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Theorems of Gauss-Bonnet and Chern-Lashof Types in a Simply
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Abstract. In this paper, we shall generalize the Gauss-Bonnet and Chern-Lashof theorems to compact sub-
manifolds in a simply connected symmetric space of non-positive curvature. Those proofs are performed by applying
the Morse theory to squared distance functions because height functions are not defined.

1. Introduction

For an n-dimensional compact immersed submanifold M in the m-dimensional Eu-
clidean space Rm, it is well-known that the following Gauss-Bonnet and Chern-Lashof theo-
rems hold:

(1.1)
1

Vol(Sm−1(1))

∫
ξ∈U⊥M

detAξωU⊥M = χ(M) ,

(1.2)
1

Vol(Sm−1(1))

∫
ξ∈U⊥M

|detAξ |ωU⊥M ≥
n∑

k=0

bk(M, F) ,

where Vol(Sm−1(1)) is the volume of the (m − 1)-dimensional unit sphere, A is the shape

tensor of M , ωU⊥M is the standard volume element on the unit normal bundle U⊥M of M ,
χ(M) is the Euler characteristic of M and bk(M, F) is the k-th Betti number of M with respect
to an arbitrary coefficient field F. These relations are proved by applying the Morse theory to
height functions hv (v ∈ Rm). For an n-dimensional compact immersed submanifold M in
the m-dimensional hyperbolic space Hm(−1) of constant curvature −1 or the m-dimensional
unit sphere Sm(1), E. Teufel ([Teu1,2]) tried to obtain the inequality of Chern-Lashof type by
applying the Morse theory to the restrictions (to M) of functions whose level sets are totally
geodesic hypersurfaces in Hm(−1) or Sm(1). Concretely, in the case where the ambient space
is Hm(−1), he proved the following fact:
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If M is contained in some geodesic ball of radius r0 (in Hm(−1)), then the following
inequality holds:

1

Vol(Sm−1(1))

∫
ξ∈U⊥M

|det Aξ |ωU⊥M >
1

cosh r0

n∑
k=0

bk(M, F) .

However, in the case where the ambient space is Sm(1), the similar fact has not been obtained.
We consider that the topology of a submanifold in a general complete and simply connected
Riemannian manifold should be determined by both the extrinsic curvature (i.e., the shape
tensor A) of the submanifold and the curvature R of the ambient Riemannian manifold. So
we propose the following problem:

PROBLEM. Find a function FA,R on U⊥M determined by both A and R such that∫
ξ∈U⊥M

FA,R(ξ)ωU⊥M = χ(M)

and ∫
ξ∈U⊥M

|FA,R(ξ)|ωU⊥M ≥
n∑

k=0

bk(M, F)

hold for each n-dimensional immersed compact submanifold M in an arbitrary complete and
simply connected Riemannian manifold N .

For a submanifold in a Euclidean space, its tightness is defined in terms of height func-
tions. However, for a submanifold in a general Riemannian manifold, its tightness is not
defined because of the absence of height functions but its tautness is defined in terms of the

energy functional on the space of H 1-paths. In particular, for a submanifold in a Hadamard
manifold, its tautness can be defined in terms of squared distance functions. Thus it is nat-
ural to consider to apply the Morse theory to squared distance functions in order to obtain
the theorems of Gauss-Bonnet and Chern-Lashof types for a compact immersed submanifold
in a Hadamard manifold. In this paper, by applying the Morse theory to squared distance
functions, we shall prove the following theorem of Gauss-Bonnet and Chern-Lashof types
for a compact immersed submanifold in a simply connected symmetric space of non-positive
curvature.

THEOREM A. Let M be an n-dimensional compact immersed submanifold in an m-
dimensional simply connected symmetric space N of non-positive curvature. Then, for each
o ∈ N, we have

(1.5)

∫
ξ∈U⊥M

1

v(ξ)
ebξ (o)Tr

√−Rξ det(prT ◦ √−Rξ |Tπ(ξ)M − Aξ)ωU⊥M = χ(M) ,

(1.6)

