infty}) \leq [L_{v_1}: \mathbf{Q}_p] - \sum_{\chi \in \varDelta_{L/K}} \deg \chi = 0.$$

Here, $\delta = 0$ because $\Delta_{L/K}$ contains the trivial character. This proves the first assertion. For the second, we consider the map

$$\sum_{i} \operatorname{res}_{v_i} : \bigoplus_{i} X(L_{\infty,v_i}) \to \mathfrak{X}(L_{\infty})$$

which is a $G=\operatorname{Gal}(L/\mathbf{Q})$ -module homomorphism. G acts on the set $\{X(L_{\infty,v_i})\}_i$ transitively. Thus, the kernel of $\operatorname{res}_{v_i}: X(L_{\infty,v_i}) \to \mathfrak{X}(L_{\infty})$ is Λ -torsion for i=1 if and only if so is for any i. Assume $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ is not Λ -torsion. Then the kernel of the map

$$\operatorname{res}_{v_1}: X(L_{\infty,v_1}) \to \mathfrak{X}(L_{\infty})$$

is not Λ -torsion by Lemma 7.4. Thus the same happens for any i. Therefore we have

$$\operatorname{rank}_{\Lambda}(\operatorname{res}_{v_i}(X(L_{\infty,v_i})) \leq 1$$

since $\operatorname{rank}_{\Lambda} X(L_{\infty,v_i}) = 2$ by Theorem 2.2. Thus

$$\operatorname{rank}_{\Lambda}(\operatorname{res}_{v_2}(X(L_{\infty,v_2})) + \operatorname{res}_{v_3}(X(L_{\infty,v_3}))) \le 2$$

in $\mathfrak{X}(L_{\infty})$. Since $\operatorname{rank}_{\Lambda}(\mathfrak{X}(L_{\infty}))=3$ by Theorem 2.1, the cokernel of the map

$$X(L_{\infty,v_2}) \oplus X(L_{\infty,v_3}) \to \mathfrak{X}(L_{\infty})$$

is not Λ -torsion. The cokernel is $\mathcal{Y}'_{T'_{\infty}}(L_{\infty})$. By Proposition 2.4, $\mathcal{Y}'_{T'_{\infty}}(L_{\infty})$ is Λ -torsion if and only if so is $\mathcal{Y}_{T'_{\infty}}(L_{\infty})$. This contradicts the first assertion.

7.2. A criterion for the vanishing of $\mu(\mathcal{Y}_{T_{\infty}}(K_{\infty}))$ We give a sufficient condition for the vanishing of the μ -invariant of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ for p and K as in §7.1.

We first quote elementary lemmas on Λ -modules.

LEMMA 7.5 ([Gr] p. 123, Lemma for Proposition 10). Let

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

be an exact sequence of finitely generated Λ -modules. If Λ is a free Λ -module and B has no non-trivial finite Λ -submodule, then C also has no non-trivial finite Λ -submodule.

LEMMA 7.6 ([Go]). Let M be a finitely generated Λ -torsion Λ -module. Assume M has no non-trivial finite Λ -submodule. Let

$$e_n := \operatorname{ord}_{\mathcal{D}}(\sharp(M/\omega_n))$$
.

Here, we set $e_n = \infty$ if $\sharp(M/\omega_n) = \infty$. Then, $\mu(M) = 0$ if there exists an $n \ge 0$ such that $e_{n+1} < \infty$ (which implies $e_n < \infty$) and $(e_{n+1} - e_n) < \varphi(p^{n+1})$. Here φ is the Euler φ -function.

Let us return to the situation in the previous subsection. Let $K = \mathbf{Q}(\sqrt[3]{a})$. Let p be an odd prime such that $(p) = \mathfrak{p}_1\mathfrak{p}_2$ in K where $K_{\mathfrak{p}_1} = \mathbf{Q}_p$ and $[K_{\mathfrak{p}_2} : \mathbf{Q}] = 2$. Let $T_{\infty} = \{\mathfrak{p}_2\} \subset P(K_{\infty})$.

PROPOSITION 7.7. $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$ has no non-trivial finite Λ -submodule.

PROOF. By (2), the sequence

$$X(K_{\infty,\mathfrak{p}_1}) \to \mathfrak{X}(K_{\infty}) \to \mathcal{Y}'_T(K_{\infty}) \to 1$$

is exact. By Theorem 2.2, $X(K_{\infty,\mathfrak{p}_1}) \cong \Lambda$ and by Theorem 2.1, $\operatorname{rank}_{\Lambda}\mathfrak{X}(K_{\infty}) = 1$. Since $\mathcal{Y}'_T(K_{\infty})$ is Λ -torsion by Theorem 7.3, the left map should be an injection. Thus we have the Proposition by Lemma 7.5.

