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1. Introduction

Let p be a prime number. For an algebraic number field K of finite degree, consider an
(arbitrary) subset T of P(K), where P(K) is the set of all primes above p of K:

T ⊂ P(K) .
Let K∞ be the cyclotomic Zp-extension of K and T∞ ⊂ P(K∞) the set of primes above T
of K∞. Then, by MT∞(K∞), we denote the maximal abelian p-extension ofK∞ unramified
outside T∞. We call such an extension “the extension with restricted p-ramification”.

Since Γ := Gal(K∞/K) acts on the Galois group

YT∞(K∞) := Gal(MT∞(K∞)/K∞)

by conjugation, it is regarded as a module over the power series ring Λ := Zp[[T ]] in the
usual manner. This is finitely generated overΛ.

In this article, we investigate the following question: What are the Λ-rank of YT∞(K∞)
and the µ-invariant of its Λ-torsion part µ(YT∞(K∞)Λ−tor )?

When T = ∅ (empty set), it is well known that Y�(K∞) has Λ-rank zero by a result of
Iwasawa and that it is conjectured that its µ-invariant vanishes. This is verified when K is an
abelian field by Ferrero and Washington [FeWa]. It is also known that rankΛ(YT∞(K∞)) = r2
if T = P(K), where r2 is the number of complex primes of K . The µ-invariant of the Λ-
torsion part of YT∞(K∞) is also conjectured to be zero and proved if K is abelian.

In case of CM-fields, the answer to the above question is known completely (cf. [JaMa].
See also Theorem 4.5 below).

On the other hand, for a general base field K and T ⊂ P(K), we have a trivial lower
bound of the Λ-rank (Proposition 2.3):

rankΛ(YT∞(K∞)) ≥ r2 −
∑

v∈P(K)−T
[Kv : Qp] .

However, we do not know how theΛ-rank should be in general. We give the following partial
result by applying the methods of Ax and Brumer.
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THEOREM 1.1 (Theorem 6.2). Assume there exists a subfield k ⊂ K such that K/k is
Galois and K ∩ k∞ = k. Let G := Gal(K/k). Assume that there exists a prime u ∈ P(k)
such that

T ′ := {v ∈ P(K)| v|u}
is contained in T . Then we have

rankΛ(YT∞(K∞)) ≤
( ∑
v∈T
[Kv : Qp]

)
−

( ∑
χ∈∆K/k

degχ

)
− δ .

Here, ∆K/k is the set of the distinct irreducible characters of G over Q̄ which appear in the

Q̄[G]-module EK ⊗Z Q̄ where EK is the group of global units of K . We put

δ =
{

0 if ∆K/k contains the trivial character ,
1 otherwise .

Note that the right hand side in the Theorem is larger than or equal to the above trivial
lower bound.

Next, we consider the special case where K = Q( 3
√
a) (a ∈ Z, cube free), as a first

example of the case of non abelian base fields.

THEOREM 1.2 (Theorem 7.3, Proposition 7.8). (i) Let K = Q( 3
√
a). Let p be an odd

prime such that (p) = p1p2 in K where K�1 = Qp and [K�2 : Qp] = 2. Let T = {p2}. Then
YT∞(K∞) is Λ-torsion.

(ii) Further, there is a sufficient condition for the vanishing of µ(YT∞(K∞)).
The another reason why we consider this special example is that YT∞(K∞) in the above

theorem for p = 3 is related with the Selmer group Selp∞(E/Q∞) of a certain elliptic curve
E/Q concerning with the µ-invariant ([Ha1], [Ha2]).

There is another application of the theory of YT∞(K∞). Let λp(K), µp(K) and νp(K)
be the classical Iwasawa invariants of K . (See §8 for the definition.) We give a criterion for
the vanishing of these invariants for special non abelian fields. This is a generalization of a
result of Fukuda-Komatsu([FuKo]).

THEOREM 1.3 (Theorem 8.1). Let K be a number field. Assume that there are exactly
two primes p1 and p2 of K above p such that K�1 = Qp and that they are totally ramified in
K∞. Then the following are equivalent.

(i) λp(K) = µp(K) = νp(K) = 0

(ii) Cl(K)[p∞] = 0 and (1+ pZp) = EK ∩ (1+ pZp).
Here, Cl(K)[p∞] is the p-part of the ideal class group of K and EK is the group of

global units of K which we embed in K�1 = Qp.

The outline of this article is as follows. From §2 to §4 we give general facts on YT∞(K∞)
in the context of the classical Iwasawa theory. After seeing an application of the methods of
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Ax and Brumer in §5, we give an upper bound of the Λ-rank of YT∞(K∞) (Theorem 6.2) in
§6. Then, in §7 we consider a special case where K = Q( 3

√
a) and apply the above results to

this case. In §8, we give a proof of Theorem 1.3.
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and Takae Tsuji for valuable discussions. Finally, I would like to express my sincere gratitude
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2. Extensions with restricted p-ramification

In this section, we define some notions related to extensions with restricted p-ramification.
Then we recall known results and easy consequences.

Let p be a prime. For an algebraic number field K , let P(K) be the set of all primes of
K above p. For an arbitrary subset

T ⊂ P(K) ,
we denote by MT (K) the maximal abelian p-extension of K which is unramified outside T .
Let

YT (K) := Gal(MT (K)/K) .

We also denote by M′
T (K) the maximal subfield of MT (K) all of whose primes above

P(K) − T are completely decomposed and put

Y ′T (K) := Gal(M′
T (K)/K) .

LetK be a number field of finite degree and K∞ the cyclotomic Zp-extension ofK . For
T ⊂ P(K), let T∞ ⊂ P(K∞) be the set of primes above T . Then

Γ = Gal(K∞/K)

acts on YT∞(K∞) and Y ′T∞(K∞) by conjugation in the usual way. Therefore YT∞(K∞) and

Y ′T∞(K∞) are endowed with the action of

Λ := Zp[[Γ ]] .
By fixing a topological generator of Γ , we identify Λ with the power series ring Zp[[T ]] in
the usual manner.