∫
ξ∈U⊥M

1

v(ξ)
ebξ (o)Tr

√−Rξ |det(prT ◦ √−Rξ |Tπ(ξ)M − Aξ)|ωU⊥M ≥
n∑

k=0

bk(M, F)
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and the equality sign holds in the inequality (1.6) if M is taut, where
√−Rξ is the positive

operator with
√−Rξ

2 = −R(·, ξ)ξ (R : the curvature tensor of N), v(ξ) = lim
r→∞ rvolN,r

det
√−Rξ

sinh(r
√−Rξ )

(volN,r : the volume of the geodesic sphere of radius r in N), bξ is the

Busemann function for the geodesic ray γξ with γ̇ξ (0) = ξ, prT is the orthogonal projection
of T N |M (the bundle induced from T N by the immersion) onto T M and π is the bundle
projection of U⊥M . In particular, if M is contained in a geodesic ball of radius r0, then we
have

(1.7)

∫
ξ∈U⊥M

1

v(ξ)
er0Tr

√−Rξ |det(prT ◦ √−Rξ |Tπ(ξ)M − Aξ)|ωU⊥M ≥
n∑

k=0

bk(M, F) .

REMARK 1.1. (i) Since v(ξ) and bξ (o) are determined by the curvature tensor R,
this theorem answers the above problem in the case where the ambient space is a simply
connected symmetric space of non-positive curvature.

(ii) In case of N = Rm (the m-dimensional Euclidean space), we have
√−Rξ = 0

and v(ξ) = Vol(Sm−1(1)). Therefore, the relation (1.5) (resp. (1.6)) is rewritten as (1.1)

(resp. (1.2)). Thus this theorem is a generalization of the Gauss-Bonnet and Chern-Lashof
theorems. Hence the proof of this theorem in this paper gives a new proof of the Gauss-Bonnet
and Chern-Lashof theorems in the case where the ambient space is a Euclidean space.

(iii) If N is of rank one, then we have v(ξ) = Vol(Sm−1(1)).
(iv) For a submanifold in an arbitrary Riemannian manifold, the squared distance func-

tions are defined. Hence we expect that the proof of this theorem is applied to a compact
immersed submanifold in various Riemannian manifolds.

As the hypersurface version of Theorem A, we obtain the following result.

COROLLARY B. Let M be a compact immersed hypersurface in an (n+1)-dimensional
simply connected symmetric space N of non-positive curvature. Then, for each o ∈ N, we
have∫

x∈M

1

v(ξx)

2∑
i=1

e
b
(−1)iξx

(o)Tr
√−Rξx det(

√−Rξx |TxM − (−1)iAξx )ωM = χ(M) ,

∫
x∈M

1

v(ξx)

2∑
i=1

e
b
(−1)iξx

(o)Tr
√−Rξx |det(

√−Rξx |TxM − (−1)iAξx )|ωM ≥
n∑

k=0

bk(M, F)

and the equality sign holds in this inequality if M is taut, where ξ is the unit normal vector
field on M determined by the orientation of M and ωM is the volume element of M . In
particular, if M is contained in a geodesic ball of radius r0, then we have

∫
x∈M

1

v(ξx)
er0Tr

√−Rξx

2∑
i=1

|det(
√−Rξx |TxM − (−1)iAξx )|ωM ≥

n∑
k=0

bk(M, F) .
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In the case where the ambient space is the m-dimensional hyperbolic space Hm(c) of
constant curvature c, we can obtain the following result from Theorem A.

COROLLARY C. Let M be an n-dimensional compact immersed submanifold in Hm(c).
Then, for each o ∈ N, we have

1

Vol(Sm−1(1))

∫
ξ∈U⊥M

e(m−1)
√−cbξ (o)det(

√−cid − Aξ)ωU⊥M = χ(M) ,

1

Vol(Sm−1(1))

∫
ξ∈U⊥M

e(m−1)
√−cbξ (o)|det(

√−cid − Aξ)|ωU⊥M ≥
n∑

k=0

bk(M, F)

and the equality sign holds in this inequality if M is taut, where id is the identity transfor-
mation of T M . In particular, if M is contained in a geodesic ball of radius r0, then we
have

e(m−1)
√−cr0

Vol(Sm−1(1))

∫
ξ∈U⊥M

|det(
√−cid − Aξ)|ωU⊥M ≥

n∑
k=0

bk(M, F) .