Thus, we have the following:

PROPOSITION 7.8. Let K and p be as above. Let $\operatorname{Cl}_{\{\mathfrak{p}_1\},n}[p^{\infty}]$ be the p-part of the \mathfrak{p}_1 -ideal class group of K_n and $\mathcal{E}_{n,\{\mathfrak{p}_1\}}$ the group of global \mathfrak{p}_1 -units of K_n . Put

$$e_n := \operatorname{ord}_p(\mathcal{U}_{n,\mathfrak{p}_2}/\overline{\mathcal{U}_{n,\mathfrak{p}_2} \cap \mathcal{E}_{n,\{\mathfrak{p}_1\}}}) + \operatorname{ord}_p(\operatorname{Cl}_{\{\mathfrak{p}_1\},n}[p^{\infty}]).$$

Then, if there exists an $n \ge 0$ such that $e_{n+1} < \infty$ and $(e_{n+1} - e_n) < \varphi(p^{n+1})$, then $\mu(\mathcal{Y}_{T_{\infty}}(K_{\infty})) = 0$.

PROOF. We note that $\mu(\mathcal{Y}_{T_{\infty}}(K_{\infty}))=0$ if and only if $\mu(\mathcal{Y}'_{T_{\infty}}(K_{\infty}))=0$ by Proposition 2.4. By the class field theory, $\mathrm{Cl}_{\{\mathfrak{p}_1\},n}[p^{\infty}]$ is isomorphic to $A_{\{\mathfrak{p}_2\}}(K_n)$ defined before Proposition 3.2. By (5) and Proposition 3.2, $e_n=\mathrm{ord}_p(\sharp\mathcal{Y}'_{T_n}(K_n))$. By Proposition 4.4, we have $\mathcal{Y}'_{T_n}(K_n)=\mathcal{Y}'_{T_{\infty}}(K_{\infty})/\omega_n$. Then, we have the Proposition by Lemma 7.6.

REMARK 7.9. The reason why we consider $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$ instead of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ is as follows: We have $\operatorname{rank}_{\mathbf{Z}_p}\mathcal{E}_{n,\{\mathfrak{p}_1\}}=2p^n$. Since $\operatorname{rank}_{\mathbf{Z}_p}\mathcal{U}_{n,\mathfrak{p}_2}=2p^n$, we can expect that $\mathcal{U}_{n,\mathfrak{p}_2}/\overline{\mathcal{U}_{n,\mathfrak{p}_2}\cap\mathcal{E}_{n,\{\mathfrak{p}_1\}}}$ is finite. (See the examples of the next subsection.)

7.3. Example Let p = 3. Let $K = \mathbb{Q}(\sqrt[3]{a})$ with $(3) = \mathfrak{p}_1\mathfrak{p}_2$. This occurs if and only if $b^2 \equiv c^2 \mod 9$ where b and c are square free integers which are relatively prime to each other satisfying $a = bc^2$. Thus, a = 10, 17, 19, 26, 28..., for example. We have the following:

Proposition 7.10. If p = 3, then $\lambda(\mathcal{Y}'_{T_{\infty}}(K_{\infty})) \geq 1$.

PROOF. By Proposition 3.2, $\mathcal{Y}'_{T_{\infty}}(K_{\infty})$ contains $\varprojlim \mathcal{U}_{n,\mathfrak{p}_2}/\overline{\mathcal{U}_{n,\mathfrak{p}_2} \cap \mathcal{E}_{n,\{\mathfrak{p}_1\}}}$. We see that $\varprojlim \mathcal{U}_{n,\mathfrak{p}_2}$ contains $\varprojlim \mu_{3^n}$ since $K_{\mathfrak{p}_2} = \mathbf{Q}_3(\zeta_3)$. But $\mathcal{E}_{n,\{\mathfrak{p}_1\}}$ does not contain p-th roots of unity and hence we see that $\varprojlim \mathcal{U}_{n,\mathfrak{p}_2}/\overline{\mathcal{U}_{n,\mathfrak{p}_2} \cap \mathcal{E}_{n,\{\mathfrak{p}_1\}}}$ contains $\varprojlim \mu_{3^n}$.

