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On Average Curvatures of Convex Curves in Surfaces
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Abstract. In this paper, an upper bound of the average curvature of a convex curve in a simply connected
surface is obtained.

1. Introduction

In [1] M. Bridgeman defined the average curvature of a curve, and gave an upper bound

of the average curvature of a convex curve embedded in the hyperbolic plane H 2. He also

proved that the average curvature of a bi-infinite convex curve in H 2 is bounded above by
one. It is natural to ask such a question: What is the upper bound of the average curvature of
a convex curve embedded in a surface? In this paper we establish this upper bound.

In this paper a surface means a 2-dimensional complete Riemannian manifold. A convex
curve in a surface is defined as following:

DEFINITION 1. Let M be a surface. A Jordan arc (i.e., a curve diffeomorphic to a
closed interval) α in M is called convex curve if any minimal geodesic joining two points of
α intersects α only at those two points and if for any point p on α, there is no cut point of p

on α.

The average curvature of a curve α in the surface M is defined as following:

DEFINITION 2 ([1]). If α is a finite length curve in the surface M , the average curvature
K(α) of α is defined by

K(α) =

∫
α

kg ds∫
α

|α′ |ds

= Total curvature along α

Length of α
,

where kg is the geodesic curvature of α, and s is the arc-length along α.
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If α is an infinite length curve in the surface M , then the average curvature K(α) is
defined by

K(α) = lim sup
L→∞

{K(ᾱ) | ᾱ is a subarc of α of length L} .

Let α be a finite length curve in the surface M , define

δ(α) := sup{d(p, q) | p, q ∈ α} ,

where d(p, q) denotes the distance between p and q in M .
Denote by mk(t) the solution of the following differential equation

m′′(t) + km(t) = 0 , m(0) = 0 , m′(0) = 1 ,

where k is a constant.
The main result of this paper is:

THEOREM 1. Let M be a simply connected surface whose Gaussian curvature G sat-
isfies

k1 ≤ G ≤ k2 , and k1 ≤ 0 ,

where k1 and k2 are constants. Set

d =
⎧⎨
⎩

+∞ , if k2 ≤ 0 ,
π√
k2

, if k2 > 0 .

If α is a convex curve of length L in M, and satisfies δ(α) < d, then the average curvature
K(α) of α satisfies

K(α) ≤ 2π

L
− k1

2L
f

(
2L

mk1(δ(α))

mk2(δ(α))

)
,

where f (t) := 2π
∫ m−1

k1
( t

2π )

0 mk1(ρ)dρ, which is a monotonically increasing function on
(0,+∞).

Some interesting corollaries of this theorem will be discussed in Section 3 of this paper.

2. Notations and lemmas

Let M be a simply connected surface whose Gaussian curvature G satisfies k1 ≤ G ≤ k2,
k1 ≤ 0, and α : [0, L] → M be a convex curve parameterized by arclength in M , whose
endpoints are x, y, and x = α(0). Join x and y by a unit-speed geodesic γ such that γ (0) = x.
Let TxM be the tangent space of M at x, (ρ, θ) be the polar coordinate of TxM , and the metric

in TxM be taken as ds2 = dρ2 + ρ2dθ2.
Denote by Ω the closed domain bounded by α and γ such that the minimal geodesic

joining x to the midpoint α( 1
2 L) of α lies in Ω . By the convexity of α, such a Ω can be

defined.
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LEMMA 1. For any distinct points p, q on the convex curve α, the minimal geodesic
joining p and q lies in Ω .

PROOF. For each s ∈ [0, L], let Ds be the set of all parameter values t ∈ [0, L] such
that the minimal geodesic joining α(t) to α(s) lies in Ω . It is easy to see that Ds is closed for
each s because Ω is closed. Since α(s) has no cut point on α, Ds is relatively open in [0, L].
Thus Ds is empty or [0, L] for each s ∈ [0, L]. Since 1

2L ∈ D0, D0 = [0, L]. This implies
0 ∈ Ds . Therefore Ds = [0, L] for each s ∈ [0, L]. Hence for any distinct points p, q on the
convex curve α, the minimal geodesic joining p and q lies in Ω . �

Denote by θ0 the interior angle formed by α and γ at x, by θ1 the interior angle formed
by α and γ at y. By the convexity of curve α, we can express α and Ω in the following way:
When we take the orthonormal basis {e1, e2} of TxM to be suitable,

α : expx(ρ(θ) cos θe1 + ρ(θ) sin θe2) , 0 ≤ θ ≤ θ0 ,

and

Ω = {expx(ρ cos θe1 + ρ sin θe2) | 0 ≤ ρ ≤ ρ(θ) , 0 ≤ θ ≤ θ0} ,

where ρ(θ), 0 ≤ θ ≤ θ0, is a function of θ satisfying ρ(θ0) = 0. It is easy to see that
ρ(θ) ≤ δ(α) ≤ L, 0 ≤ θ ≤ θ0.