For T = ∅ (empty set), we put

H(K) :=M�(K), H
′(K) :=M′

�
(K)

and

A(K) := Y�(K), A′(K) := Y ′
�
(K) .
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For T = P(K), we put M(K) :=MP(K)(K) and

X(K) := YP(K)(K) .

We define similarly A(K∞), A′(K∞) and X(K∞) for K∞. These modules are well
studied in Iwasawa theory.

THEOREM 2.1 (Iwasawa [Iw], see also [Wa]). (i) X(K∞) is a finitely generated Λ-
module and rankΛ(X(K∞)) = r2, where r2 is the number of complex infinite primes of K .

(ii) Both A(K∞) and A′(K∞) are Λ-torsion. Further, µ(A(K∞)) = µ(A′(K∞)) .

Note that

H(K∞) ⊂MT (K∞) ⊂M(K∞) and H ′(K∞) ⊂M′
T (K∞) ⊂ M(K∞) .

Thus YT (K∞) and Y ′T (K∞) are finitely generated overΛ.
Let v be a prime of K dividing p and w a prime of K∞ above v. Denote Kv by the

completion of K at v and by K∞,w the composite field KvK∞ in Kv where we identify K∞
with its image of the embeddingK∞ ↪→ Kv corresponding to w. Let{

X(K∞,w) := Gal(Kab,p∞,w/K∞,w)
X′(K∞,w) := Gal(Kab,p∞,w/Kur,p∞,w)

where Kab,p∞,w is the maximal abelian p-extension of K∞,w and Kur,p∞,w is the maximal un-
ramified p-extension of K∞,w . Then Γw := Gal(K∞,w/Kv)(∼= Zp) acts on X(K∞,w) and
X′(K∞,w) by conjugation and thus these are Λw := Zp[[Γw]]-modules. Further,⊕

w|v
X(K∞,w) ∼= Λ⊗Λw X(K∞,w) and

⊕
w|v

X′(K∞,w) ∼= Λ⊗Λw X′(K∞,w)

as Λ-modules and it is known that

THEOREM 2.2 ([Iw] Theorem 25).

rankΛ

( ⊕
w|v

X(K∞,w)
)
= rankΛ

( ⊕
w|v

X′(K∞,w)
)
= [Kv : Qp] .

Further, µ((
⊕

w|v X(K∞,w))Λ-tor) = 0. Here, (
⊕

w|v X(K∞,w))Λ-tor is the maximal Λ-

torsion submodule of
⊕

w|v X(K∞,w).
In particular, if p is odd andK does not contain the group of p-th roots of unity µp, then⊕

w|v X(K∞,w) ∼= Λ
⊕[Kv :Qp ].

Since we have the exact sequences

⊕
v∈P(K)−T

( ⊕
w|v

X′(K∞,w)
)
→ X(K∞)→ YT∞(K∞)→ 0 and(1)
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⊕
v∈P(K)−T

( ⊕
w|v

X(K∞,w)
)
→ X(K∞)→ Y ′T∞(K∞)→ 0 ,(2)

we have

PROPOSITION 2.3.

rankΛ(YT∞(K∞)) ≥ r2 −
∑

v∈P(K)−T
[Kv : Qp] .

We also have⊕
v∈P(K)−T

( ⊕
w|v

X(K∞,w)/X′(K∞,w)
)
→ YT∞(K∞)→ Y ′T∞(K∞)→ 0 .(3)

Because X(K∞,w)/X′(K∞,w) is isomorphic to Zp , we have:

PROPOSITION 2.4.

rankΛYT∞(K∞) = rankΛY ′T∞(K∞) and µ(YT∞(K∞)Λ−tor ) = µ(Y ′T∞(K∞)Λ−tor) .
REMARK 2.5. WhenK is abelian over an imaginary quadratic field k in which p splits

and when T is the set of all the primes above one of the primes of k dividing p, YT∞(K̃) has

been considered in relation with the Iwasawa theory of CM-elliptic curves. Here K̃/K is a
certain Zp-extension which is not cyclotomic (cf. [Co]).

3. The extensions over finite number fields

Let p, K and T ⊂ P(K) be as in §2. Let

ZT (K) := Gal(MT (K)/H(K)) .

Then, we have the exact sequence

0→ ZT (K)→ YT (K)→ A(K)→ 0 .(4)

Assume [K : Q] ≤ ∞. Let EK be the group of global units of K . For a prime v of K ,
let Uv be the group of principal units in Kv . Put

UK,T :=
∏
v∈T

Uv.

Then we have the following:

PROPOSITION 3.1. ZT (K) ∼= UK,T /(EK ∩ UK,T ).Here, EK ∩ UK,T is the topological
closure of EK ∩ UK,T in UK,T .

PROOF. The proof goes exactly on similar line to the proof of [Wa] Theorem 13.4. Let

H̃ be the maximal unramified abelian extension of K and M̃T the maximal abelian extension
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of K unramified outside T . By the class field theory,

Gal(M̃T /H̃ ) ∼=
(
K×

∏
v:all

Uv

)/(
K×

∏
v /∈T

Uv

)
.

