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Abstract. Convolution semigroups of probability measures with parameter in a cone in a Euclidean space
generalize usual convolution semigroups with parameter in [0, ∞). A characterization of such semigroups is given
and examples are studied. Subordination of cone-parameter convolution semigroups by cone-valued cone-parameter
convolution semigroups is introduced. Its general description is given and inheritance properties are shown. In the
study the distinction between cones with and without strong bases is important.

1. Introduction

The structure of convolution semigroups of probability measures on Rd with parameter
in [0,∞) is well-known: (i) {µt : t � 0} is a convolution semigroup if and only if µ1 is
infinitely divisible and µt = µ1

t∗ (the convolution power); (ii) a probability measure µ on

Rd is infinitely divisible if and only if the characteristic function (Fourier transform) µ̂(z) of
µ is expressed as

µ̂(z) = exp

[
− 1

2
〈z,Az〉 +

∫
Rd

g (z, x) ν(dx) + i〈z, γ 〉
]

, z ∈ Rd ,(1.1)

where g (z, x) = ei〈z,x〉 − 1 − i〈z, x〉1{|x|�1}(x), A is a nonnegative-definite symmetric d × d

matrix, ν is a measure on Rd satisfying ν({0}) = 0 and
∫
(1 ∧ |x|2) ν(dx) < ∞, and γ ∈ Rd .

The expression is unique and called the Lévy–Khintchine representation of µ; (A, ν, γ ) is
called the (generating) triplet of µ; A is the Gaussian covariance matrix, ν is the Lévy mea-
sure, and γ is a location parameter. See [3], [4], and [11] for general d and many textbooks in
probability theory for d = 1. A natural generalization of the parameter set [0,∞) is a cone in

the Euclidean space RM . Bochner [4], pp. 106–108, made a heuristic study of this generaliza-
tion but, after that, there have been no works in this direction. Recently, Barndorff-Nielsen,

Pedersen, and Sato [1] studied the case of the parameter set RN+ in connection with mul-
tiparameter subordination of multiparameter Lévy processes, where subordinators are Lévy

processes (with usual time parameter) taking values in RN+ . Many examples are discussed
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in [1]. As the set RN+ is a typical cone, it is natural to consider subordinators which take

values in a cone K in RM and subordinands which are Lévy processes with parameter in K .
Thus we have renewed interest in convolution semigroups with parameter in a cone. Another
background fact is that the class S+

d of nonnegative-definite symmetric d × d matrices is a

d(d + 1)/2-dimensional cone not isomorphic to Rd(d+1)/2
+ and that there is a remarkable con-

volution semigroup {µs : s ∈ S+
d } defined by µs = Nd(0, s), Gaussian distribution on Rd

with mean 0 and covariance matrix s. It is tempting to study properties and seek applications
of this convolution semigroup, as it is a natural object.

In this paper we give, in Section 2, a characterization of cone-parameter convolution
semigroups, which is connected with the representation (1.1), and some applications of it.
Then, in Section 3, we discuss examples which illustrate the characterization. Given two
cones K1 and K2 in RM1 and RM2 , respectively, we study in Section 4 the composition of
a K2-parameter convolution semigroup (subordinand) with a K2-valued K1-parameter con-
volution semigroup (subordinator). This yields a new K1-parameter convolution semigroup
(subordinated). This is an extension of Bochner’s subordination [4].

A usual convolution semigroup {µt : t � 0} of probability measures on Rd induces,
uniquely in law, a Lévy process {Xt : t � 0} with L(Xt) = µt . Here L(Xt) stands for the
law (distribution) of Xt . In a companion paper [7] we discuss whether this fact generalizes to
cone-parameter case under appropriate definition of cone-parameter Lévy processes. It turns
out that neither existence nor uniqueness in law holds for the induced cone-parameter Lévy
process in general. This implies that, in the cone-parameter case, subordination of convolution
semigroups is of importance independently of subordination of Lévy processes.