Thus if it happens that $e_0 = 1$, then $\lambda(\mathcal{Y}'_{T_\infty}(K_\infty)) = 1$ and $\mu(\mathcal{Y}'_{T_\infty}(K_\infty)) = 0$.

Let us see some examples. Let a=10. Then $A_0=0$ and $\mathcal{U}_{0,\mathfrak{p}_2}/\overline{\mathcal{U}_{0,\mathfrak{p}_2}\cap\mathcal{E}_{0,\{\mathfrak{p}_1\}}}\cong \mathbb{Z}/3\oplus\mathbb{Z}/3$. Thus, $\lambda\geq 2$ or $\mu>0$ in this case. We see that $\sharp(\mathcal{U}_{0,\mathfrak{p}_2}/\overline{\mathcal{U}_{0,\mathfrak{p}_2}\cap\mathcal{E}_{0,\{\mathfrak{p}_1\}}})\geq 9$ for a=17,19,26,28,44,45. (For the computation, we used Kash[Kash] and Pari[Pari].) Therefore we have to compute for $n\geq 1$ to determine whether $\mu(\mathcal{Y}'_{T_\infty}(K_\infty))=0$ or not.

8. An application to the vanishing of Iwasawa invariants

In this section, we give an application to the original Iwasawa invariants.

Let K be a number field of finite degree. Let $\lambda_p(K)$, $\mu_p(K)$ and $\nu_p(K)$ be the classical Iwasawa invariants of K. That is, for all sufficiently large n, we have

$$\sharp \operatorname{Cl}(K_n)[p^{\infty}] = p^{\lambda_p(K)n + \mu_p(K)p^n + \nu_p(K)}$$

where $Cl(K_n)[p^{\infty}]$ is the *p*-Sylow subgroup of the ideal class group of K_n , the *n*-th layer of K_{∞}/K .

The following is a generalization of a criterion of Fukuda-Komatsu ([FuKo]).

THEOREM 8.1. Let K be a number field. Assume that there are exactly two primes \mathfrak{p}_1 and \mathfrak{p}_2 of K above p such that $K_{\mathfrak{p}_1} = \mathbf{Q}_p$ and that they are totally ramified in K_{∞} . Then, $\lambda_p(K) = \mu_p(K) = \nu_p(K) = 0$ if and only if A(K) = 0 and $\mathcal{U}_{K,T''}/(\overline{\mathcal{E}_K \cap \mathcal{U}_{K,T''}}) = 0$. Here, $T'' = \{\mathfrak{p}_1\}$.

To prove this, we need the following:

LEMMA 8.2.
$$A(K_{\infty}) \cong \mathcal{Y}_{T_{\infty}''}(K_{\infty})$$
 where $T_{\infty}'' = \{\mathfrak{p}_1\} \subset P(K_{\infty})$.

PROOF. By (4) and Proposition 3.1, the kernel of

$$\mathcal{Y}_{T_{\infty}''}(K_{\infty}) \to A(K_{\infty})$$

is isomorphic to

$$\underline{\lim} \, \mathcal{U}_{K_n,T_n''}/\overline{\mathcal{E}_{K_n} \cap \mathcal{U}_{K_n,T_n''}}.$$

Since $K_{\mathfrak{p}_1} = \mathbf{Q}_p$,

$$\underline{\lim} \, \mathcal{U}_{K_n,T_n''}/\overline{\mathcal{E}_{K_n} \cap \mathcal{U}_{K_n,T_n''}}$$

is a quotient of

$$\varprojlim \mathcal{U}_{\mathbf{Q}_n,\pi_n}/\overline{\mathcal{E}_{\mathbf{Q}_n}\cap\mathcal{U}_{\mathbf{Q}_n,\pi_n}}$$

where π_n is the unique prime of \mathbf{Q}_n above p. Since $A(\mathbf{Q}_{\infty}) = 0$ as is well known, we have

$$\underline{\lim}\,\mathcal{U}_{\mathbf{Q}_n,\pi_n}/\overline{\mathcal{E}_{\mathbf{Q}_n}\cap\mathcal{U}_{\mathbf{Q}_n,\pi_n}}\cong\mathfrak{X}(\mathbf{Q}_\infty)$$

by (4) and Proposition 3.1 for $K = \mathbf{Q}_{\infty}$ and $T = P(\mathbf{Q}_{\infty}) = \{\pi_{\infty}\}$. It is also well known that $\mathfrak{X}(\mathbf{Q}_{\infty}) = 0$.