Here (K×
∏
v:all Uv) and (K×

∏
v /∈T Uv) are considered as subgroups of the idele group of

K , where Uv denotes the group of whole local units ofKv . The right hand side is isomorphic

to
∏
v∈T Uv/(K×

∏
v /∈T Uv ∩

∏
v∈T Uv). By the same argument as in [Wa] Lemma 13.5,

(K×
∏
v /∈T Uv ∩

∏
v∈T Uv) = EK . By taking the p-part, we have the proposition. �

For Y ′T (K), we see the following: let HT (K) be the maximal unramified abelian p-
extension ofK whose primes aboveP(K)−T are all completely decomposed. LetAT (K) :=
Gal(HT (K)/K). Then AT (K) is a quotient of A(K) and A′(K) is a quotient of AT (K). Let
Z′T (K) := Gal(M′

T (K)/HT (K)). Then we have

1→ Z′T (K)→ Y ′T (K)→ AT (K)→ 1 .(5)

PROPOSITION 3.2. Let EK,(P (K)−T ) be the group of (P (K)− T )-units of K . Then we

have Z′T (K) ∼= UK,T /(EK,(P (K)−T ) ∩ UK,T ).
For the proof, let H̃T be the maximal unramified abelian extension of K whose primes

above P(K) − T are all completely decomposed and M̃ ′T the maximal abelian extension of
K which is unramified outside T and all of whose primes above P(K) − T are completely
decomposed. Then

Gal(M̃ ′T /H̃T ) ∼=
(
K×

∏
v /∈P(K)−T

Uv
∏

v∈P(K)−T
K×v

)/(
K×

∏
v /∈P(K)

Uv
∏

v∈P(K)−T
K×v

)

∼=
∏
v∈T

Uv

/((
K×

∏
v /∈P(K)

Uv
∏

v∈P(K)−T
K×v

)
∩

∏
v∈T

Uv

)
.

Thus we have the above fact in a similar manner as the proof of Proposition 3.1.

4. Relation between YT∞(K∞) and YTn(Kn)

First we prepare a Lemma on Λ = Zp[[T ]]-modules. Let

{
ωn := (1+ T )pn − 1
νm,n := ωm/ωn form ≥ n .(6)

LEMMA 4.1. Let {Xn}n be a projective system of Λ-modules. Let X := lim←−Xn and

assume prn : X→ Xn are surjective for any n ≥ n0. Suppose that there exist Λ-modulesDn
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and that there exist commutative diagrams

Dn −−−−→ X/ωn −−−−→ Xn −−−−→ 1⏐⏐� ⏐⏐�νn+1,n

⏐⏐�
Dn+1 −−−−→ X/ωn+1 −−−−→ Xn+1 −−−−→ 1

for any n ≥ n0, whose rows are exact. Further, assume that the left vertical maps Dn →
Dn+1 are surjective. Then, Xn = X/νn,n0I where I = Ker(prn0).

PROOF. Let In := Ker(prn). Then the map νn+1,n : In/ωnX → In+1/ωn+1X is
surjective. Thus, we have νn+1,nIn+ωn+1X = In+1. Since νn+1,nIn+ωn+1X = νn+1,n(In+
ωnX) = νn+1,nIn, we have νn+1,nIn = In+1. �

LetKn be the n-th layer of K∞/K . Let Tn be the set of primes ofKn above T . Then we
have

YT∞(K∞) = lim←−
n

YTn(Kn)

where the inverse limit is taken w.r.t. the natural restrictions. Let n0 be the minimal number
such that all of the primes in P(Kn0)− Tn0 are totally ramified in K∞/Kn0 . Let

WT := Gal(MT∞(K∞)/K∞MTn0
(Kn0)) .(7)

This is a Λ-submodule of YT∞(K∞). We see that YT∞(K∞)/WT is isomorphic to a submod-
ule of YTn0

(Kn0) which is a finitely generated Zp-module. Let ωn and νm,n be the elements

of Λ defined by (6).

PROPOSITION 4.2. Assume T 
= P(K). Then, for any n ≥ n0, we have

YTn(Kn) ∼= YT∞(K∞)/νn,n0WT .

If n0 = 0 and 
(P (K)− T ) = 1, then

YTn(Kn) ∼= YT∞(K∞)/ωnYT∞(K∞)

for all n.

REMARK 4.3. When T = ∅, this is a well known result of Iwasawa ([Iw],
[Wa] Lemma 13.18). On the other hand, when T = P(K), it is also well known that
Gal(MTn(Kn)/K∞) ∼= YT∞(K∞)/ωn.

PROOF. Let M̃n be the subfield of MT∞(K∞)/K∞ corresponding to the subgroup
ωnYT∞(K∞). This is the maximal subfield which is abelian over Kn. Then the following is
exact:

1→
⊕

�n∈P(Kn)−Tn
T (pn)→ Gal(M̃n/Kn)→ YTn(Kn)→ 1 .
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Here, T (pn) is the inertia group of pn in Gal(M̃n/Kn). For n ≥ n0, the restriction map
T (pn) → Gal(K∞/Kn)(∼= Zp) is an isomorphism. Thus, for pn+1 ∈ P(Kn+1) − Tn+1 the
image of T (pn+1) by the restriction map

φn : Gal(M̃n+1/Kn+1)→ Gal(M̃n/Kn)

is pT (pn) where pn = pn+1|Kn . Consider the transfer map

ψn : Gal(M̃n/Kn)→ Gal(M̃n+1/Kn+1) .

Then we see that the image of T (pn) by ψn is contained in T (pn+1). Further, ψn|T (�n) is an
isomorphism. In fact, since φn ◦ψn = p, φn(ψn(T (pn)) = pT (pn+1) = φn(T (pn+1)). Thus,
since φn is injective on T (pn+1), ψn(T (pn)) = T (pn+1). Therefore we have the diagram for
n ≥ n0

⊕
�n∈P(Kn)−Tn T (pn) −−−−→ Gal(M̃n/Kn) −−−−→ YTn(Kn) −−−−→ 1⏐⏐� ⏐⏐� ⏐⏐�⊕

�n+1∈P(Kn+1)−Tn+1
T (pn+1)−−−−→Gal(M̃n+1/Kn+1)−−−−→YTn+1(Kn+1)−−−−→1 .

