On Average Curvatures of Convex Curves in Surfaces

Jin LU* and Minoru TANAKA**

Fudan University and Tokai University
(Communicated by R. Miyaoka)

Abstract

In this paper, an upper bound of the average curvature of a convex curve in a simply connected surface is obtained.

1. Introduction

In [1] M. Bridgeman defined the average curvature of a curve, and gave an upper bound of the average curvature of a convex curve embedded in the hyperbolic plane H^{2}. He also proved that the average curvature of a bi-infinite convex curve in H^{2} is bounded above by one. It is natural to ask such a question: What is the upper bound of the average curvature of a convex curve embedded in a surface? In this paper we establish this upper bound.

In this paper a surface means a 2-dimensional complete Riemannian manifold. A convex curve in a surface is defined as following:

Definition 1. Let M be a surface. A Jordan arc (i.e., a curve diffeomorphic to a closed interval) α in M is called convex curve if any minimal geodesic joining two points of α intersects α only at those two points and if for any point p on α, there is no cut point of p on α.

The average curvature of a curve α in the surface M is defined as following:
DEFINITION 2 ([1]). If α is a finite length curve in the surface M, the average curvature $K(\alpha)$ of α is defined by

$$
K(\alpha)=\frac{\int_{\alpha} k_{g} d s}{\int_{\alpha}\left|\alpha^{\prime}\right| d s}=\frac{\text { Total curvature along } \alpha}{\text { Length of } \alpha},
$$

where k_{g} is the geodesic curvature of α, and s is the arc-length along α.

[^0]If α is an infinite length curve in the surface M, then the average curvature $K(\alpha)$ is defined by

$$
K(\alpha)=\underset{L \rightarrow \infty}{\lim \sup }\{K(\bar{\alpha}) \mid \bar{\alpha} \text { is a subarc of } \alpha \text { of length } L\}
$$

Let α be a finite length curve in the surface M, define

$$
\delta(\alpha):=\sup \{d(p, q) \mid p, q \in \alpha\}
$$

where $d(p, q)$ denotes the distance between p and q in M.
Denote by $m_{k}(t)$ the solution of the following differential equation

$$
m^{\prime \prime}(t)+k m(t)=0, \quad m(0)=0, \quad m^{\prime}(0)=1,
$$

where k is a constant.
The main result of this paper is:
THEOREM 1. Let M be a simply connected surface whose Gaussian curvature G satisfies

$$
k_{1} \leq G \leq k_{2}, \quad \text { and } \quad k_{1} \leq 0
$$

where k_{1} and k_{2} are constants. Set

$$
d= \begin{cases}+\infty, & \text { if } k_{2} \leq 0 \\ \frac{\pi}{\sqrt{k_{2}}}, & \text { if } k_{2}>0\end{cases}
$$

If α is a convex curve of length L in M, and satisfies $\delta(\alpha)<d$, then the average curvature $K(\alpha)$ of α satisfies

$$
K(\alpha) \leq \frac{2 \pi}{L}-\frac{k_{1}}{2 L} f\left(2 L \frac{m_{k_{1}}(\delta(\alpha))}{m_{k_{2}}(\delta(\alpha))}\right),
$$

where $f(t):=2 \pi \int_{0}^{m_{k_{1}}^{-1}\left(\frac{t}{2 \pi}\right)} m_{k_{1}}(\rho) d \rho$, which is a monotonically increasing function on $(0,+\infty)$.

Some interesting corollaries of this theorem will be discussed in Section 3 of this paper.

2. Notations and lemmas

Let M be a simply connected surface whose Gaussian curvature G satisfies $k_{1} \leq G \leq k_{2}$, $k_{1} \leq 0$, and $\alpha:[0, L] \rightarrow M$ be a convex curve parameterized by arclength in M, whose endpoints are x, y, and $x=\alpha(0)$. Join x and y by a unit-speed geodesic γ such that $\gamma(0)=x$. Let $T_{x} M$ be the tangent space of M at $x,(\rho, \theta)$ be the polar coordinate of $T_{x} M$, and the metric in $T_{x} M$ be taken as $d s^{2}=d \rho^{2}+\rho^{2} d \theta^{2}$.

Denote by Ω the closed domain bounded by α and γ such that the minimal geodesic joining x to the midpoint $\alpha\left(\frac{1}{2} L\right)$ of α lies in Ω. By the convexity of α, such a Ω can be defined.

Lemma 1. For any distinct points p, q on the convex curve α, the minimal geodesic joining p and q lies in Ω.