2. Characterization of cone-parameter convolution semigroups

We consider elements of Rd as column vectors. We denote the coordinates of x ∈ Rd

by xj , and use either the notation x = (xj )1�j�d or x = (x1, · · · , xd)�. The inner product

on Rd is 〈x, y〉 and the norm is |x|. For a measure µ on Rd , Supp(µ) denotes the support
of µ, that is, the smallest closed set whose complement has µ-measure 0. Let δc denote the
distribution (= probability measure) concentrated at a point c. Such a distribution is called
trivial. For a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}. For a distribution µ on Rd ,
the characteristic function µ̂(z) of µ is

µ̂(z) =
∫

Rd

ei〈z,x〉µ(dx) , z ∈ Rd .

For distributions µn (n = 1, 2, · · · ) and µ on Rd , µn → µ means weak convergence of µn

to µ, that is, limn→∞
∫

f (x)µn(dx) = ∫
f (x)µ(dx) for all bounded continuous functions f

on Rd .
We call a subset K of RM a cone if it is a non-empty closed convex set closed under

multiplication by nonnegative reals and containing no straight line through 0 and if K 
= {0}.
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DEFINITION 2.1. Given a cone K , we call {µs : s ∈ K} a K-parameter convolution
semigroup on Rd if it is a family of probability measures on Rd satisfying

µs1 ∗ µs2 = µs1+s2 for s1, s2 ∈ K ,(2.1)

µtns → δ0 for s ∈ K(2.2)

whenever {tn} is a sequence of reals strictly decreasing to 0.

It is clear that, for the cone S+
d defined in Section 1, the system {µs : s ∈ S+

d } with

µs = Nd(0, s) forms an S+
d -parameter convolution semigroup on Rd . We call it the canonical

S+
d -parameter convolution semigroup.

If {e1, · · · , eN } is a linearly independent system in RM , then the set of s = s1e
1 + · · · +

sNeN with nonnegative s1, · · · , sN is the smallest cone that contains e1, · · · , eN . It is called

the cone generated by {e1, · · · , eN }.
DEFINITION 2.2. Let K be a cone in RM . If {e1, · · · , eN } is a linearly independent

system such that K is the cone generated by it, then {e1, · · · , eN } is called a strong basis of

K . If {e1, · · · , eN } is a basis of the linear subspace L generated by K and if e1, · · · , eN are in
K , then {e1, · · · , eN } is called a weak basis of K . In this case K is called an N-dimensional
cone. A cone in RM is called nondegenerate if it is M-dimensional.

Any cone has a weak basis. A cone in R is either [0,∞) or (−∞, 0], and has a strong

basis. Any nondegenerate cone in R2 is a closed sector with angle < π and has a strong basis.

A nondegenerate cone in R3 has a strong basis if and only if it is a triangular cone. For any

N , the nonnegative orthant RN+ is a cone with a strong basis. Conversely, if a cone K has a

strong basis {e1, · · · , eN }, then it is isomorphic to RN+ , that is, there is a linear transformation

T from the linear subspace L generated by K onto RN such that T K = RN+ .

Given a cone K in RM , write s1 �K s2 if s2−s1 ∈ K . This defines a partial order in RM .

A sequence {sn} in RM is said to be K-increasing if sn �K sn+1 for each n; K-decreasing if

sn+1 �K sn for each n.
The following proposition is basic. A proof is given in the appendix. We call H a strictly

supporting hyperplane of a cone K in RM , if H is an (M − 1)-dimensional linear subspace
such that H ∩ K = {0}.

PROPOSITION 2.3. Any cone K in RM has the following properties.
(i) There exists a strictly supporting hyperplane H of K .

(ii) Let H be a strictly supporting hyperplane of K and let s0 ∈ K \ {0}. Then the
hyperplane s0 + H does not contain 0. Let D be the closed half space containing 0 with

boundary s0 + H . Then K ∩ D is a bounded set.
(iii) If {sn}n=1,2,··· is a K-decreasing sequence in K , then it is convergent.
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A weak basis of K is not unique. But, a strong basis of K is essentially unique, if it
exists.