The vertical maps are transfers. The left vertical map is an isomorphism by the above. From

this and the facts that Gal(M̃n/K∞) ∼= YT∞(K∞)/ωn and MTn(Kn) ∩ K∞ = Kn (since
T 
= P(K)), we have the diagram

Dn −−−−→ YT∞(K∞)/ωn −−−−→ YTn(Kn) −−−−→ 1⏐⏐� ⏐⏐�νn+1,n

⏐⏐�
Dn+1 −−−−→ YT∞(K∞)/ωn+1 −−−−→ YTn+1(Kn+1) −−−−→ 1 .

where Dn := Ker(
⊕

�n∈P(Kn)−Tn T (pn) → Gal(K∞/Kn)). The left vertical map is an iso-

morphism. Thus we have Proposition 4.2 by Lemma 4.1. When 
(P (K) − T ) = 1, then
Dn = 0. Thus YT∞(K∞)/ωn ∼= YTn(Kn). �

A result of the same type can be verified for Y ′T∞(K∞). In fact, in the above proof, if we

replace MT∞(K∞) by M′
T∞(K∞) and T (pn) by the decomposition group Z(pn), we have:

PROPOSITION 4.4. For any n ≥ n0, we have

Y ′Tn(Kn) ∼= Y ′T∞(K∞)/νn,n0W
′
T

where W ′T := Gal(M′
T∞(K∞)/K∞M′

Tn0
(Kn0)). If n0 = 0 and 
(P (K)− T ) = 1, then

Y ′Tn(Kn) ∼= Y ′T∞(K∞)/ωn
for all n.

In concluding this section, we note the following explicit formula whenK is a CM field.
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THEOREM 4.5 (cf. [JaMa]). Assume p is odd andK is a CM-field. Let

T0 := {v ∈ T |σv ∈ T }
where σ is the complex conjugation. Then,

rankΛ(YT∞(K∞)) =
∑
v∈T0

[Kv : Qp]/2 .

Further, we have µ(YT∞(K∞)Λ−tor) = 0 if µ(Y�(L∞)) = 0 where L = K(µp). Here,
YT∞(K∞)Λ−tor is the maximalΛ-torsion submodule of YT∞(K∞).

When K is abelian, we have µ(Y�(L∞)) = 0 since K(µp) is abelian. This gives a
complete answer to our problem in this case.

5. A bound for the Zp-rank of global units: an application of Ax and Brumer’s
method

In this section, we consider the Zp-rank of EK ∩ UK,T in UK,T after the methods of Ax
and Brumer ([Ax] and [Br]). We also use the formulation of [EKW].

Let K be an algebraic number field of finite degree. Let p be a prime and T ⊂ P(K) a
non-empty subset. Assume there exists a subfield k ⊂ K such that K/k is Galois. Assume
that there exists a prime u ∈ P(k) such that

T ′ := {v ∈ P(K)| v|u}(8)

is contained in T . Let G be the Galois group of K over k. We prove the following:

THEOREM 5.1. Let K/k and T ⊂ P(K) be as above. Let EK ∩ UK,T be the topologi-
cal closure of EK ∩ UK,T in UK,T . Then,

rankZpEK ∩ UK,T ≥
∑

χ∈∆K/k
deg(χ) .

Here, ∆K/k is the set of the distinct irreducible characters of G over Q̄ which appears in the

Q̄[G]-module EK ⊗Z Q̄. That is,

EK ⊗Z Q̄ ∼=
⊕

χ∈∆K/k
V
nχ
χ

where Vχ is the irreducible Q̄[G]-module corresponding to χ with nχ > 0 and if χ 
= χ ′ in
∆K/k then Vχ 
∼= Vχ ′ .

REMARK 5.2. The same result is obtained by C. Maire in [Ma] by the same method.
But we prove this here for the completeness.

To prove Theorem 5.1, we need the following:
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LEMMA 5.3 ([EKW] Lemme 1). Let X be a finite dimensional Cp[G]-module. Let

A ⊂ X be a Q̄[G]-submodule. LetAcl be the topological closure ofA inX. Then dimCp A
cl ≥∑

χ∈∆A deg(χ). Here, ∆A is the set of the distinct irreducible characters of G over Q̄ which

appears in A.

PROOF. Let Vχ be an irreducible component of A corresponding to χ . Then Vχ ⊗Q̄ Cp
is irreducible over Cp. Thus, the induced map Vχ ⊗Cp → X should be injective. If χ 
= χ ′,
then we see the intersection of the images of Vχ ⊗ Cp and Vχ ′ ⊗ Cp is 0. Thus we have the
conclusion. �

Let T ′ ⊂ T be as (8). For v ∈ T ′, we denote the corresponding embedding by ιv : K ↪→
Kv . Let Gv := Gal(Kv/ku) ⊂ G where v|u. Let

logp : K×v → Kv

be the p-adic logarithm map. This is a Gv-homomorphism. Then we have the following
theorem due to Brumer:

THEOREM 5.4 (Brumer[Br]). Let EK → Cp be the composition of the map ιv|EK , logp
and the inclusionKv ↪→ Cp. Then the induced map

EK ⊗ Q̄→ Cp

is injective.

PROOF OF THEOREM 5.1. We note that EK ∩ UK,T is of finite index in EK . We see

that the Zp-rank of EK ∩ UK,T in UK,T is not less than that of EK ∩ UK,T ′ in UK,T ′ . Thus, we
only need to prove Theorem for T ′. For v ∈ T ′, let Uv be the principal local units of Kv . Let

�v : Uv → Kv ⊗ku Cp

be the map defined by u �→ logp(u)⊗1. We haveKv⊗ku Cp ∼= Cp[Gv] as a Cp[Gv]-module

and �v is a Zp[Gv]-module homomorphism. Here we consider Cp as a trivialGv-module. Let

X :=
⊕
v∈T ′

(Kv ⊗ku Cp)

and

θ :=
⊕
v∈T ′

�v : UK,T ′ → X .