PROOF OF THEOREM 8.1. We note that $\lambda_p(K) = \mu_p(K) = \nu_p(K) = 0$ is equivalent to $A(K_\infty) = 0$. By the above Lemma and Nakayama's lemma, this is equivalent to

$$\mathcal{Y}_{T_{\infty}''}(K_{\infty})/\omega_0=0$$
.

By Proposition 4.2,

$$\mathcal{Y}_{T_{\infty}''}(K_{\infty})/\omega_0 \cong \mathcal{Y}_{T''}(K)$$
.

Thus, again by (4) and Proposition 3.1, we get our conclusion.

EXAMPLE 8.3. Let

$$K = \mathbf{Q}(\sqrt[3]{a})$$

with $a \in \mathbb{Z}$, a > 0 and cube free. Let ε be the fundamental unit of K. Let p be an odd prime satisfying the condition of Theorem 8.1. Then, we see that

$$\mathcal{U}_{K,T''}/(\overline{\mathcal{E}_K\cap\mathcal{U}_{K,T''}})=0\Leftrightarrow\varepsilon^{p-1}\not\equiv 1\mod(\mathfrak{p}_1^2)$$

and the validity of the latter condition is easily computable. An odd prime p satisfies the condition of Theorem 8.1 if and only if either (A) p=3 when $b^2\equiv c^2\mod 9$ where b and c are square free integers which are relatively prime to each other satisfying $a=bc^2$ or (B) $p\nmid 3a$ and $p\equiv 2\mod 3$. In the case (B), we calculated $\varepsilon^{p-1}\mod (\mathfrak{p}_1^2)$ for a=2,3,5,6,10 and for 3< p<1000 by using Pari-GP[Pari] and Kash[Kash]. Then, we found that $A(K_\infty)\neq 0$ only when a=3 and p=23.

References

[ANT] J. W. S. CASSELS and A. FRÖHLICH, (eds.), Algebraic Number fields, Academic Press (1967).

[Ax] J. Ax, On the units of an algebraic number field, Illinois J. Math. 9 (1965), 584–589.

- [Br] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124.
- [Co] J. COATES, Elliptic curves and Iwasawa theory, Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl. (1984), 51–73.
- [EKW] M. EMSALEM, H. KISILEVSKY and D. WALES, Indépendence linéaire sur $\bar{\mathbf{Q}}$ de logarithmes p-adiques de nombres algébriques et rang p-adiques du group des unité d'un corps de nombres, J. Number Theory **19** (1984), 384–391.
- [FeWa] B. FERRERO and L. C. WASHINGTON, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. **109** (1979), 377–395.
- [FuKo] T. FUKUDA and K. KOMATSU, On \mathbb{Z}_p -extensions of real quadratic fields, J. Math. Soc. Japan, 38 (1986), 95–102.
- [Go] R. GOLD, Examples of Iwasawa invariants, Acta. Arith. 26 (1974), 21–32.
- [Gr] R. Greenberg, Iwasawa theory for *p*-adic representations, Adv. Studies in Pure Math. **17** (1989), 97–137.
- [Ha1] Y. HACHIMORI, On the μ -invariants in Iwasawa theory of elliptic curves, doctor's thesis, University of Tokyo, March 2001.
- [Ha2] Y. HACHIMORI, On the μ -invariants in Iwasawa theory of elliptic curves, preprint.
- [Iw] K. IWASAWA, On **Z**₁-extensions of algebraic number fields, Annals of Math. **98** (1973), 246–326.
- [JaMa] J.-F. JAULENT and C. MAIRE, Invariants d'Iwasawa de la tour cyclotomique, preprint 2001.
- [Kash] M. DABERKOW, C. FIEKER, J. KLÜNERS, M. POHST, K. ROEGNER and K. WILDANGER, Kant V4, J. Symbolic Comp. 24 (1997), 267–283.
- [Ma] C. MAIRE, On the \mathbf{Z}_l -rank of abelian extensions with restricted ramification, J. Number Theory 92 (2002), 376–404.
- [Pari] C. BATUT, D. BERNARDI, H. COHEN and H. OLIVIER, User's guide to Pari-GP.
- [Wa] L. C. WASHINGTON, Introduction to cyclotomic fields 2nd ed., G.T.M. 83 (1997), Springer.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, GAKUSHUIN UNIVERSITY, MEJIRO, TOSHIMA-KU, TOKYO, 171–8588 JAPAN.

e-mail: yhachi@math.gakushuin.ac.jp