Proof. For each $s \in[0, L]$, let D_{s} be the set of all parameter values $t \in[0, L]$ such that the minimal geodesic joining $\alpha(t)$ to $\alpha(s)$ lies in Ω. It is easy to see that D_{s} is closed for each s because Ω is closed. Since $\alpha(s)$ has no cut point on α, D_{s} is relatively open in $[0, L]$. Thus D_{s} is empty or $[0, L]$ for each $s \in[0, L]$. Since $\frac{1}{2} L \in D_{0}, D_{0}=[0, L]$. This implies $0 \in D_{s}$. Therefore $D_{s}=[0, L]$ for each $s \in[0, L]$. Hence for any distinct points p, q on the convex curve α, the minimal geodesic joining p and q lies in Ω.

Denote by θ_{0} the interior angle formed by α and γ at x, by θ_{1} the interior angle formed by α and γ at y. By the convexity of curve α, we can express α and Ω in the following way: When we take the orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{x} M$ to be suitable,

$$
\alpha: \quad \exp _{x}\left(\rho(\theta) \cos \theta e_{1}+\rho(\theta) \sin \theta e_{2}\right), \quad 0 \leq \theta \leq \theta_{0},
$$

and

$$
\Omega=\left\{\exp _{x}\left(\rho \cos \theta e_{1}+\rho \sin \theta e_{2}\right) \mid 0 \leq \rho \leq \rho(\theta), \quad 0 \leq \theta \leq \theta_{0}\right\}
$$

where $\rho(\theta), 0 \leq \theta \leq \theta_{0}$, is a function of θ satisfying $\rho\left(\theta_{0}\right)=0$. It is easy to see that $\rho(\theta) \leq \delta(\alpha) \leq L, 0 \leq \theta \leq \theta_{0}$.

Lemma 2. The two angles θ_{0}, θ_{1} do not exceed π.
Proof. Assume that at least one of two angles θ_{0}, θ_{1} is greater than π. Since there are no cut points of x and y on α and M is complete, we can extend the geodesic γ to infinity at both two directions. Denote the extended geodesic by $\bar{\gamma}$. If, for example, the angle θ_{0} at x is greater than π, since the M is a simply connected complete manifold of dimension two, there exist two points P_{1} and P_{2} on α such that they lies in the different sides of $\bar{\gamma}$. Since α is a curve passing though P_{1} and P_{2}, it must intersects $\bar{\gamma}$ at least a point P_{3} which is different from x and y. Let β be the part connecting three points x, y and P_{3} of geodesic $\bar{\gamma}$, and it can be parameterized by arclength. Obviously, β lies in Ω since the angle θ_{0} at x is greater than π. Notice that Lemma 1 implies that there are no cut points of x and y on Ω, hence β is a minimal geodesic, and it intersects α at least three distinct points x, y and P_{3}, this contradicts that the curve α is convex.

We denote by $\operatorname{Area}(\cdot)$ the area of a domain, and by $\operatorname{Length}(\cdot)$ the length of a curve.
Let $M\left(k_{1}\right)$ be a simply connected surface of constant curvature k_{1}. Take a fixed point O in $M\left(k_{1}\right)$, and an orthonormal basis $\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ of $T_{O} M\left(k_{1}\right)$. Let α_{1} be the curve in $M\left(k_{1}\right)$ such that

$$
\alpha_{1}: \quad \exp _{O}\left(\rho(\theta) \cos \theta \bar{e}_{1}+\rho(\theta) \sin \theta \bar{e}_{2}\right), \quad 0 \leq \theta \leq \theta_{0},
$$

where θ_{0} and $\rho(\theta)$ was defined above. We call α_{1} the curve associated with α. Furthermore, set

$$
\Omega_{1}=\left\{\exp _{O}\left(\rho \cos \theta \bar{e}_{1}+\rho \sin \theta \bar{e}_{2}\right) \mid 0 \leq \rho \leq \rho(\theta), 0 \leq \theta \leq \theta_{0}\right\}
$$

and

$$
\gamma_{1}=\exp _{O}\left(\rho \bar{e}_{1}\right), \quad 0 \leq \rho \leq \rho(0)
$$

so γ_{1} is the unit-speed geodesic connecting the endpoints of α_{1}, and Ω_{1} is the closed domain bounded by α_{1} and γ_{1}.

