Токуо Ј. Матн. Vol. 26, No. 1, 2003

On Average Curvatures of Convex Curves in Surfaces

Jin LU* and Minoru TANAKA**

Fudan University and Tokai University

(Communicated by R. Miyaoka)

Abstract. In this paper, an upper bound of the average curvature of a convex curve in a simply connected surface is obtained.

1. Introduction

In [1] M. Bridgeman defined the average curvature of a curve, and gave an upper bound of the average curvature of a convex curve embedded in the hyperbolic plane H^2 . He also proved that the average curvature of a bi-infinite convex curve in H^2 is bounded above by one. It is natural to ask such a question: What is the upper bound of the average curvature of a convex curve embedded in a surface? In this paper we establish this upper bound.

In this paper a surface means a 2-dimensional complete Riemannian manifold. A convex *curve* in a surface is defined as following:

DEFINITION 1. Let M be a surface. A Jordan arc (i.e., a curve diffeomorphic to a closed interval) α in M is called convex curve if any minimal geodesic joining two points of α intersects α only at those two points and if for any point p on α , there is no cut point of p on α .

The *average curvature* of a curve α in the surface M is defined as following:

DEFINITION 2 ([1]). If α is a finite length curve in the surface M, the average curvature $K(\alpha)$ of α is defined by

$$K(\alpha) = \frac{\int_{\alpha} k_g ds}{\int_{\alpha} |\alpha'| ds} = \frac{\text{Total curvature along } \alpha}{\text{Length of } \alpha},$$

where k_g is the geodesic curvature of α , and s is the arc-length along α .

Received April 25, 2002

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C45, 58A05; Secondary 52A10, 52A40

^{*} Supported in part by National Natural Science Foundation of China (No. 10271029). ** Supported in part by a Grant-in-Aid for Scientific Research (No. 11640094) from Japan Society for the Promotion of Science.

JIN LU AND MINORU TANAKA

If α is an infinite length curve in the surface *M*, then the average curvature $K(\alpha)$ is defined by

 $K(\alpha) = \limsup_{L \to \infty} \{ K(\bar{\alpha}) \mid \bar{\alpha} \text{ is a subarc of } \alpha \text{ of length } L \}.$

Let α be a finite length curve in the surface *M*, define

 $\delta(\alpha) := \sup\{d(p,q) \mid p,q \in \alpha\},\$

where d(p, q) denotes the distance between p and q in M.

Denote by $m_k(t)$ the solution of the following differential equation

m''(t) + km(t) = 0, m(0) = 0, m'(0) = 1,

where k is a constant.

The main result of this paper is:

THEOREM 1. Let M be a simply connected surface whose Gaussian curvature G satisfies

$$k_1 \leq G \leq k_2$$
, and $k_1 \leq 0$,

where k_1 and k_2 are constants. Set

$$d = \begin{cases} +\infty, & \text{if } k_2 \le 0, \\ \frac{\pi}{\sqrt{k_2}}, & \text{if } k_2 > 0. \end{cases}$$

If α is a convex curve of length L in M, and satisfies $\delta(\alpha) < d$, then the average curvature $K(\alpha)$ of α satisfies

$$K(\alpha) \leq \frac{2\pi}{L} - \frac{k_1}{2L} f\left(2L \frac{m_{k_1}(\delta(\alpha))}{m_{k_2}(\delta(\alpha))}\right),$$

where $f(t) := 2\pi \int_0^{m_{k_1}^{-1}(\frac{t}{2\pi})} m_{k_1}(\rho) d\rho$, which is a monotonically increasing function on $(0, +\infty)$.

Some interesting corollaries of this theorem will be discussed in Section 3 of this paper.

2. Notations and lemmas

Let *M* be a simply connected surface whose Gaussian curvature *G* satisfies $k_1 \le G \le k_2$, $k_1 \le 0$, and $\alpha : [0, L] \to M$ be a convex curve parameterized by arclength in *M*, whose endpoints are *x*, *y*, and $x = \alpha(0)$. Join *x* and *y* by a unit-speed geodesic γ such that $\gamma(0) = x$. Let $T_x M$ be the tangent space of *M* at *x*, (ρ, θ) be the polar coordinate of $T_x M$, and the metric in $T_x M$ be taken as $ds^2 = d\rho^2 + \rho^2 d\theta^2$.