PROPOSITION 2.4. If {e1, · · · , eN } and {f 1, · · · , f N } are both strong bases of K,

then these systems are identical up to scaling and permutation.

PROOF. Since the two systems are strong bases, we have

ej = e
j
1f 1 + · · · + e

j
Nf N for j = 1, · · · , N ,

f k = f k
1 e1 + · · · + f k

NeN for k = 1, · · · , N ,

where f k
j � 0 and e

j

l � 0 for all k, j, l. Since f k = ∑
j,l f

k
j e

j

l f l , we get

N∑
j=1

f k
j e

j

l = 0 or 1 according as k 
= l or k = l .

Fix k. Since f k 
= 0, we can find k′ such that f k
k′ > 0. If l 
= k, then f k

j e
j

l = 0 for all j and

thus ek′
l = 0. That is, ek′ = ek′

k f k . Hence ek′
k > 0 and f k = (ek′

k )−1ek′
. The mapping from k

to k′ is onto, since f 1, · · · , f N are linearly independent. This finishes the proof. �

REMARK 2.5. Given s1, s2 in a cone K , we call u ∈ K the greatest lower bound of s1

and s2 and write u = s1 ∧K s2, if

{v ∈ K : v �K s1} ∩ {v ∈ K : v �K s2} = {v ∈ K : v �K u} .(2.3)

Similarly, u is called the least upper bound, written u = s1 ∨K s2, if

{v ∈ K : s1 �K v} ∩ {v ∈ K : s2 �K v} = {v ∈ K : u �K v} .(2.4)

If K has a strong basis {e1, · · · , eN }, then for any s1, s2 ∈ K , s1 ∧K s2 and s1 ∨K s2 exist

(in other words, K is a lattice). Indeed, if sj = s
j

1 e1 + · · · + s
j
NeN for j = 1, 2, then

s1 ∧K s2 = (s1
1 ∧ s2

1 )e1 +· · ·+ (s1
N ∧ s2

N)eN and s1 ∨K s2 = (s1
1 ∨ s2

1 )e1 +· · ·+ (s1
N ∨ s2

N)eN .

But, in a general cone K , s1 ∧K s2 and s1 ∨K s2 do not necessarily exist. For example, let K

be a circular cone in R3. Then, for some s1 and s2 in K , s1 ∧K s2 does not exist. This is seen
in the following way. Denote x = (xj )1�j�3 ∈ R3 and let K have the x3-axis as the axis of
rotation. We have {v ∈ K : v �K s} = (s − K) ∩ K for s ∈ K . The section of the left-hand
side of (2.3) by some plane x3 = constant is not a connected set, if s1 −s2 
∈ K∪(−K). Thus,
the relation (2.3) is not always possible. Similarly, the relation (2.4) is not always possible.

Let ID(Rd ) be the class of infinitely divisible distributions on Rd . Let B0(Rd) be

the class of Borel sets B in Rd such that infx∈B |x| > 0. Any µ ∈ ID(Rd ) has the repre-
sentation (1.1) by the triplet (A, ν, γ ). If ν satisfies

∫
|x|�1 |x|ν(dx) < ∞, then let γ 0 =

γ − ∫
|x|�1 xν(dx) and call γ 0 the drift of µ. For µ ∈ ID(Rd ) and r ∈ R, we define µ̂(z)r ,
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z ∈ Rd , as µ̂(z)r = er log µ̂(z), where log µ̂(z) is the distinguished logarithm of µ̂(z) in [11],
p. 33. In other words,

µ̂(z)r = exp

[
r

(
− 1

2
〈z,Az〉 + i〈γ, z〉 +

∫
Rd

g (z, x)ν(dx)

)]
.

If µ ∈ ID(Rd ) and r � 0, then µ̂(z)r is the characteristic function of a distribution in
ID(Rd), denoted by µr∗ or µr . However, if r < 0, then µ̂(z)r is not a characteristic function
for any nontrivial µ in ID(Rd ).

PROPOSITION 2.6. Let K1 and K2 be cones in RM such that K1 ⊆ K2. If {µs : s ∈
K2} is a K2-parameter convolution semigroup then its restriction {µs : s ∈ K1} is a K1-
parameter convolution semigroup.