Lemma 3. $\operatorname{Area}(\Omega) \leq \operatorname{Area}\left(\Omega_{1}\right)$.
Proof. Denote by $\frac{\partial}{\partial \theta}$ the vector field in $T_{x} M$ which orthogonal to radical direction (we use this notation all over this paper). Since the Gaussian curvature G of M satisfies $G \geq k_{1}$, by the Rauch comparison theorem we have

$$
\left|d \exp _{x} \frac{\partial}{\partial \theta}(\rho, \theta)\right| \leq m_{k_{1}}(\rho)
$$

Since

$$
\operatorname{Area}(\Omega)=\int_{0}^{\theta_{0}} d \theta \int_{0}^{\rho(\theta)}\left|d \exp _{x} \frac{\partial}{\partial \theta}(\rho, \theta)\right| d \rho
$$

and

$$
\operatorname{Area}\left(\Omega_{1}\right)=\int_{0}^{\theta_{0}} d \theta \int_{0}^{\rho(\theta)} m_{k_{1}}(\rho) d \rho
$$

we get the conclusion.
Lemma 4.

$$
L \geq \frac{m_{k_{2}}(\delta(\alpha))}{m_{k_{1}}(\delta(\alpha))} L\left(\alpha_{1}\right)
$$

where $L\left(\alpha_{1}\right)$ denotes the length of curve α_{1} in $M\left(k_{1}\right)$ associated with α.
Proof. Let $W(t)=m_{k_{2}}^{\prime}(t) m_{k_{1}}(t)-m_{k_{1}}^{\prime}(t) m_{k_{2}}(t)$, then $W(0)=0$. From

$$
\left(\frac{m_{k_{2}}}{m_{k_{1}}}\right)^{\prime}(t)=\frac{W(t)}{m_{k_{1}}^{2}(t)},
$$

and

$$
\begin{aligned}
W^{\prime}(t) & =m_{k_{2}}^{\prime \prime}(t) m_{k_{1}}(t)-m_{k_{1}}^{\prime \prime}(t) m_{k_{2}}(t) \\
& =\left(k_{1}-k_{2}\right) m_{k_{1}}(t) m_{k_{2}}(t)<0, \quad 0<t<d,
\end{aligned}
$$

we can see that $W(t)<0(0<t<d)$. Therefore, the function $\frac{m_{k_{2}}(t)}{m_{k_{1}}(t)}$ is monotonically decreasing when $0 \leq t<d$. Obviously,

$$
\lim _{t \rightarrow 0} \frac{m_{k_{2}}(t)}{m_{k_{1}}(t)}=1
$$

By the Rauch comparison theorem, we have $\left|d \exp _{x} \frac{\partial}{\partial \theta}(\rho, \theta)\right| \geq m_{k_{2}}(\rho)$. Hence from $\rho(\theta) \leq \delta(\alpha)<d\left(0 \leq \theta \leq \theta_{0}\right)$ we have

$$
\begin{aligned}
L & =\int_{0}^{\theta_{0}} \sqrt{\rho^{\prime}(\theta)^{2}+\left|d \exp _{x} \frac{\partial}{\partial \theta}(\rho, \theta)\right|^{2}} d \theta \\
& \geq \int_{0}^{\theta_{0}} \sqrt{\rho^{\prime 2}(\theta)+m_{k_{2}}^{2}(\rho(\theta))} d \theta \\
& =\int_{0}^{\theta_{0}} \sqrt{\rho^{\prime 2}(\theta)+\frac{m_{k_{2}}^{2}(\rho(\theta))}{m_{k_{1}}^{2}(\rho(\theta))} m_{k_{1}}^{2}(\rho(\theta))} d \theta \\
& \geq \frac{m_{k_{2}}(\delta(\alpha))}{m_{k_{1}}(\delta(\alpha))} \int_{0}^{\theta_{0}} \sqrt{\rho^{\prime 2}(\theta)+m_{k_{1}}^{2}(\rho(\theta))} d \theta \\
& =\frac{m_{k_{2}}(\delta(\alpha))}{m_{k_{1}}(\delta(\alpha))} L\left(\alpha_{1}\right) .
\end{aligned}
$$

LEMMA 5. Let $M(k)$ be a simply connected surface of constant curvature $k(k \leq 0)$, and C be a circle with circumference L in $M(k)$. Then the area $A(L)$ of the domain bounded by C is

$$
A(L)=f(L)
$$

where $f(t):=2 \pi \int_{0}^{m_{k}^{-1}\left(\frac{t}{2 \pi}\right)} m_{k}(\rho) d \rho$, which is a monotonically increasing function on $(0, \infty)$.
Proof. Assume that the radius of C is r. It is well known that

$$
L=2 \pi m_{k}(r) .
$$

Notice that $m_{k}(t)$ is a strictly monotonic function, we have $r=m_{k}^{-1}\left(\frac{L}{2 \pi}\right)$. Hence, the area

$$
A(L)=2 \pi \int_{0}^{r} m_{k}(\rho) d \rho=2 \pi \int_{0}^{m_{k}^{-1}\left(\frac{L}{2 \pi}\right)} m_{k}(\rho) d \rho
$$