REMARK 1.2. The quantity e(m−1)
√−cbξ (o) is explicitly described as

e(m−1)
√−cbξ (o) = {cosh(

√−cd(o, π(ξ))) − sinh(
√−cd(o, π(ξ))) cos θ(ξ)}1−m

(see §2), where d is the Riemannian distance function of Hm(c) and θ(ξ) is the angle of ξ and−−−→
π(ξ)o (

−−−→
π(ξ)o : the initial vector of the geodesic γ in N with γ (0) = π(ξ) and γ (1) = 0).

Denote by CHm(c), QHm(c) and CayH 2(c) the m-dimensional complex hyperbolic
space of constant holomorphic sectional curvature c, the m-dimensional quaternionic hyper-
bolic space of constant quaternionic sectional curvature c and the Cayley hyperbolic plane of
constant Cayley sectional curvature c, respectively. Also, let J1, {J1, J2, J3} and {J1, · · · , J7}
be the complex structure of CHm(c), the quaternionic structure of QHm(c) and the Cayley

structure of CayH 2(c), respectively.
In the case where the ambient space is one of these spaces, we obtain the following result

from Theorem A.

COROLLARY D. Let M be an n-dimensional compact immersed submanifold in
FHm(c), where F = C, Q or Cay and m = 2 when F = Cay. Then, for each o ∈ N,

we have

1

Vol(Sqm−1(1))

∫
ξ∈U⊥M

e
(qm+q−2)

√−cbξ (o)

2 det

( 2∑
i=1

√−c

i
prT ◦ prξi |Tπ(ξ)M − Aξ

)
ωU⊥M

= χ(M) ,



THEOREMS OF GAUSS-BONNET AND CHERN-LASHOF TYPES 531

1

Vol(Sqm−1(1))

∫
ξ∈U⊥M

e
(qm+q−2)

√−cbξ (o)

2

∣∣∣det

( 2∑
i=1

√−c

i
prT ◦ prξi |Tπ(ξ)M − Aξ

)∣∣∣ωU⊥M

≥
n∑

k=0
bk(M, F)

and the equality sign holds in this inequality if M is taut, where q = dimRF and prξ1
(resp. prξ2) is the orthogonal projection of Tπ(ξ)FHm(c) onto Span{J1ξ, · · · , Jq−1ξ} (resp.

Span{ξ, J1ξ, · · · , Jq−1ξ}⊥). In particular, if M is contained in a geodesic ball of radius r0,

then we have

e
(qm+q−2)

√−cr0
2

Vol(Sqm−1(1))

∫
ξ∈U⊥M

∣∣∣det

( 2∑
i=1

√−c

i
prT ◦ prξi |Tπ(ξ)M − Aξ

)∣∣∣ωU⊥M ≥
n∑

k=0

bk(M, F) .

REMARK 1.3. The quantity e
(qm+q−2)

√−cbξ (o)

2 is evaluated from above and below as
follows:

e
(qm+q−2)

√−cbξ (o)

2 ≤ {cosh(
√−c

2 d(o, π(ξ))) − sinh(
√−c

2 d(o, π(ξ))) cos θ(ξ)}−(qm+q−2) ,

e
(qm+q−2)

√−cbξ (o)

2 ≥ {cosh(
√−cd(o, π(ξ))) − sinh(

√−cd(o, π(ξ))) cos θ(ξ)}− qm+q−2
2

(see §2), where d is the Riemannian distance function of FHm(c) and θ(ξ) is the angle of ξ

and
−−−→
π(ξ)o.

In Section 2, we shall recall the notion of the Busemann function and define the tautness
of a submanifold in a Hadamard manifold. In Section 3, we shall obtain key equality and
inequality used to prove Theorem A. In Section 4, we shall prove Theorem A and Corollaries
C and D. Finally, in Section 5, we shall confirm by calculations that the equality and the
inequality in Corollary C (resp. D) hold for a geodesic sphere in a hyperbolic space (resp.
a simply connected rank one symmetric space of non-compact type (other than a hyperbolic
space)).

Throughout this paper, we assume that all objects are of class C∞ and that all manifolds
are oriented and connected ones without boundary.

I would like to thank Professor Eberhard Teufel for his valuable advice about the results
in [Teu1,2].