Denote by Ω the closed domain bounded by α and γ such that the minimal geodesic joining x to the midpoint $\alpha(\frac{1}{2}L)$ of α lies in Ω . By the convexity of α , such a Ω can be defined.

LEMMA 1. For any distinct points p, q on the convex curve α , the minimal geodesic joining p and q lies in Ω .

PROOF. For each $s \in [0, L]$, let D_s be the set of all parameter values $t \in [0, L]$ such that the minimal geodesic joining $\alpha(t)$ to $\alpha(s)$ lies in Ω . It is easy to see that D_s is closed for each *s* because Ω is closed. Since $\alpha(s)$ has no cut point on α , D_s is relatively open in [0, L]. Thus D_s is empty or [0, L] for each $s \in [0, L]$. Since $\frac{1}{2}L \in D_0$, $D_0 = [0, L]$. This implies $0 \in D_s$. Therefore $D_s = [0, L]$ for each $s \in [0, L]$. Hence for any distinct points p, q on the convex curve α , the minimal geodesic joining p and q lies in Ω .

Denote by θ_0 the interior angle formed by α and γ at x, by θ_1 the interior angle formed by α and γ at y. By the convexity of curve α , we can express α and Ω in the following way: When we take the orthonormal basis $\{e_1, e_2\}$ of $T_x M$ to be suitable,

$$\alpha: \exp_x(\rho(\theta)\cos\theta e_1 + \rho(\theta)\sin\theta e_2), \quad 0 \le \theta \le \theta_0,$$

and

$$\Omega = \{ \exp_x(\rho \cos \theta e_1 + \rho \sin \theta e_2) \mid 0 \le \rho \le \rho(\theta), \quad 0 \le \theta \le \theta_0 \},$$

where $\rho(\theta)$, $0 \le \theta \le \theta_0$, is a function of θ satisfying $\rho(\theta_0) = 0$. It is easy to see that $\rho(\theta) \le \delta(\alpha) \le L$, $0 \le \theta \le \theta_0$.

LEMMA 2. The two angles θ_0 , θ_1 do not exceed π .

PROOF. Assume that at least one of two angles θ_0 , θ_1 is greater than π . Since there are no cut points of x and y on α and M is complete, we can extend the geodesic γ to infinity at both two directions. Denote the extended geodesic by $\overline{\gamma}$. If, for example, the angle θ_0 at x is greater than π , since the M is a simply connected complete manifold of dimension two, there exist two points P_1 and P_2 on α such that they lies in the different sides of $\overline{\gamma}$. Since α is a curve passing though P_1 and P_2 , it must intersects $\overline{\gamma}$ at least a point P_3 which is different from x and y. Let β be the part connecting three points x, y and P_3 of geodesic $\overline{\gamma}$, and it can be parameterized by arclength. Obviously, β lies in Ω since the angle θ_0 at x is greater than π . Notice that Lemma 1 implies that there are no cut points of x and y on Ω , hence β is a minimal geodesic, and it intersects α at least three distinct points x, y and P_3 , this contradicts that the curve α is convex.

We denote by $Area(\cdot)$ the area of a domain, and by $Length(\cdot)$ the length of a curve.

Let $M(k_1)$ be a simply connected surface of constant curvature k_1 . Take a fixed point O in $M(k_1)$, and an orthonormal basis $\{\bar{e}_1, \bar{e}_2\}$ of $T_O M(k_1)$. Let α_1 be the curve in $M(k_1)$ such that

 $\alpha_1: \exp_{\Omega}(\rho(\theta)\cos\theta\bar{e}_1 + \rho(\theta)\sin\theta\bar{e}_2), \quad 0 \le \theta \le \theta_0,$

where θ_0 and $\rho(\theta)$ was defined above. We call α_1 the curve associated with α . Furthermore, set

 $\Omega_1 = \{ \exp_O(\rho \cos \theta \bar{e}_1 + \rho \sin \theta \bar{e}_2) \mid 0 \le \rho \le \rho(\theta), \ 0 \le \theta \le \theta_0 \}$

JIN LU AND MINORU TANAKA

and

110

$$\gamma_1 = \exp_O(\rho \bar{e}_1), \quad 0 \le \rho \le \rho(0)$$

so γ_1 is the unit-speed geodesic connecting the endpoints of α_1 , and Ω_1 is the closed domain bounded by α_1 and γ_1 .