LEMMA 6. $L K(\alpha) \leq 2 \pi-k_{1} \operatorname{Area}(\Omega)$.
Proof. By the Gauss-Bonnet theorem we have

$$
\int_{\Omega} G d V+\int_{\alpha \cup \gamma} k_{g} d s+\pi-\theta_{0}+\pi-\theta_{1}=2 \pi \chi(\Omega),
$$

where k_{g} denotes the geodesic curvature.
Since γ is a geodesic, $k_{g}=0$ on γ. Obviously $\chi(\Omega)=1$, hence

$$
\int_{\Omega} G d V+\int_{\alpha} k_{g} d s=\theta_{0}+\theta_{1}
$$

By the assumption $G \geq k_{1}$ we have

$$
k_{1} \operatorname{Area}(\Omega) \leq \theta_{0}+\theta_{1}-\int_{\alpha} k_{g} d s
$$

Since $\int_{\alpha} k_{g} d s=L K(\alpha)$, from Lemma 2 we have

$$
L K(\alpha) \leq 2 \pi-k_{1} \operatorname{Area}(\Omega) .
$$

LEMMA 7. $2 \operatorname{Area}\left(\Omega_{1}\right) \leq f\left(2 L\left(\alpha_{1}\right)\right)$, where $f(t)$ is the function defined in Lemma 5 , and $L\left(\alpha_{1}\right)$ denotes the length of the curve α_{1} in $M\left(k_{1}\right)$ associated with α.

Proof. In $M\left(k_{1}\right)$, take the curve

$$
\bar{\alpha}_{1}: \quad \exp _{O}\left(\rho(|\theta|) \cos \theta \bar{e}_{1}+\rho(|\theta|) \sin \theta \bar{e}_{2}\right), \quad-\theta_{0} \leq \theta \leq 0,
$$

and set

$$
\bar{\Omega}_{1}=\left\{\exp _{O}\left(\rho \cos \theta \bar{e}_{1}+\rho \sin \theta \bar{e}_{2}\right) \mid 0 \leq \rho \leq \rho(|\theta|),-\theta_{0} \leq \theta \leq 0\right\}
$$

Graphically, curve $\bar{\alpha}_{1}$ and domain $\bar{\Omega}_{1}$ are the reflection of α_{1} and Ω_{1} about γ_{1} in $M\left(k_{1}\right)$ respectively.

Notice that $\left|d \exp _{O} \frac{\partial}{\partial \theta}(\rho, \theta)\right|=m_{k_{1}}(\rho)$ in $M\left(k_{1}\right)$, where $\frac{\partial}{\partial \theta}$ also denotes the vector field in $T_{O} M\left(k_{1}\right)$ which orthogonal to radical direction, we have

$$
\operatorname{Area}\left(\Omega_{1}\right)=\operatorname{Area}\left(\bar{\Omega}_{1}\right)=\int_{0}^{\theta_{0}} d \theta \int_{0}^{\rho(\theta)} m_{k_{1}}(\rho) d \rho
$$

and

$$
\text { Length }\left(\alpha_{1}\right)=\operatorname{Length}\left(\bar{\alpha}_{1}\right)=\int_{0}^{\theta_{0}} \sqrt{\rho^{\prime 2}(\theta)+m_{k_{1}}^{2}(\rho(\theta))} d \theta .
$$

From isoperimetric inequality, $\operatorname{Area}\left(\Omega_{1} \cup \bar{\Omega}_{1}\right)$ is less than or equal to the area of the disk of circumference Length $\left(\alpha_{1}\right)+$ Length $\left(\bar{\alpha}_{1}\right)=2 L\left(\alpha_{1}\right)$, from Lemma 5 we have

$$
2 \operatorname{Area}\left(\Omega_{1}\right)=\operatorname{Area}\left(\Omega_{1} \cup \bar{\Omega}_{1}\right) \leq f\left(2 L\left(\alpha_{1}\right)\right)
$$