2. Busemann functions and the tautness

In this section, we first recall the notion of the Busemann function. Let N be a Hadamard
manifold and N(∞) be its ideal boundary, that is, the set of all asymptotic classes of geodesic
rays in N . Denote by γ (∞) the asymptotic class of a geodesic ray γ : [0,∞) → N . Take
p ∈ N and z ∈ N(∞). Let γ be the geodesic ray in N with γ (0) = p and γ (∞) = z.
Denote by S∞(z, p) the horosphere through p and z, and by B∞(z, p) the closed domain
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in N surrounded by S∞(z, p). In the case where N is a Euclidean space, S∞(z, p) is the
hyperplane through p which is orthogonal to γ̇ (0). Let ξ be a unit tangent vector of N at
p0 and γξ : [0,∞) → N be the geodesic ray with γ̇ξ (0) = ξ . The Busemann function
bξ : N → R is defined by

bξ (p) :=
{

d(p, S∞(γξ (∞), p0)) (when p ∈ B∞(γξ (∞), p0))

−d(p, S∞(γξ (∞), p0)) (when p /∈ B∞(γξ (∞), p0))

for p ∈ N , where d(p, S∞(γξ (∞), p0)) is the distance of p and S∞(γξ (∞), p0).
In case of N = Hm(c), it follows from the cosine theorem that

bξ (p) = −1√−c
log(cosh(

√−cd(p, p0)) − sinh(
√−cd(p, p0)) cos θ(ξ)) ,

where θ(ξ) is the angle of ξ and −→p0p. Here we note that −→p0p implies the initial velocity
vector of the geodesic γ with γ (0) = p0 and γ (1) = p. Further, in case of N = FHm(c)

(F = C, Q or Cay), we have

bξ (p) ≤ −2√−c
log(cosh(

√−c
2 d(p, p0)) − sinh(

√−c
2 d(p, p0)) cos θ(ξ)) ,

bξ (p) ≥ −1√−c
log(cosh(

√−cd(p, p0)) − sinh(
√−cd(p, p0)) cos θ(ξ))

because the minimal (resp. maximal) sectional curvature is c (resp. c/4), where we use the
comparison theorem.

At the end of this section, we define the tautness of a submanifold in a Hadamard man-
ifold N . Let M be a submanifold in N . If the squared distance function d2

p (x ∈ M →
d(p, x)2) is a perfect Morse function for each p ∈ N \ F , then we shall say that M is taut,
where F is the focal set of M .

3. Key equality and inequality

Let N = G/K be an m-dimensional simply connected symmetric space of non-positive
curvature. For arbitrary two points p and q of N , there exists a unique geodesic γ with
γ (0) = p and γ (1) = q . Denote by γpq this geodesic. Also, denote by −→pq the initial velocity
vector γ̇pq(0). Let M be an n-dimensional immersed submanifold in N . In this section, we
obtain an equality and an inequality (see Proposition 3.4) used to prove Theorem A. Also, we
calculate the volume of a geodesic sphere in N . For simplicity, we set

Dξ := √−Rξ , Dco
ξ := cosh

√−Rξ ,

Dsi
ξ = sinh

√−Rξ√−Rξ
, Dct

ξ =
√−Rξ

tanh
√−Rξ

for each ξ ∈ T N . Now we recall a very useful description of a Jacobi field in N . A Jacobi
field J along a geodesic γ in N is described as

(3.1) J (s) = Pγ |[0,s](D
co
sγ̇ (0)J (0) + sDsi

sγ̇ (0)J
′(0)) ,
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where Pγ |[0,s] is the parallel translation along γ |[0,s] with respect to the Levi-Civita connection

∇̃ of N , γ̇ (0) is the velocity vector of γ at 0 and J ′(0) = ∇̃γ̇ (0)J . See [TT] (or [Ko3]) in

detail. For the squared distance function d2
p, we have the following fact.

LEMMA 3.1. Let x be a critical point of d2
p (hence −→xp is normal to M). The Hessian

(Hess d2
p)x of d2

p at x is given by

(Hess d2
p)x(X, Y ) = 2 < X, (Dct−→xp − A−→xp)Y > (X, Y ∈ TxM) .

PROOF. Take tangent vectors X and Y of M at x. Take a two-parameter map δ̄ to M

with δ̄∗( ∂
∂u

|u=t=0) = X and δ̄∗( ∂
∂t

|u=t=0) = Y , where u (resp. t) is the first (resp. the

second) parameter of δ̄. Define a three-parameter map δ to N by δ(u, t, s) = γδ̄(u,t)p(s).