LEMMA 3. $Area(\Omega) \leq Area(\Omega_1)$.

PROOF. Denote by $\frac{\partial}{\partial \theta}$ the vector field in $T_x M$ which orthogonal to radical direction (we use this notation all over this paper). Since the Gaussian curvature G of M satisfies $G \ge k_1$, by the Rauch comparison theorem we have

$$\left| d \exp_x \frac{\partial}{\partial \theta}(\rho, \theta) \right| \leq m_{k_1}(\rho) \, .$$

Since

Area(\Omega) =
$$\int_0^{\theta_0} d\theta \int_0^{\rho(\theta)} \left| d \exp_x \frac{\partial}{\partial \theta}(\rho, \theta) \right| d\rho$$
,

and

Area
$$(\Omega_1) = \int_0^{\theta_0} d\theta \int_0^{\rho(\theta)} m_{k_1}(\rho) d\rho$$
,

we get the conclusion.

LEMMA 4.

$$L \geq \frac{m_{k_2}(\delta(\alpha))}{m_{k_1}(\delta(\alpha))} L(\alpha_1) \,,$$

where $L(\alpha_1)$ denotes the length of curve α_1 in $M(k_1)$ associated with α .

PROOF. Let $W(t) = m'_{k_2}(t)m_{k_1}(t) - m'_{k_1}(t)m_{k_2}(t)$, then W(0) = 0. From

$$\left(\frac{m_{k_2}}{m_{k_1}}\right)'(t) = \frac{W(t)}{m_{k_1}^2(t)},$$

and

$$W'(t) = m_{k_2}''(t)m_{k_1}(t) - m_{k_1}''(t)m_{k_2}(t)$$

= $(k_1 - k_2)m_{k_1}(t)m_{k_2}(t) < 0, \quad 0 < t < d$,

we can see that W(t) < 0 (0 < t < d). Therefore, the function $\frac{m_{k_2}(t)}{m_{k_1}(t)}$ is monotonically decreasing when $0 \le t < d$. Obviously,

$$\lim_{t \to 0} \frac{m_{k_2}(t)}{m_{k_1}(t)} = 1.$$

AVERAGE CURVATURES

By the Rauch comparison theorem, we have $|d \exp_x \frac{\partial}{\partial \theta}(\rho, \theta)| \ge m_{k_2}(\rho)$. Hence from $\rho(\theta) \le \delta(\alpha) < d \ (0 \le \theta \le \theta_0)$ we have

$$\begin{split} L &= \int_{0}^{\theta_{0}} \sqrt{\rho'(\theta)^{2}} + \left| d \exp_{x} \frac{\partial}{\partial \theta}(\rho, \theta) \right|^{2} d\theta \\ &\geq \int_{0}^{\theta_{0}} \sqrt{\rho'^{2}(\theta) + m_{k_{2}}^{2}(\rho(\theta))} d\theta \\ &= \int_{0}^{\theta_{0}} \sqrt{\rho'^{2}(\theta) + \frac{m_{k_{2}}^{2}(\rho(\theta))}{m_{k_{1}}^{2}(\rho(\theta))}} m_{k_{1}}^{2}(\rho(\theta)) d\theta \\ &\geq \frac{m_{k_{2}}(\delta(\alpha))}{m_{k_{1}}(\delta(\alpha))} \int_{0}^{\theta_{0}} \sqrt{\rho'^{2}(\theta) + m_{k_{1}}^{2}(\rho(\theta))} d\theta \\ &= \frac{m_{k_{2}}(\delta(\alpha))}{m_{k_{1}}(\delta(\alpha))} L(\alpha_{1}) \,. \end{split}$$

LEMMA 5. Let M(k) be a simply connected surface of constant curvature k ($k \le 0$), and C be a circle with circumference L in M(k). Then the area A(L) of the domain bounded by C is

$$A(L) = f(L),$$

where $f(t) := 2\pi \int_0^{m_k^{-1}(\frac{t}{2\pi})} m_k(\rho) d\rho$, which is a monotonically increasing function on $(0, \infty)$.