PROOF. Evident from Definition 2.1. �

PROPOSITION 2.7. Let {µs : s ∈ K} be a K-parameter convolution semigroup on Rd .

Then, µ0 = δ0 and µs ∈ ID(Rd) for s ∈ K . We have µts = µs
t for t � 0. The triplet

(As, νs, γs) of µs satisfies

As1+s2 = As1 + As2 , νs1+s2 = νs1 + νs2 , γs1+s2 = γs1 + γs2 ,(2.5)

Ats = tAs , νts = tνs , γts = tγs .(2.6)

If, moreover,
∫
|x|�1 |x|νs(dx) < ∞ for all s ∈ K, then, for the drift γ 0

s of µs, we have

γ 0
s1+s2 = γ 0

s1 + γ 0
s2 , γ 0

t s = tγ 0
s .(2.7)

PROOF. Since µ0 = µ0 ∗ µ0 by (2.1), we have µ̂0(z) = µ̂0(z)
2 and hence µ̂0(z) = 1 if

µ̂0(z) 
= 0. This shows that µ̂0(z) = 1 for all z, as µ̂0(0) = 1 and µ̂0(z) is continuous. Hence
µ0 = δ0. Since {µts : t � 0} is an R+-parameter convolution semigroup by Proposition 2.6,

we have µs ∈ ID(Rd) and µts = µs
t . Equations (2.5)–(2.7) are obvious consequences. �

THEOREM 2.8. Let {µs : s ∈ K} be a K-parameter convolution semigroup on Rd with

triplets (As, νs, γs). Let {e1, · · · , eN } be a weak basis of K . Then, for all s ∈ K, µs is

determined by µe1 , · · · , µeN . More precisely, for s = s1e
1 + · · · + sNeN ∈ K we have

µ̂s(z) = µ̂e1(z)s1 · · · µ̂eN (z)sN , z ∈ Rd ,(2.8)

As = s1Ae1 + · · · + sNAeN ,(2.9)

νs(B) = s1νe1(B) + · · · + sNνeN (B) for B ∈ B0(Rd ) ,(2.10)

γs = s1γe1 + · · · + sNγeN .(2.11)

Keep in mind that some of s1, · · · , sN may be negative.

PROOF OF THEOREM. Any s ∈ K is represented uniquely as s = s1e
1 + · · · + sNeN ,

with s1, · · · , sN ∈ R. Let s+
j = sj ∨ 0 and s−

j = −(sj ∧ 0). Then sj = s+
j − s−

j . We have
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s = u − v with u = s+
1 e1 + · · · + s+

NeN ∈ K and v = s−
1 e1 + · · · + s−

NeN ∈ K . Hence
µs∗µv = µu. Using Proposition 2.7, we can express µ̂u(z) and µ̂v(z) by µ̂e1(z), · · · , µ̂eN (z).
Noting that µ̂v(z) 
= 0 by infinite divisibility, we have

µ̂s(z) = µ̂u(z)

µ̂v(z)
= µ̂e1(z)s

+
1 · · · µ̂eN (z)s

+
N

µ̂e1(z)s
−
1 · · · µ̂eN (z)s

−
N

,

which is (2.8). Now (2.9)–(2.11) follow from (2.8) by the uniqueness of the expression as
formulated in [11], E 12.2. �

COROLLARY 2.9. Let {µs : s ∈ K} be a K-parameter convolution semigroup on Rd .

If {sn}n=1,2,··· is a sequence in K with |sn − s0| → 0, then µsn → µs0 .

PROOF. Let |sn−s0| → 0. Decompose sn as sn = sn
1 e1+· · ·+sn

N eN for n = 0, 1, · · · .

Then sn
j → s0

j for j = 1, · · · , N and (2.8) shows that µ̂sn(z) → µ̂s0(z) for all z. �

If K = [0,∞), then for any ρ ∈ ID(Rd) there exists a convolution semigroup {µt : t �
0} satisfying µ1 = ρ. We ask the question whether this fact generalizes to the case of a
general cone K . The answer follows from Theorem 2.8.