Then we have X ∼= Cp[G] and θ is a Zp[G]-homomorphism. By Theorem 5.4, we see that
the induced map

(θ |(EK∩UK,T ′ ))⊗ Q̄ : (EK ∩ UK,T ′)⊗ Q̄→ X .

is injective. Since the above map is a G-homomorphism, we have

dimCp (θ(EK ∩ UK,T ′)⊗ Q̄)cl ≥
∑

χ∈∆K/k
deg(χ)
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by Lemma 5.3. Therefore we get the inequality

rankZpEK ∩ UK,T ′ ≥
∑

χ∈∆K/k
deg(χ)

since θ is a Zp-homomorphism. �

Next, we recall the well-known structure of EK ⊗Q as a Q[G]-module.

DEFINITION 5.5. Let K/k be a Galois extension and G := Gal(K/k). Let V1 be the
set of all real primes of k which remain real in K , V2 the set of real primes of k which become
complex in K and V3 the set of all complex primes. For a prime u in V2, choose v, a prime of
K above u. Let Gal(Kv/ku) = 〈σv〉 ⊂ G. We define a Q[G]-moduleMK/k as

MK/k :=
( ⊕
u∈V1∪V3

Q[G]
)
⊕

( ⊕
u∈V2

Q[G/〈σv〉]
)
.

DEFINITION 5.6. Let K/k, G, V1, V2, V3 and σv be as above. Let

r1 : Q[G] → Q (resp. r2 : Q[G/〈σv〉] → Q)

be the map defined by
∑
τ aτ τ �→

∑
τ aτ (resp.

∑
τ∈G/〈σv〉 aτ τ �→

∑
τ∈G/〈σv〉 aτ ). Let

ψK :=
( ∑
u∈V1∪V3

r1

)
+

( ∑
u∈V2

r2

)
: MK/k → Q .

PROPOSITION 5.7 (see also [EKW]). As Q[G]-modules,

EK ⊗Q ∼= Ker(ψK) .

PROOF. Let us consider the regulator map

rK : EK → MK/k ⊗R

defined by

ε �→
( ⊕
u∈V1∪V3

∑
τ

(| log ε(τv)|τ )
)
⊕

( ⊕
u∈V2

∑
τ

(| log ε(τv)|τ )
)

where v|u and ε(τv) ∈ R or C is the image of ε under the embedding corresponding to τv.
This is a G-homomorphism. Dirichlet’s unit theorem states that rK ⊗R is injective and

EK ⊗ R ∼= Ker(ψK)⊗ R .

For Q[G]-modules A and B, if A ⊗ R ∼= B ⊗ R as R[G]-modules, then A ∼= B as Q[G]-
modules (cf. [ANT] Chapter IV p.110 Lemma for the proof of Proposition 12). Thus we have
the Proposition. �
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6. A bound for the Λ-rank of YT∞(K∞)

Let M be a finitely generatedΛ-module. As for the Λ-rank of M , we see the following:

Let ωn := (1+ T )pn − 1 and νm,n := ωm/ωn be the elements of Λ as (6).

LEMMA 6.1. Let M be a finitely generatedΛ-module. Then we have

rankΛ(M) = lim
m→∞

1

pm
(rankZp (M/νm,n))

for any n ≥ 0.

PROOF. By the structure theorem of Λ-modules, there exists

M → Λr ⊕
( ⊕

i

Λ/pni
)
⊕

( ⊕
j

Λ/(fj )
ej

)

with finite kernel and cokernel, where fj ’s are irreducible distinguished polynomials. Thus
we have

rankZp (M/νm,n) = r(rankZp (Λ/νm,n))+
∑
i

rankZp (Λ/(p
ni , νm,n))

+
∑
j

rankZp (Λ/(f
ej
j , νm,n)) .

We see rankZp (Λ/νm,n) = pm − pn,
∑
j rankZp (Λ/(f

ej
j , νm,n)) ≤

∑
j rankZp (Λ/(fj )

ej )

and that (Λ/(pni , νm,n)) is finite. Thus we have the lemma since r = rankΛ(M). �

We now consider K/k and T ⊂ P(K) satisfying the conditions stated at the beginning
of §5. Let K∞ (resp. k∞) be the cyclotomic Zp-extension of K (resp. k). We further assume
here that

K ∩ k∞ = k .
Then,

Gal(K∞/k) ∼= G× Γ .
Let T∞ ⊂ P(K∞) be the set of primes above T . Then we see that

THEOREM 6.2. Assume K/k and T ⊂ P(K) satisfy the above conditions. Then we
have

rankΛ(YT∞(K∞)) ≤
( ∑
v∈T
[Kv : Qp]

)
−

( ∑
χ∈∆K/k

degχ

)
− δ .

Here, ∆K/k is the set of the distinct irreducible characters of G over Q̄ which appear in the

Q̄[G]-module EK ⊗Z Q̄. We put

δ =
{

0 if ∆K/k contains the trivial character ,
1 otherwise .
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PROOF. First, we consider the case where T 
= P(K). Let WT ⊂ YT∞(K∞) be the Λ-
submodule defined by (7). We know that YT∞(K∞)/WT is a finitely generated Zp-module.
Thus, rankΛ(YT∞(K∞)) = rankΛ(WT ) and

rankZp (WT /νn,n0) = rankZp (YT∞(K∞)/νn,n0WT )− rankZp (YT∞(K∞)/WT ) .

By Proposition 4.2, we have rankZp (YT∞(K∞)/νn,n0WT ) = rankZp (YTn(Kn)), where Tn ⊂
P(Kn) is the set of primes above T . On the other hand,

rankZp (YTn(Kn)) = rankZp (UKn,Tn/(EKn ∩ UKn,Tn))
by (4) and Proposition 3.1. We claim here that

rankZp (UKn,Tn/(EKn ∩ UKn,Tn)) ≤ pn
(( ∑

v∈T
[Kv : Qp]

)
−

( ∑
χ∈∆K/k

degχ

)
− δ

)
+ δ .