3. Proof of the Theorem and discussions

Proof of Theorem 1. From Lemma 6 we have

$$
K(\alpha) \leq \frac{2 \pi}{L}-\frac{k_{1}}{L} \operatorname{Area}(\Omega)
$$

and from Lemma 4 we have

$$
L\left(\alpha_{1}\right) \leq L \frac{m_{k_{1}}(\delta(\alpha))}{m_{k_{2}}(\delta(\alpha))}
$$

Since $k_{1} \leq 0$ and $f(t)$ is a monotonically increasing function, from Lemma 7 we have

$$
K(\alpha) \leq \frac{2 \pi}{L}-\frac{k_{1}}{2 L} f\left(2 L\left(\alpha_{1}\right)\right) \leq \frac{2 \pi}{L}-\frac{k_{1}}{2 L} f\left(2 L \frac{m_{k_{1}}(\delta(\alpha))}{m_{k_{2}}(\delta(\alpha))}\right) .
$$

REMARK. It is well known that the solution of differential equation

$$
m^{\prime \prime}(t)+k m(t)=0, \quad m(0)=0, \quad m^{\prime}(0)=1
$$

is:

$$
m_{k}(t)= \begin{cases}\frac{1}{\sqrt{-k}} \sinh (\sqrt{-k}), & \text { if } k<0 \\ t, & \text { if } k=0 \\ \frac{1}{\sqrt{k}} \sin (\sqrt{k} t), & \text { if } k>0\end{cases}
$$

Hence the estimate of upper bound of the average curvature in Theorem 1 can be expressed explicitly according to the different cases of k_{1}.

When M is the hyperbolic plane H^{2}, taking $k_{1}=k_{2}=-1$ in Theorem 1 , we have

$$
f(t)=2 \pi\left(\sqrt{1+\left(\frac{t}{2 \pi}\right)^{2}}-1\right)
$$

Hence we deduce that
Corollary 1. If α is a convex curve of length L in the hyperbolic plane H^{2}, then

$$
K(\alpha) \leq \sqrt{1+\left(\frac{\pi}{L}\right)^{2}}+\frac{\pi}{L} .
$$

Furthermore, if α is a convex curve of infinite length, then $K(\alpha) \leq 1$.
This corollary is Theorem 2 and Corollary 1 in [1].
When M is the Euclidean plane R^{2}, taking $k_{1}=k_{2}=0$ in Theorem 1 we have
COROLLARY 2. The curvature k of convex curve α in the Euclidean plane R^{2} satisfies

$$
\int_{\alpha} k d s \leq 2 \pi
$$

Hence the average curvature of a convex curve of infinite length in R^{2} that is defined just replacing k_{g} by k in Definition 2 is bounded above by zero.

If $M(k)$ is a surface of positive constant Gaussian curvature k, for any convex curve α in $M(k)$, it is easy to see that $\delta(\alpha)<\pi / \sqrt{k}$ naturally holds, taking $k_{1}=0$ in Theorem 1 we have

Corollary 3. Let $M(k)$ be a surface of constant Gaussian curvature $k(k>0)$. If α is a convex curve in $M(k)$, then the geodesic curvature of α satisfies

$$
\int_{\alpha} k_{g} d s \leq 2 \pi
$$

References

[1] M. Bridgeman, Average curvature of convex curves in H^{2}, Proc. Amer. Math. Soc. 126 (1998), 221-224.
[2] I. Chavel, Riemannian Geometry: A modern introduction, Cambridge University Press (1993).
[3] W. Klingenberg, A course in differential geometry, Springer (1978).
[4] W. Klingenberg, D. Gromoll and W. Meyer, Riemannsche geometrie in Grossen, Springer (1968).
[5] P. Petersen, Riemannian geometry, Springer (1998).
[6] K. Shiohama, The role of total curvature on complete noncompact Riemannian 2-manifolds, Illinois J. of Math. 28 (1984), 597-620.
[7] M. Tanaka, On the cut loci of a von Mangoldt's surface of revolution, J. Math. Soc. Japan 44 (1992), 631641.

Present Address:
Jin Lu
Department of Mathematics, Fudan University,
Shanghai 200433, China.
e-mail: jinluk@online.sh.cn
Minoru Tanaka
Department of Mathematics, School of Science,
Tokai University, Hiratsuka 259-1292 Japan.
e-mail: m-tanaka@sm.u-tokai.ac.jp

[^0]: Received April 25, 2002
 2000 Mathematics Subject Classification. Primary 53C45, 58A05; Secondary 52A10, 52A40

 * Supported in part by National Natural Science Foundation of China (No. 10271029).
 ** Supported in part by a Grant-in-Aid for Scientific Research (No. 11640094) from Japan Society for the Promotion of Science.