DEFINITION 2.10. Let {e1, · · · , eN } be a weak basis of K and let ρ1, · · · , ρN ∈
ID(Rd). We call {ρ1, · · · , ρN } admissible with respect to {e1, · · · , eN }, if there exists
(uniquely, by Theorem 2.8) a K-parameter convolution semigroup {µs : s ∈ K} such that
µej = ρj for j = 1, · · · , N .

THEOREM 2.11. Let {e1, · · · , eN } be a weak basis of K . Let ρ1, · · · , ρN ∈ ID(Rd)

and let (Aj , νj , γj ) be the generating triplet of ρj . Then the following three statements are
equivalent.

(a) {ρ1, · · · , ρN } is admissible with respect to {e1, · · · , eN }.
(b) If s1, · · · , sN ∈ R are such that s1e

1 + · · · + sNeN ∈ K , then ρ̂1(z)
s1 · · · ρ̂N (z)sN

is an infinitely divisible characteristic function.

(c) If s1, · · · , sN ∈ R are such that s1e
1 +· · ·+ sNeN ∈ K , then s1A1 +· · ·+ sNAN ∈

S+
d and s1ν1(B) + · · · + sNνN(B) � 0 for B ∈ B0(Rd).

PROOF. By Theorem 2.8, (a) implies (b). Conversely, suppose that (b) is true. For each
s ∈ K , define µs ∈ ID(Rd ) by (2.8) with µej = ρj . Since s1, · · · , sN are determined by s,
this is well-defined by virtue of (b). The property µs1+s2 = µs1 ∗ µs2 is obvious. If tn strictly
decreases to 0, then tns → 0 and hence µtns → δ0. This shows (a). The equivalence of (b)
and (c) is a consequence of E 12.3 of [11]. �

A characterization of strong bases follows from this theorem.

COROLLARY 2.12. Let {e1, · · · , eN } be a weak basis of K . Then, every choice of

{ρ1, · · · , ρN } in ID(Rd) is admissible with respect to {e1, · · · , eN } if and only if {e1, · · · ,

eN } is a strong basis of K .
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PROOF. If {e1, · · · , eN } is a strong basis, then the condition (b) of the theorem above
is automatically satisfied for any {ρ1, · · · , ρN } in ID(Rd), since sj � 0 for j = 1, · · · , N .

Conversely, suppose that {e1, · · · , eN } is not a strong basis. Then, we can choose j0 such that

there exists s = s1e
1 + · · · + sNeN ∈ K with sj0 < 0. Let ρ ∈ ID(Rd ) be nontrivial and

ρj = ρ for j 
= j0 and ρj0 = ρc with c so large that (1 − c)sj0 > s1 + · · · + sN . By the

theorem above, {ρ1, · · · , ρN } is then not admissible with respect to {e1, · · · , eN }. �

When we are given a cone K and its weak basis {e1, · · · , eN }, we can sometimes
rewrite the condition (c) in Theorem 2.11 as more tractable properties of A1, · · · , AN and
ν1, · · · , νN . This will be shown in Section 3.

Let us give some other applications of Theorem 2.11. For a d × d matrix A, A(Rd) =
{Ax : x ∈ Rd } denotes the range of A. For linear subspaces L,L1, · · · , LN of Rd , L is said
to be the direct sum of L1, · · · , LN if L = L1 + · · · + LN and if the expression of x ∈ L in

the form x = x1 + · · · + xN with xj ∈ Lj , j = 1, · · · , N , is unique.

PROPOSITION 2.13. Let {e1, · · · , eN } be a weak basis of K and suppose that there is
s ∈ K satisfying s = s1e

1 + · · · + sN eN with sj0 < 0. Let L1, · · · , LN be linear subspaces

of Rd such that L1 + · · · + LN is the direct sum of L1, · · · , LN . If {ρ1, · · · , ρN } in ID(Rd)

is admissible with respect to {e1, · · · , eN } and if Supp(ρj ) ⊆ Lj for j = 1, · · · , N , then ρj0

is trivial.