By this claim, we have

rankZp (WT /νn,n0 ) ≤ pn
( ∑
v∈T
[Kv : Qp] −

∑
χ∈∆K/k

degχ − δ
)
+ δ

− rankZp (YT∞(K∞)/WT ) .

Thus by Lemma 6.1, we have

rankΛ(YT∞(K∞)) = rankΛ(WT ) ≤
∑
v∈T
[Kv : Qp] −

∑
χ∈∆K/k

degχ − δ .

So it remains to prove the claim above.
Since rankZp (UKn,Tn) = pn

∑
v∈T [Kv : Qp], we see from Theorem 5.1 that

rankZp (UKn,Tn/(EKn ∩ UKn,Tn)) ≤ pn
( ∑
v∈T
[Kv : Qp]

)
−

∑
χ∈∆Kn/k

degχ .

We calculate
∑
χ∈∆Kn/k degχ . Since Gal(Kn/k) ∼= G× Γ/Γ pn , we have

MKn/k =
( ⊕
v∈V1∪V3

Q[G× Γ/Γ pn]
)
⊕

( ⊕
v∈V2

Q[(G× Γ/Γ pn)/〈σv〉]
)
,

and EKn ⊗ Q ∼= Ker(ψKn) by Proposition 5.7. Let (Γ /Γ p
n
)∧ be the set of characters of

Γ/Γ p
n
. Since Γ/Γ p

n
is abelian, we see that if ∆K/k contains the trivial character, then

∆Kn/k = {χ ⊗ χ ′|χ ∈ ∆K/k, χ ′ ∈ (Γ /Γ p
n

)∧} .
If ∆K/k does not contain the trivial character, then

∆Kn/k = {χ ⊗ χ ′|χ ∈ ∆K/k, χ ′ ∈ (Γ /Γ p
n

)∧} ∪ {1⊗ χ ′|χ ′ ∈ (Γ /Γ pn)∧ and χ ′ 
= 1′} .
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where 1 and 1′ are the trivial characters of G and Γ/Γ p
n
. Since each χ ′ is of degree one, we

have deg(χ ⊗ χ ′) = degχ . Thus, 
∆Kn/k = (pn
∆K/k)+ δ(pn − 1) and

∑
χ∈∆Kn/k

degχ =
(
pn

∑
χ∈∆K/k

degχ

)
+ δ(pn − 1) .

This proves the claim.
In the case where T = P(K), we have

rankZp (YT∞(K∞)/ωn) = rankZp (YTn(Kn))− 1

by Remark 4.3. We calculate rankZp (YTn(Kn)) similarly as above, and get the same con-
clusion. Note, however, that our estimate for the Λ-rank is weaker than Iwasawa’s equality
(Theorem 2.1), in this case. �

7. Λ-torsionness and µ-invariant of YT∞(K∞) for K = Q( 3
√
a)

In this section, we consider a special base field

K = Q( 3
√
a)

where a ∈ Z and cube free. Let k = Q(ζ3) and

L = Q( 3
√
a, ζ3) ,

the Galois closure of K . Let σ be a generator of Gal(L/K) and τ that of Gal(L/k). Then

G := Gal(L/Q) ∼= S3

and G is generated by σ and τ , satisfying σ 2 = 1, τ 3 = 1 and στ = τ−1σ .
Let p be an odd prime satisfying the following: p inerts in k and π splits in L where π

is the unique prime of k above p. This is equivalent to the assumption that K has two primes
p1 and p2 above p.

Denote the primes above p in L by v1, v2 and v3. We see that Lvi = Qp(ζ3). We may

assume that Gvi := Gal(Lvi /Qp) is 〈τ i−1στ−(i−1)〉 in G. Then, we denote the primes of K
above p by p1 and p2, where p1 is below v1 while p2 is below v2 and v3. We haveK�1 = Qp

and K�2 = Qp(ζ3), [K�2 : Qp] = 2.
Let L∞ (resp. k∞, K∞ and Q∞) be the cyclotomic Zp-extension of L (resp. k, K

and Q). Let Γ = Gal(L∞/L) and we identify this with Gal(K∞/K), Gal(k∞/k) and
Gal(Q∞/Q). We see that L∞ is Galois over Q and Gal(L∞/Q) ∼= G × Γ . We identify
Gal(L∞/Q∞) with G. We easily see the following:

LEMMA 7.1. The prime vi (resp. pi , π) is totally ramified in L∞/L (resp. K∞/K,
k∞/k).

We write vi (resp. pi , π) again for the unique prime of L∞ (resp. K∞, k∞) above vi
(resp. pi , π).
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REMARK 7.2. The reason why we consider this special case is that this situation ap-
pears in [Ha1],[Ha2] for p = 3. There, YT∞(K∞) plays an important role in relation with the
µ-invariants of Selmer groups of certain elliptic curves.

7.1. The Λ-torsionness We will prove the following:

THEOREM 7.3. Let K , L and p be as above. Put T ′∞ = {v1} ⊂ P(L∞) and T∞ =
{p2} ⊂ P(K∞). Then YT ′∞(L∞) and YT∞(K∞) are Λ-torsion.

For the proof, we need the following:

LEMMA 7.4. YT∞(K∞) is Λ-torsion if and only if the kernel of the restriction map

resv1 : X(L∞,v1)→ X(L∞)

is Λ-torsion.

PROOF. The above map is a homomorphism of Gal(L/K) = 〈σ 〉-modules. For a 〈σ 〉-
module M , let M(σ=±1) be the maximum 〈σ 〉-submodule of M on which σ acts as multipli-
cation by ±1. Then

M = M(σ=1) ⊕M(σ=−1) .

We also see that the kernel of resv1 is Λ-torsion if and only if so are the kernels of res(σ=±1)
v1 .

We have the commutative diagram

X(L∞,v1)
(σ=−1)

res(σ=−1)
v1−−−−−→ X(L∞)(σ=−1)⏐⏐� ⏐⏐�

X(k∞,π )−
res−π−−−−→ X(k∞)− .