LEMMA 2. The two angles θ0, θ1 do not exceed π .

PROOF. Assume that at least one of two angles θ0, θ1 is greater than π . Since there are
no cut points of x and y on α and M is complete, we can extend the geodesic γ to infinity
at both two directions. Denote the extended geodesic by γ̄ . If, for example, the angle θ0 at
x is greater than π , since the M is a simply connected complete manifold of dimension two,
there exist two points P1 and P2 on α such that they lies in the different sides of γ̄ . Since α

is a curve passing though P1 and P2, it must intersects γ̄ at least a point P3 which is different
from x and y. Let β be the part connecting three points x, y and P3 of geodesic γ̄ , and it can
be parameterized by arclength. Obviously, β lies in Ω since the angle θ0 at x is greater than
π . Notice that Lemma 1 implies that there are no cut points of x and y on Ω , hence β is a
minimal geodesic, and it intersects α at least three distinct points x, y and P3, this contradicts
that the curve α is convex. �

We denote by Area( · ) the area of a domain, and by Length( · ) the length of a curve.
Let M(k1) be a simply connected surface of constant curvature k1. Take a fixed point O

in M(k1), and an orthonormal basis {ē1, ē2} of TOM(k1). Let α1 be the curve in M(k1) such
that

α1 : expO(ρ(θ) cos θ ē1 + ρ(θ) sin θ ē2) , 0 ≤ θ ≤ θ0 ,

where θ0 and ρ(θ) was defined above. We call α1 the curve associated with α. Furthermore,
set

Ω1 = {expO(ρ cos θ ē1 + ρ sin θ ē2) | 0 ≤ ρ ≤ ρ(θ), 0 ≤ θ ≤ θ0}
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and

γ1 = expO(ρē1) , 0 ≤ ρ ≤ ρ(0) ,

so γ1 is the unit-speed geodesic connecting the endpoints of α1, and Ω1 is the closed domain
bounded by α1 and γ1.

LEMMA 3. Area(Ω) ≤ Area(Ω1).

PROOF. Denote by ∂
∂θ

the vector field in TxM which orthogonal to radical direction (we
use this notation all over this paper). Since the Gaussian curvature G of M satisfies G ≥ k1,
by the Rauch comparison theorem we have∣∣∣∣d expx

∂

∂θ
(ρ, θ)

∣∣∣∣ ≤ mk1(ρ) .

Since

Area(Ω) =
∫ θ0

0
dθ

∫ ρ(θ)

0

∣∣∣∣d expx

∂

∂θ
(ρ, θ)

∣∣∣∣ dρ ,

and

Area(Ω1) =
∫ θ0

0
dθ

∫ ρ(θ)

0
mk1(ρ)dρ ,

we get the conclusion. �

LEMMA 4.

L ≥ mk2(δ(α))

mk1(δ(α))
L(α1) ,

where L(α1) denotes the length of curve α1 in M(k1) associated with α.

PROOF. Let W(t) = m′
k2

(t)mk1(t) − m′
k1

(t)mk2(t), then W(0) = 0. From(
mk2

mk1

)′
(t) = W(t)

m2
k1

(t)
,

and

W ′(t) = m′′
k2

(t)mk1(t) − m′′
k1

(t)mk2(t)

= (k1 − k2)mk1(t)mk2(t) < 0, 0 < t < d ,

we can see that W(t) < 0 (0 < t < d). Therefore, the function
mk2 (t)

mk1 (t)
is monotonically

decreasing when 0 ≤ t < d . Obviously,

lim
t→0

mk2(t)

mk1(t)
= 1 .
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By the Rauch comparison theorem, we have
∣∣d expx

∂
∂θ

(ρ, θ)
∣∣ ≥ mk2(ρ). Hence from

ρ(θ) ≤ δ(α) < d (0 ≤ θ ≤ θ0) we have

L =
∫ θ0

0

√
ρ

′
(θ)

2 +
∣∣∣∣d expx

∂

∂θ
(ρ, θ)

∣∣∣∣
2

dθ

≥
∫ θ0

0

√
ρ′2(θ) + m2

k2
(ρ(θ))dθ

=
∫ θ0

0

√√√√ρ′2(θ) + m2
k2

(ρ(θ))

m2
k1

(ρ(θ))
m2

k1
(ρ(θ))dθ

≥ mk2(δ(α))

mk1(δ(α))

∫ θ0

0

√
ρ

′ 2
(θ) + m2

k1
(ρ(θ))dθ

= mk2(δ(α))

mk1(δ(α))
L(α1) .

LEMMA 5. Let M(k) be a simply connected surface of constant curvature k (k ≤ 0),

and C be a circle with circumference L in M(k). Then the area A(L) of the domain bounded
by C is

A(L) = f (L),

where f (t) := 2π
∫ m−1

k ( t
2π

)

0 mk(ρ)dρ, which is a monotonically increasing function on (0,∞).

PROOF. Assume that the radius of C is r . It is well known that

L = 2πmk(r).