PROOF. Assume that the radius of C is r. It is well known that

$$L=2\pi m_k(r).$$

Notice that $m_k(t)$ is a strictly monotonic function, we have $r = m_k^{-1} \left(\frac{L}{2\pi}\right)$. Hence, the area

$$A(L) = 2\pi \int_0^r m_k(\rho) d\rho = 2\pi \int_0^{m_k^{-1}(\frac{L}{2\pi})} m_k(\rho) d\rho.$$

LEMMA 6. $LK(\alpha) \leq 2\pi - k_1 Area(\Omega)$.

PROOF. By the Gauss-Bonnet theorem we have

$$\int_{\Omega} GdV + \int_{\alpha \cup \gamma} k_g ds + \pi - \theta_0 + \pi - \theta_1 = 2\pi \chi(\Omega) \,,$$

where k_g denotes the geodesic curvature.

Since γ is a geodesic, $k_g = 0$ on γ . Obviously $\chi(\Omega) = 1$, hence

$$\int_{\Omega} GdV + \int_{\alpha} k_g ds = \theta_0 + \theta_1 \,.$$

By the assumption $G \ge k_1$ we have

$$k_1 Area(\Omega) \le \theta_0 + \theta_1 - \int_{\alpha} k_g ds$$
.

Since $\int_{\alpha} k_g ds = LK(\alpha)$, from Lemma 2 we have

$$LK(\alpha) \leq 2\pi - k_1 Area(\Omega)$$
.

LEMMA 7. $2Area(\Omega_1) \leq f(2L(\alpha_1))$, where f(t) is the function defined in Lemma 5, and $L(\alpha_1)$ denotes the length of the curve α_1 in $M(k_1)$ associated with α .

PROOF. In $M(k_1)$, take the curve

$$\bar{\alpha}_1: \quad \exp_O(\rho(|\theta|)\cos\theta\bar{e}_1 + \rho(|\theta|)\sin\theta\bar{e}_2), \quad -\theta_0 \le \theta \le 0,$$

and set

$$\bar{\Omega}_1 = \{ \exp_O(\rho \cos \theta \bar{e}_1 + \rho \sin \theta \bar{e}_2) \mid 0 \le \rho \le \rho(|\theta|), \ -\theta_0 \le \theta \le 0 \}.$$

Graphically, curve $\bar{\alpha}_1$ and domain $\bar{\Omega}_1$ are the reflection of α_1 and Ω_1 about γ_1 in $M(k_1)$ respectively.

Notice that $|d \exp_O \frac{\partial}{\partial \theta}(\rho, \theta)| = m_{k_1}(\rho)$ in $M(k_1)$, where $\frac{\partial}{\partial \theta}$ also denotes the vector field in $T_O M(k_1)$ which orthogonal to radical direction, we have

$$Area(\Omega_1) = Area(\bar{\Omega}_1) = \int_0^{\theta_0} d\theta \int_0^{\rho(\theta)} m_{k_1}(\rho) d\rho$$

and

$$Length(\alpha_1) = Length(\bar{\alpha}_1) = \int_0^{\theta_0} \sqrt{\rho'^2(\theta) + m_{k_1}^2(\rho(\theta))} \, d\theta$$