Here X(k∞,π )− and X(k∞)− are the minus parts of X(k∞,π ) and X(k∞), respectively, i.e.,
the maximum submodules on which the complex conjugation in Gal(k/Q) acts by (−1)-
multiplication. Here, π is the unique prime of k∞ above p. The cokernel of the bottom row is
A′(k∞,π )− which is Λ-torsion. We see that rankΛX(k∞,π )− = 1 and rankΛX(k∞)− = 1 by

Theorems 2.2 and 2.1, since X(k∞,π )+ = X(k+∞,π ) and X(k∞)+ = X(k+∞) where k+ = Q.

Thus the kernel of res−π is Λ-torsion. Since the left column is an isomorphism, the kernel of

res(σ=−1)
v1 is Λ-torsion.

On the other hand, we have another commutative diagram

X(L∞,v1)
(σ=1)

res(σ=1)
v1−−−−→ X(L∞)(σ=1)⏐⏐� ⏐⏐�

X(K∞,�1)
res�1−−−−→ X(K∞) .
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The vertical maps are isomorphisms. By Theorem 2.1, rankΛ(X(K∞)) = 1. SinceK�1 = Qp,

X(K∞,�1)
∼= Λ by Theorem 2.2. Thus, res(σ=1)

v1 is injective if and only if res�1 is injective.
We also see res�1 is injective if and only if the cokernel of res�1 isΛ-torsion. The cokernel of
res�1 is Y ′T∞(K∞). By Proposition 2.4, Y ′T∞(K∞) is Λ-torsion if and only if so is YT∞(K∞).
This proves the claim. �

PROOF OF THEOREM 7.3. For the first assertion, we apply Theorem 6.2 to the exten-
sion L/K and T ′ = {v1} ⊂ P(L). Note here that T ′ is clearly Gal(L/K) = 〈σ 〉-stable.

We see that

ML/K = Q⊕Q[〈σ 〉]
since there exist two infinite primes ofK one of which is the real prime becoming complex in
L and the another of which is the complex prime. Thus we see

Ker(ψL) ∼= Q[〈σ 〉] .
By Proposition 5.7, we have

∑
χ∈∆L/K degχ = 2. On the other hand, [Lv1 : Qp] = 2. Thus

by Theorem 6.2,

rankΛYT ′∞(L∞) ≤ [Lv1 : Qp] −
∑

χ∈∆L/K
degχ = 0 .

Here, δ = 0 because ∆L/K contains the trivial character. This proves the first assertion.
For the second, we consider the map∑

i

resvi :
⊕
i

X(L∞,vi )→ X(L∞)

which is a G = Gal(L/Q)-module homomorphism. G acts on the set {X(L∞,vi )}i transi-
tively. Thus, the kernel of resvi : X(L∞,vi )→ X(L∞) isΛ-torsion for i = 1 if and only if so
is for any i. Assume YT∞(K∞) is not Λ-torsion. Then the kernel of the map

resv1 : X(L∞,v1)→ X(L∞)

is notΛ-torsion by Lemma 7.4. Thus the same happens for any i. Therefore we have

rankΛ(resvi (X(L∞,vi )) ≤ 1

since rankΛX(L∞,vi ) = 2 by Theorem 2.2. Thus

rankΛ(resv2(X(L∞,v2))+ resv3(X(L∞,v3))) ≤ 2

in X(L∞). Since rankΛ(X(L∞)) = 3 by Theorem 2.1, the cokernel of the map

X(L∞,v2)⊕X(L∞,v3)→ X(L∞)

is not Λ-torsion. The cokernel is Y ′
T ′∞
(L∞). By Proposition 2.4, Y ′

T ′∞
(L∞) is Λ-torsion if

and only if so is YT ′∞(L∞). This contradicts the first assertion. �
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7.2. A criterion for the vanishing of µ(YT∞(K∞)) We give a sufficient condition
for the vanishing of the µ-invariant of YT∞(K∞) for p and K as in §7.1.

We first quote elementary lemmas onΛ-modules.

LEMMA 7.5 ([Gr] p. 123, Lemma for Proposition 10). Let

0→ A→ B → C → 0

be an exact sequence of finitely generated Λ-modules. If A is a free Λ-module and B has no
non-trivial finite Λ-submodule, then C also has no non-trivial finite Λ-submodule.

LEMMA 7.6 ([Go]). LetM be a finitely generatedΛ-torsionΛ-module. AssumeM has
no non-trivial finite Λ-submodule. Let

en := ordp(
(M/ωn)) .

Here, we set en = ∞ if 
(M/ωn) = ∞. Then, µ(M) = 0 if there exists an n ≥ 0 such

that en+1 < ∞ (which implies en < ∞) and (en+1 − en) < ϕ(pn+1). Here ϕ is the Euler
ϕ-function.

Let us return to the situation in the previous subsection. Let K = Q( 3
√
a). Let p be an

odd prime such that (p) = p1p2 inK whereK�1 = Qp and [K�2 : Q] = 2. Let T∞ = {p2} ⊂
P(K∞).

PROPOSITION 7.7. Y ′T∞(K∞) has no non-trivial finite Λ-submodule.

PROOF. By (2), the sequence

X(K∞,�1)→ X(K∞)→ Y ′T (K∞)→ 1

is exact. By Theorem 2.2, X(K∞,�1)
∼= Λ and by Theorem 2.1, rankΛX(K∞) = 1. Since

Y ′T (K∞) is Λ-torsion by Theorem 7.3, the left map should be an injection. Thus we have the
Proposition by Lemma 7.5. �

Thus, we have the following:

PROPOSITION 7.8. Let K and p be as above. Let Cl{�1},n[p∞] be the p-part of the
p1-ideal class group of Kn and En,{�1} the group of global p1-units of Kn. Put

en := ordp( Un,�2/Un,�2 ∩ En,{�1})+ ordp( Cl{�1},n[p∞]) .