PROOF. Step 1. Let us prove the assertion under the assumption that Lj , j = 1, · · · ,

N , are orthogonal. Let (Aj , νj , γj ) be the generating triplet of ρj . It follows from Supp(ρj ) ⊆
Lj that Aj(Rd ) ⊆ Lj , Supp(νj ) ⊆ Lj and γj ∈ Lj (cf. Proposition 24.17 of [11]). Now
choose s such that sj0 < 0. Let z ∈ Lj0 . Then, by (c) of Theorem 2.11, 0 � 〈z, (s1A1 + · · ·+
sNAN)z〉 = sj0〈z,Aj0z〉. Hence 〈z,Aj0z〉 = 0. It follows that Aj0z = 0. Since Aj(Rd) =
{Ajz : z ∈ Aj(Rd)} and Aj(Rd) ⊆ Lj , we see that Aj(Rd) = {Ajz : z ∈ Lj }. Therefore,

Aj0(R
d) = {0}, that is, Aj0 = 0. Let B be a Borel set in Lj0 . Then νj (B) � νj (Lj0 ∩Lj ) = 0

for j 
= j0. Hence sj0νj0(B) � 0. Since sj0 < 0, this means that νj0(B) = 0. That is, νj0 = 0.
Thus, ρj0 is trivial.

Step 2. General case. There exists a linear transformation T from Rd onto Rd such that

the images L
�
j of Lj by T , j = 1, · · · , N , are orthogonal. Denote ρ

�
j (B) = ρj (T

−1B). It

is readily seen that {ρ�
1, · · · , ρ

�
N } is admissible. Since ρ

�
j (L

�
j ) = ρj (T

−1L
�
j ) = ρj (Lj ) = 1,

we have Supp(ρ
�
j ) ⊆ L

�
j . Hence, by Step 1, ρ

�
j0

is trivial, that is, ρj0 is trivial. �

Let K and K̃ be cones satisfying K ⊆ K̃ . Let {µs : s ∈ K} and {µ̃s : s ∈ K̃} be,

respectively, K- and K̃-parameter convolution semigroups on Rd . We say that {µ̃s : s ∈ K̃}
is an extension of {µs : s ∈ K} if µ̃s = µs for all s ∈ K .

PROPOSITION 2.14. Let K be an N-dimensional cone with strong basis {e1, · · · , eN }.
Then there exists a K-parameter convolution semigroup {µs : s ∈ K} on R such that, for any
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N-dimensional cone K̃ satisfying K̃ ⊇ K and K̃ 
= K , {µs : s ∈ K} is not extendable to a

K̃-parameter convolution semigroup. In particular if, for the Lévy measures νj of µej , there
are Bj ∈ B0(R), j = 1, · · · , N , such that νj (Bj ) > 0 and νk(Bj ) = 0 for k 
= j , then
{µs : s ∈ K} is not extendable.

PROOF. Let {µs : s ∈ K} be as above and let K̃ be an N-dimensional cone satisfying

K̃ ⊇ K and K̃ 
= K . Suppose that {µs : s ∈ K} is extendable to {µ̃s : s ∈ K̃}. Since

{e1, · · · , eN } is a weak basis of K̃ but not a strong basis, there is s ∈ K̃ such that s = s1e
1 +

· · ·+sNeN with sj < 0 for some j . The Lévy measure ν̃s of µ̃s satisfies ν̃s = s1ν1+· · ·+sNνN

by Theorem 2.8. Hence ν̃s (Bj ) = sj νj (Bj ) < 0, which is absurd. �

3. Examples

In this section, the first example concerns the structure of the cone S+
d . Then we seek

admissibility conditions for some cones in R3. We will use the notion of dual cones. The last

example is a polyhedral cone in RM .

EXAMPLE 3.1. Consider the class S+
d of nonnegative-definite symmetric d × d matri-

ces s = (sjk)
d
j,k=1. The lower triangle (sjk)k�j with d(d + 1)/2 entries determines s. We

identify S+
d with a subset of Rd(d+1)/2, considering (sjk)k�j as a column vector. Then S+

d is

a nondegenerate cone in Rd(d+1)/2.