From isoperimetric inequality, $Area(\Omega_1 \cup \overline{\Omega}_1)$ is less than or equal to the area of the disk of circumference $Length(\alpha_1) + Length(\overline{\alpha}_1) = 2L(\alpha_1)$, from Lemma 5 we have

$$2Area(\Omega_1) = Area(\Omega_1 \cup \Omega_1) \le f(2L(\alpha_1)).$$

3. Proof of the Theorem and discussions

PROOF OF THEOREM 1. From Lemma 6 we have

$$K(\alpha) \leq \frac{2\pi}{L} - \frac{k_1}{L} Area(\Omega),$$

and from Lemma 4 we have

$$L(\alpha_1) \leq L \frac{m_{k_1}(\delta(\alpha))}{m_{k_2}(\delta(\alpha))}$$

AVERAGE CURVATURES

Since $k_1 \leq 0$ and f(t) is a monotonically increasing function, from Lemma 7 we have

$$K(\alpha) \leq \frac{2\pi}{L} - \frac{k_1}{2L} f(2L(\alpha_1)) \leq \frac{2\pi}{L} - \frac{k_1}{2L} f\left(2L\frac{m_{k_1}(\delta(\alpha))}{m_{k_2}(\delta(\alpha))}\right).$$

REMARK. It is well known that the solution of differential equation

$$m''(t) + km(t) = 0$$
, $m(0) = 0$, $m'(0) = 1$

is:

$$m_k(t) = \begin{cases} \frac{1}{\sqrt{-k}} \sinh(\sqrt{-kt}), & \text{if } k < 0, \\ t, & \text{if } k = 0, \\ \frac{1}{\sqrt{k}} \sin(\sqrt{kt}), & \text{if } k > 0. \end{cases}$$

Hence the estimate of upper bound of the average curvature in Theorem 1 can be expressed explicitly according to the different cases of k_1 .

When *M* is the hyperbolic plane H^2 , taking $k_1 = k_2 = -1$ in Theorem 1, we have

$$f(t) = 2\pi \left(\sqrt{1 + \left(\frac{t}{2\pi}\right)^2} - 1 \right).$$

Hence we deduce that

COROLLARY 1. If α is a convex curve of length L in the hyperbolic plane H^2 , then

$$K(\alpha) \le \sqrt{1 + \left(\frac{\pi}{L}\right)^2} + \frac{\pi}{L}$$

Furthermore, if α is a convex curve of infinite length, then $K(\alpha) \leq 1$.

This corollary is Theorem 2 and Corollary 1 in [1].

When *M* is the Euclidean plane R^2 , taking $k_1 = k_2 = 0$ in Theorem 1 we have

COROLLARY 2. The curvature k of convex curve α in the Euclidean plane \mathbb{R}^2 satisfies

$$\int_{\alpha} k ds \le 2\pi \; .$$

Hence the average curvature of a convex curve of infinite length in R^2 that is defined just replacing k_g by k in Definition 2 is bounded above by zero.

If M(k) is a surface of positive constant Gaussian curvature k, for any convex curve α in M(k), it is easy to see that $\delta(\alpha) < \pi/\sqrt{k}$ naturally holds, taking $k_1 = 0$ in Theorem 1 we have

JIN LU AND MINORU TANAKA

COROLLARY 3. Let M(k) be a surface of constant Gaussian curvature k (k > 0). If α is a convex curve in M(k), then the geodesic curvature of α satisfies

$$\int_{\alpha} k_g ds \le 2\pi \; .$$

References

- [1] M. BRIDGEMAN, Average curvature of convex curves in H², Proc. Amer. Math. Soc. 126 (1998), 221–224.
- [2] I. CHAVEL, Riemannian Geometry: A modern introduction, Cambridge University Press (1993).
- [3] W. KLINGENBERG, A course in differential geometry, Springer (1978).
- [4] W. KLINGENBERG, D. GROMOLL and W. MEYER, Riemannsche geometrie in Grossen, Springer (1968).
- [5] P. PETERSEN, *Riemannian geometry*, Springer (1998).
- [6] K. SHIOHAMA, The role of total curvature on complete noncompact Riemannian 2-manifolds, Illinois J. of Math. 28 (1984), 597–620.
- [7] M. TANAKA, On the cut loci of a von Mangoldt's surface of revolution, J. Math. Soc. Japan 44 (1992), 631– 641.

Present Address: JIN LU DEPARTMENT OF MATHEMATICS, FUDAN UNIVERSITY, SHANGHAI 200433, CHINA. *e-mail*: jinluk@online.sh.cn

MINORU TANAKA DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, TOKAI UNIVERSITY, HIRATSUKA 259–1292 JAPAN. *e-mail*: m-tanaka@sm.u-tokai.ac.jp