Notice that mk(t) is a strictly monotonic function, we have r = m−1
k

(
L

2π

)
. Hence, the area

A(L) = 2π

∫ r

0
mk(ρ)dρ = 2π

∫ m−1
k ( L

2π )

0
mk(ρ)dρ .

�

LEMMA 6. LK(α) ≤ 2π − k1Area(Ω) .

PROOF. By the Gauss-Bonnet theorem we have∫
Ω

GdV +
∫

α∪γ

kg ds + π − θ0 + π − θ1 = 2πχ(Ω) ,

where kg denotes the geodesic curvature.
Since γ is a geodesic, kg = 0 on γ . Obviously χ(Ω) = 1, hence∫

Ω

GdV +
∫

α

kg ds = θ0 + θ1 .
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By the assumption G ≥ k1 we have

k1Area(Ω) ≤ θ0 + θ1 −
∫

α

kg ds .

Since
∫
α kg ds = LK(α), from Lemma 2 we have

LK(α) ≤ 2π − k1Area(Ω) .

�

LEMMA 7. 2Area(Ω1) ≤ f (2L(α1)), where f (t) is the function defined in Lemma 5,

and L(α1) denotes the length of the curve α1 in M(k1) associated with α.

PROOF. In M(k1), take the curve

ᾱ1 : expO(ρ(|θ |) cos θ ē1 + ρ(|θ |) sin θ ē2) , −θ0 ≤ θ ≤ 0 ,

and set

Ω̄1 = {expO(ρ cos θ ē1 + ρ sin θ ē2) | 0 ≤ ρ ≤ ρ(|θ |), −θ0 ≤ θ ≤ 0} .

Graphically, curve ᾱ1 and domain Ω̄1 are the reflection of α1 and Ω1 about γ1 in M(k1)

respectively.

Notice that
∣∣d expO

∂
∂θ

(ρ, θ)
∣∣ = mk1(ρ) in M(k1), where ∂

∂θ
also denotes the vector field

in TOM(k1) which orthogonal to radical direction, we have

Area(Ω1) = Area(Ω̄1) =
∫ θ0

0
dθ

∫ ρ(θ)

0
mk1(ρ)dρ ,

and

Length(α1) = Length(ᾱ1) =
∫ θ0

0

√
ρ

′ 2
(θ) + m2

k1
(ρ(θ)) dθ .

From isoperimetric inequality, Area(Ω1 ∪ Ω̄1) is less than or equal to the area of the disk of
circumference Length(α1) + Length(ᾱ1) = 2L(α1), from Lemma 5 we have

2Area(Ω1) = Area(Ω1 ∪ Ω̄1) ≤ f (2L(α1)) .

�

3. Proof of the Theorem and discussions

PROOF OF THEOREM 1. From Lemma 6 we have

K(α) ≤ 2π

L
− k1

L
Area(Ω) ,

and from Lemma 4 we have

L(α1) ≤ L
mk1(δ(α))

mk2(δ(α))
.
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Since k1 ≤ 0 and f (t) is a monotonically increasing function, from Lemma 7 we have

K(α) ≤ 2π

L
− k1

2L
f (2L(α1)) ≤ 2π

L
− k1

2L
f

(
2L

mk1(δ(α))

mk2(δ(α))

)
.

�

REMARK. It is well known that the solution of differential equation

m′′(t) + km(t) = 0 , m(0) = 0 , m′(0) = 1 ,

is:

mk(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√−k
sinh(

√−kt), if k < 0 ,

t , if k = 0 ,

1√
k

sin(
√

kt) , if k > 0 .

Hence the estimate of upper bound of the average curvature in Theorem 1 can be expressed
explicitly according to the different cases of k1.

When M is the hyperbolic plane H 2, taking k1 = k2 = −1 in Theorem 1, we have

f (t) = 2π

(√
1 +

(
t

2π

)2

− 1

)
.

Hence we deduce that

COROLLARY 1. If α is a convex curve of length L in the hyperbolic plane H 2, then

K(α) ≤
√

1 +
(π

L

)2 + π

L
.

Furthermore, if α is a convex curve of infinite length, then K(α) ≤ 1.

This corollary is Theorem 2 and Corollary 1 in [1].
When M is the Euclidean plane R2, taking k1 = k2 = 0 in Theorem 1 we have

COROLLARY 2. The curvature k of convex curve α in the Euclidean plane R2 satisfies∫
α

kds ≤ 2π .

Hence the average curvature of a convex curve of infinite length in R2 that is defined just
replacing kg by k in Definition 2 is bounded above by zero.

If M(k) is a surface of positive constant Gaussian curvature k, for any convex curve α

in M(k), it is easy to see that δ(α) < π/
√

k naturally holds, taking k1 = 0 in Theorem 1 we
have
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COROLLARY 3. Let M(k) be a surface of constant Gaussian curvature k (k > 0). If α

is a convex curve in M(k), then the geodesic curvature of α satisfies∫
α

kg ds ≤ 2π .
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