For simplicity, we denote δ∗( ∂
∂u

), δ∗( ∂
∂t

) and δ∗( ∂
∂s

) by ∂
∂u

, ∂
∂t

and ∂
∂s

, respectively. Set

Jt (s) := ∂
∂u

|u=0, which is a Jacobi field along γδ(0,t,0)p. From (3.1), we have Jt (s) =
Pγδ(0,t,0)p|[0,s](D

co

s·−−−−−→
δ(0,t,0)p

Jt (0) + sDsi

s·−−−−−→
δ(0,t,0)p

J ′
t (0)). This together with Jt (1) = 0 deduces

J ′
t (0) = −Dct−−−−−→

δ(0,t,0)p
Jt (0). Also, since x is a critical point of d2

p, ∂
∂s

|u=t=s=0 is normal to M .

These facts deduce

(3.2)

(Hess d2
p)x(X, Y ) = d

dt

(
∂

∂u

〈
∂

∂s
,

∂

∂s

〉∣∣∣∣
u=s=0

)∣∣∣∣
t=0

= 2
d

dt

〈
J ′

t (0),
∂

∂s

∣∣∣∣
u=s=0

〉∣∣∣∣
t=0

= −2
d

dt
〈Dct−−−−−→

δ(0,t,0)p
Jt (0),

−−−−−−→
δ(0, t, 0)p〉|t=0

= −2
d

dt
〈Jt (0), (

−−−−−−→
δ(0, t, 0)p)T 〉|t=0

= −2

〈
X, ∇Y

(
∂

∂s

∣∣∣∣
u=s=0

)
T

〉
,

where (·)T is the tangent component of ·. On the other hand, we can show ∇̃−→xp ∂
∂t

=
∇Y ( ∂

∂s

∣∣∣∣
u=s=0

)T − A−→xpY + ∇⊥
Y ( ∂

∂s
|u=s=0)⊥ and ∇̃−→xp ∂

∂t
= −Dct−→xpY , where (·)⊥ is the nor-

mal component of ·. These relations deduce ∇Y ( ∂
∂s

|u=s=0)T = −(prT ◦ Dct−→xp − A−→xp)Y . From

(3.2) and this relation, we obtain the desired relation. �

Denote by ω̃ (resp. ωT ⊥M ) the volume element of N (resp. T ⊥M). Let exp⊥ be the
normal exponential map of M . Then we have the following relation.

LEMMA 3.2. For each ξ ∈ T ⊥M, the following relation holds:
((exp⊥)∗ω̃)ξ = det(prT ◦ Dct

ξ |Tπ(ξ)M − Aξ)detDsi
ξ (ωT ⊥M)ξ ,
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where π is the bundle projection of T ⊥M .

PROOF. Set x := π(ξ). Let (e1, · · · , en) be an orthonormal tangent frame of M at x and

(ξ0
1 , · · · , ξ0

m−n) be an orthonormal frame of T ⊥
x M . Let ξi (i = 1, · · · ,m − n) be the element

of Tξ (T
⊥
x M) corresponding to ξ0

i under the natural identification of T ⊥
x M and Tξ (T

⊥
x M).

Denote by (̃ei)ξ the horizontal lift of ei to ξ (i = 1, · · · , n). Fix i ∈ {1, · · · , n}. Take a curve

c in M with ċ(0) = ei . Let ξ̃ be the ∇⊥-parallel vector field along c with ξ̃ (0) = ξ . Define a

two-parameter map δ to N by δ(t, s) := exp⊥(sξ̃ (t)) and set J := ∂
∂t

|t=0, which is a Jacobi

field along γξ . It is clear that J (0) = ei, J ′(0) = −Aξei and J (1) = exp⊥∗ ((̃ei)ξ ). Hence we
have

exp⊥∗ ((̃ei)ξ ) = Pγξ (D
co
ξ ei − (Dsi

ξ ◦ Aξ)ei) .