Then, if there exists an n ≥ 0 such that en+1 < ∞ and (en+1 − en) < ϕ(pn+1), then
µ(YT∞(K∞)) = 0.

PROOF. We note that µ(YT∞(K∞)) = 0 if and only if µ(Y ′T∞(K∞)) = 0 by Propo-

sition 2.4. By the class field theory, Cl{�1},n[p∞] is isomorphic to A{�2}(Kn) defined before
Proposition 3.2. By (5) and Proposition 3.2, en = ordp(
Y ′Tn(Kn)). By Proposition 4.4, we

have Y ′Tn(Kn) = Y ′T∞(K∞)/ωn. Then, we have the Proposition by Lemma 7.6. �
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REMARK 7.9. The reason why we consider Y ′T∞(K∞) instead of YT∞(K∞) is as fol-

lows: We have rankZpEn,{�1} = 2pn. Since rankZpUn,�2 = 2pn, we can expect that

Un,�2/Un,�2 ∩ En,{�1} is finite. (See the examples of the next subsection.)

7.3. Example Let p = 3. Let K = Q( 3
√
a) with (3) = p1p2. This occurs if and

only if b2 ≡ c2 mod 9 where b and c are square free integers which are relatively prime to

each other satisfying a = bc2. Thus, a = 10, 17, 19, 26, 28 . . . , for example. We have the
following:

PROPOSITION 7.10. If p = 3, then λ(Y ′T∞(K∞)) ≥ 1.

PROOF. By Proposition 3.2, Y ′T∞(K∞) contains lim←−Un,�2/Un,�2 ∩ En,{�1}. We see that

lim←−Un,�2 contains lim←−µ3n since K�2 = Q3(ζ3). But En,{�1} does not contain p-th roots of

unity and hence we see that lim←−Un,�2/Un,�2 ∩ En,{�1} contains lim←−µ3n . �

Thus if it happens that e0 = 1, then λ(Y ′T∞(K∞)) = 1 and µ(Y ′T∞(K∞)) = 0.

Let us see some examples. Let a = 10. Then A0 = 0 and U0,�2/U0,�2 ∩ E0,{�1} ∼=
Z/3 ⊕ Z/3. Thus, λ ≥ 2 or µ > 0 in this case. We see that 
(U0,�2/U0,�2 ∩ E0,{�1}) ≥ 9
for a = 17, 19, 26, 28, 44, 45. (For the computation, we used Kash[Kash] and Pari[Pari].)
Therefore we have to compute for n ≥ 1 to determine whether µ(Y ′T∞(K∞)) = 0 or not.

8. An application to the vanishing of Iwasawa invariants

In this section, we give an application to the original Iwasawa invariants.
Let K be a number field of finite degree. Let λp(K), µp(K) and νp(K) be the classical

Iwasawa invariants ofK . That is, for all sufficiently large n, we have


Cl(Kn)[p∞] = pλp(K)n+µp(K)pn+νp(K)

where Cl(Kn)[p∞] is the p-Sylow subgroup of the ideal class group of Kn, the n-th layer of
K∞/K .

The following is a generalization of a criterion of Fukuda-Komatsu ([FuKo]).

THEOREM 8.1. Let K be a number field. Assume that there are exactly two primes p1

and p2 of K above p such that K�1 = Qp and that they are totally ramified in K∞. Then,

λp(K) = µp(K) = νp(K) = 0 if and only if A(K) = 0 and UK,T ′′/(EK ∩ UK,T ′′) = 0.
Here, T ′′ = {p1}.

To prove this, we need the following:

LEMMA 8.2. A(K∞) ∼= YT ′′∞(K∞) where T ′′∞ = {p1} ⊂ P(K∞).
PROOF. By (4) and Proposition 3.1, the kernel of

YT ′′∞(K∞)→ A(K∞)
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is isomorphic to

lim←−UKn,T ′′n /EKn ∩ UKn,T ′′n .
Since K�1 = Qp,

lim←−UKn,T ′′n /EKn ∩ UKn,T ′′n
is a quotient of

lim←−UQn,πn/EQn ∩ UQn,πn

where πn is the unique prime of Qn above p. Since A(Q∞) = 0 as is well known, we have

lim←−UQn,πn/EQn ∩ UQn,πn
∼= X(Q∞)

by (4) and Proposition 3.1 forK = Q∞ and T = P(Q∞) = {π∞}. It is also well known that
X(Q∞) = 0. �

PROOF OF THEOREM 8.1. We note that λp(K) = µp(K) = νp(K) = 0 is equivalent
to A(K∞) = 0. By the above Lemma and Nakayama’s lemma, this is equivalent to

YT ′′∞(K∞)/ω0 = 0 .

By Proposition 4.2,

YT ′′∞(K∞)/ω0 ∼= YT ′′(K) .
Thus, again by (4) and Proposition 3.1, we get our conclusion. �

EXAMPLE 8.3. Let

K = Q( 3
√
a)

with a ∈ Z, a > 0 and cube free. Let ε be the fundamental unit of K . Let p be an odd prime
satisfying the condition of Theorem 8.1. Then, we see that

UK,T ′′/(EK ∩ UK,T ′′) = 0⇔ εp−1 
≡ 1 mod (p2
1)

and the validity of the latter condition is easily computable. An odd prime p satisfies the

condition of Theorem 8.1 if and only if either (A) p = 3 when b2 ≡ c2 mod 9 where b

and c are square free integers which are relatively prime to each other satisfying a = bc2

or (B) p � 3a and p ≡ 2 mod 3. In the case (B), we calculated εp−1 mod (p2
1) for a =

2, 3, 5, 6, 10 and for 3 < p < 1000 by using Pari-GP[Pari] and Kash[Kash]. Then, we found
that A(K∞) 
= 0 only when a = 3 and p = 23.
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