Fix i ∈ {1, · · · ,m − n}. Define a two-parameter map δ̄ to N by δ̄(t, s) := exp⊥(s(ξ + tξ0
i ))

and J̄ := ∂
∂t

|t=0, which is a Jacobi field along γξ . It is clear that J̄ (0) = 0, J̄ ′(0) = ξ0
i and

J̄ (1) = exp⊥∗ ξi . Hence we have exp⊥∗ ξi = Pγξ D
si
ξ ξ0

i . Therefore, we obtain

((exp⊥)∗ω̃)ξ ((̃e1)ξ , · · · , (̃en)ξ , ξ1, · · · , ξm−n)

= ω̃π(ξ)(D
co
ξ e1 − (Dsi

ξ ◦ Aξ)e1, · · · ,Dco
ξ en − (Dsi

ξ ◦ Aξ)en,D
si
ξ ξ0

1 , · · · ,Dsi
ξ ξ0

r )

= detDsi
ξ ω̃π(ξ)((D

ct
ξ − Aξ)e1, · · · , (Dct

ξ − Aξ)en, ξ
0
1 , · · · , ξ0

r )

= det Dsi
ξ det(prT ◦ Dct

ξ |Tπ(ξ)M − Aξ) .

On the other hand, we have (ωT ⊥M)ξ ((̃e1)ξ , · · · , (̃en)ξ , ξ1, · · · , ξm−n) = 1. Therefore, we
can obtain the desired relation. �

This lemma together with Lemma 3.1 deduces the following fact.

LEMMA 3.3. A point p of N is not a focal point of M if and only if d2
p is non-

degenerate (i.e., a Morse function).

PROOF. Let x be a critical point of d2
p. According to Lemmas 3.1 and 3.2, (Hess d2

p)x

is degenerate if and only if −→xp is a critical point of exp⊥, that is, p = exp⊥(−→xp) is a focal

point of (M, x), where we also use detDsi−→xp > 0. This fact deduces the statement. �

In terms of Lemmas 3.2 and 3.3, we obtain the following relations.

PROPOSITION 3.4. Assume that M is compact. Then, for any bounded closed domain
D in N, the following relations hold:

1

Vol(D)

∫
ξ∈exp⊥−1(D)

det(prT ◦ Dct
ξ |Tπ(ξ)M − Aξ)detDsi

ξ ωT ⊥M = χ(M) ,
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1

Vol(D)

∫
ξ∈exp⊥−1(D)

|det(prT ◦ Dct
ξ |Tπ(ξ)M − Aξ)|detDsi

ξ ωT ⊥M ≥
n∑

k=0

bk(M, F) .

The equality sign holds in this inequality if M is taut.

PROOF. First we shall show the first relation. Denote by F the set of all focal points of
M , which is of measure zero by Sard’s theorem. Let p ∈ D \ F and ξ ∈ exp⊥−1(p). Set

x := π(ξ). According to Lemma 3.2, (exp⊥∗ )ξ preserves (resp. reverses) the orientation if and

only if det(prT ◦ Dct
ξ |TxM − Aξ) > 0 (resp. < 0), where we use detDsi

ξ > 0. On the other

hand, it follows from Lemma 3.1 that the index of the critical point x of d2
p is even (resp. odd)

if and only if det(prT ◦ Dct
ξ |TxM − Aξ) > 0 (resp. < 0). By using these facts, we obtain∫

ξ∈exp⊥−1(D)

det(prT ◦ Dct
ξ |Tπ(ξ)M − Aξ)detDsi

ξ ωT ⊥M

=
∫

ξ∈exp⊥−1(D)

((exp⊥)∗ω̃)ξ =
∫

ξ∈exp⊥−1(D\F)

((exp⊥)∗ω̃)ξ

=
∫

p∈D\F
(βeven(d

2
p) − βodd(d

2
p))ω̃p

=
∫

D\F
χ(M)ω̃ = χ(M)Vol(D) ,

where βeven(d
2
p) (resp. βodd(d

2
p)) is the number of critical points of even (resp. odd) index of

d2
p. Thus we obtain the first relation. Similarly, we can obtain the second relation in terms of

the Morse inequality. Further, it is shown that the equality sign holds in the second relation if
M is taut. �

Now we shall calculate the volume volN,r of a geodesic sphere of radius r in an m-
dimensional simply connected symmetric space N = G/K of non-positive curvature. Let
Sp(r) be the geodesic sphere in N of center p and radius r . Let S(r) be the hypersphere in
TpN of center 0 and radius r , where 0 is the origin of TpN . Denote by exp the exponential map
of N , which diffeomorphically maps S(r) onto Sp(r). Also, denote by ωSp(r) (resp. ωS(r)) the
volume element of Sp(r) (resp. S(r)). Let ξ ∈ S(r) and X be a unit tangent vector of S(r) at ξ

and X0 be the element of TpN corresponding to X under the natural identification of Tξ (TpN)

and TpN . Define a two-parameter map δ to N by δ(t, s) = exp s(cos t · ξ + r sin t · X0). For

simplicity, denote δ∗( ∂
∂t

) (resp. δ∗( ∂
∂s

)) by ∂
∂t

(resp. ∂
∂s

). Set J := ∂
∂t

|t=0, which is a Jacobi

field along the geodesic γξ . It is clear that J (0) = 0 and J ′(0) = rX0. Hence, it follows

from (3.1) that J (s) = rsPγξ |[0,s]D
si
sξX0. On the other hand, we have J (1) = r exp∗ X. Thus

we obtain exp∗ X = Pγξ D
si
ξ X0. This deduces (exp∗ ωSp(r))ξ = det(Dsi

ξ |Span{ξ }⊥)(ωS(r))ξ =
detDsi

ξ (ωS(r))ξ and hence

(3.3) volN,r =
∫

ξ∈S(r)

detDsi
ξ ωS(r) = rm−1

∫
ξ∈S(1)

detDsi
rξωS(1) ,
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where S(1) is the unit hypersphere in TpN centered 0.

4. Proofs of Theorems A and Corollaries C and D

In this section, we shall prove Theorem A and Corollaries C and D. First we shall prove
Theorem A in terms of Proposition 3.4.

PROOF OF THEOREM A. Fix o ∈ N . Let Bo(r) be the geodeisc ball of center o and
radius r . Set φr(ξ) := sup{s | γξ ([0, s]) ⊂ Bo(r)} for ξ ∈ U⊥M and a sufficiently big positive
number r . Then we have∫

ξ∈exp⊥−1(Bo(r))

det(prT ◦ Dct
ξ |Tπ(ξ)M − Aξ)detDsi

ξ ωT ⊥M

=
∫

ξ∈U⊥M

( ∫ φr (ξ)

0
det

(
1

s
prT ◦ Dct

sξ |Tπ(ξ)M − Aξ

)
detDsi

sξ s
m−1ds

)
ωU⊥M .

Also, we can show lim
s→∞

1
s
Dct

sξ = Dξ . These relations together with Vol(Bo(r)) =∫ r

0
volN,sds deduce

lim
r→∞

1

Vol(Bo(r))

∫
ξ∈exp⊥−1(Bo(r))

det(prT ◦ Dct
ξ |Tπ(ξ)M − Aξ)detDsi

ξ ωT ⊥M

= lim
r→∞

1

volN,r

∫
ξ∈U⊥M

det

(
1

φr(ξ)
prT ◦ Dct

φr (ξ)ξ |Tπ(ξ)M − Aξ

)
×detDsi

φr (ξ)ξφr (ξ)m−1 dφr(ξ)

dr
ωU⊥M

=
∫

ξ∈U⊥M

det(prT ◦ Dξ |Tπ(ξ)M − Aξ) lim
r→∞

(
φr(ξ)m−1

volN,r

detDsi
φr (ξ)ξ

dφr(ξ)

dr

)
ωU⊥M ,

which is equal to χ(M) by Proposition 3.4. On the other hand, it is easy to show that

lim
r→∞(φr (ξ)−r) = bξ (o) and that φr(ξ) is concave. Hence we have lim

r→∞
φr (ξ)

r
= lim

r→∞
dφr (ξ)

dr
=

1. Also, we can show lim
r→∞ det(Dsi

φr (ξ)ξ ◦ (Dsi
rξ )

−1) = ebξ (o)TrDξ . Therefore, we have

lim
r→∞

(
φr(ξ)m−1

volN,r

detDsi
φr (ξ)ξ

dφr(ξ)

dr

)
= 1

v(ξ)
ebξ (o)TrDξ .

Thus we obtain the relation (1.5). Similarly, we obtain the relation (1.6). Assume that M is
contained in a geodesic ball of radius r0. Let p0 be the center of the geodesic ball. Then we
have |bξ (p0)| ≤ r0 (ξ ∈ U⊥M). Hence the relation (1.6) for o = p0 deduces (1.7). �

Next we shall prove Corollary C.

PROOF OF COROLLARY C. Since the ambient space is Hm(c), we have

Dξ = √−cpr⊥ξ and Dsi
sξ = prξ + sinh(

√−cs)√−cs
pr⊥ξ (ξ ∈ U⊥M) ,
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where prξ (resp. pr⊥ξ ) is the orthogonal projection of Tπ(ξ)H
m(c) onto Span{ξ} (resp.

Span{ξ}⊥). These relations deduce TrDξ = (m − 1)
√−c and detDsi

sξ = (
sinh(

√−cs)√−cs
)m−1.

The second relation together with (3.3) deduces v(ξ) = Vol(Sm−1(1)). Hence, the statement
of this corollary is deduced from Theorem A. �

Next we shall prove Corollary D.

PROOF OF COROLLARY D. Since the ambient space is FHm(c), we have Dξ =
√−cprξ1 +

√−c
2 prξ2 and Dsi

sξ = prξ0 + sinh(
√−cs)√−cs

prξ1 + 2 sinh
√−cs

2√−cs
prξ2, where prξ0 is the or-

thogonal projection of Tπ(ξ)FHm(c) onto Span{ξ} and prξi (i = 1, 2) are as in the state-

ment of this corollary. These relations deduce TrDξ = (qm+q−2)
√−c

2 and det(rDsi
rξ ) =

(
sinh(

√−cr)√−c
)q−1(

2 sinh
√−cr

2√−c
)qm−q × r . The second relation together with (3.3) deduces v(ξ) =

Vol(Sqm−1(1)). Hence the statement of this corollary is deduced from Theorem A. �

5. Examples

In this section, for a geodesic sphere in Hm(c) and FHm(c), we shall calculate the in-
tegral quantities in Corollaries C and D and confirm that the equality and the inequality in
those corollaries hold. First we shall consider a geodesic sphere So(r) of center o and ra-
dius r in Hm(c). Let ξ be the inward unit normal vector field of So(r). Then we can show

b±ξx (o) = ±r (x ∈ M) and Aξ =
√−c

tanh(
√−cr)

id. Hence we see that the integral quantity in the

first relation of Corollary C is equal to
√−c

m−1{(−1)m−1+1}
sinhm−1(

√−cr)
Vol(So(r)), which is further equal to

{(−1)m−1 + 1}Vol(Sm−1(1)). Thus it is confirmed that the first relation of Corollary C holds.
Similarly, we can show that the integral quantity in the second relation of Corollary C is equal

to 2
√−c

m−1

sinhm−1(
√−cr)

Vol(So(r)), which is further equal to 2Vol(Sm−1(1)). Thus it is confirmed that

the equality sign holds in the second relation of Corollary C. This is compatible with the fact
that So(r) is taut.

Next we shall consider a geodesic sphere So(r) of center o and radius r in FHm(c). Let
ξ be the inward unit normal vector field of So(r). Then we can show b±ξx (o) = ±r (x ∈ M)

and Aξx =
√−c

tanh(
√−cr)

prξx
⊕

√−c

2 tanh
√−cr

2

pr⊥ξx
(x ∈ M). Hence we see that the integral quantity

in the first relation of Corollary D is equal to
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2∑
i=1

e
(−1)i (qm+q−2)

√−cr
2

(
1 − (−1)i

tanh(
√−cr)

)q−1(
1 − (−1)i

tanh
√−cr

2

)qm−q

×
√−c

qm−1

2qm−q
Vol(So(r)) ,

which is equal to 0. Thus it is confirmed that the first relation of Corollary D holds. Similarly,
we can show that the integral quantity in the second relation of Corollary D is equal to

2∑
i=1

e
(−1)i (qm+q−2)

√−cr
2

∣∣∣1 − (−1)i

tanh(
√−cr)

∣∣∣q−1 ×
∣∣∣1 − (−1)i

tanh
√−cr

2

∣∣∣qm−q

×
√−c

qm−1

2qm−q
Vol(So(r)) ,

which is further equal to

√−c
qm−1

2qm−q sinhq−1(
√−cr) sinhqm−q

√−cr
2

× 2Vol(So(r))

(= 2Vol(Sqm−1(1))) .

Thus it is confirmed that the equality sign holds in the second relation of Corollary D. This is
compatible with the fact that So(r) is taut.
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