Let us show that S+
2 is isomorphic to a circular cone in R3. Indeed, let K = S+

2 . Then

s = (sjk)
2
j,k=1 ∈ K is identified with (x1, x2, x3)

�, where x1 = s11, x2 = s22, x3 = s21, and

hence

K = {(x1, x2, x3)
� : x1 � 0, x2 � 0, x1x2 − x2

3 � 0} .

Consider the linear transformation T from R3 to R3 defined by T (x1, x2, x3)
� = (y1, y2, y3)

�
with

x1 = y1 + y3 , x2 = −y1 + y3 , x3 = y2 .

Then u ∈ K̃ = T K is expressed as

y1 + y3 � 0 , −y1 + y3 � 0 , (y1 + y3)(−y1 + y3) − y2
2 � 0 .

This is written as y3 � 0, y2
3 −y2

1 −y2
2 � 0, which describes a circular cone. This expression

of S+
d by a quadratic inequality seems to exist only for d = 2, because the boundary of S+

d is
expressed by det(s) = 0, which is an equation of degree d .

For any d � 2, the cone S+
d does not have a strong basis. The proof is as follows. If S+

d

has a strong basis, then, for any choice of s1, s2 ∈ S+
d , the greatest lower bound s1 ∧S+

d
s2

exists by Remark 2.5. But, in a circular cone in R3, two elements do not always have a greatest
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lower bound by Remark 2.5. By the isomorphism of S+
2 to a circular cone, S+

2 does not have

a strong basis. For d � 3, consider sp = (s
p
jk)

d
j,k=1 in S+

d for p = 1, 2 such that s
p
jk = 0

whenever j � 3 or k � 3. For s = (sjk)
d
j,k=1 ∈ S+

d , we have s �S+
d

sp if and only if sjk = 0

for j � 3 or k � 3 and u �S+
2

up where u = (sjk)
2
j,k=1 and up = (s

p

jk)
2
j,k=1. That is, finding

the greatest lower bound of s1 and s2 in S+
d is equivalent to finding the greatest lower bound

of u1 and u2 in S+
2 . Since u1 and u2 do not always have a greatest lower bound in S+

2 , s1 and

s2 do not always have a greatest lower bound in S+
d . Thus, S+

d does not have a strong basis.

Let K be a cone in RM . Let K ′ = {u ∈ RM : 〈u, s〉 � 0 for all s ∈ K}. Then K ′ is again

a cone in RM . It is called the dual cone of K . We have (K ′)′ = K . If K = RM+ , then K = K ′.
For two cones K1, K2 in RM , we have K1 ⊆ K2 if and only if K ′

1 ⊇ K ′
2.

EXAMPLE 3.2. Let

e1 =
(√

3

2
,

1

2
, 1

)�
, e2 =

(
−

√
3

2
,

1

2
, 1

)�
, e3 = (0,−1, 1)�(3.1)

in R3. These points are on the circle x2
1 + x2

2 = 1, x3 = 1, and form an equilateral triangle.

Let Γ1 and Γ2 be the line segments e3e1 and e2e3, respectively. Let C be the arc e1e2 of the
circle. Let D be the closed convex set on the plane x3 = 1, surrounded by Γ1, C and Γ2. Let

K = {s = tu ∈ R3 : u ∈ D and t � 0}. Then {e1, e2, e3} is a weak basis of this cone K . For
s and u in R3, denote s = s1e

1 + s2e
2 + s3e

3 and uj = 〈u, ej 〉 for j = 1, 2, 3. We have

〈u, s〉 = u1s1 + u2s2 + u3s3 .(3.2)

Then, u ∈ K ′ if and only if
{

uj � 0 for j = 1, 2, 3

au1 + (1 − a)u2 − a(1 − a)u3 � 0 for 0 � a � 1 .
(3.3)

An alternative characterization is that u ∈ K ′ if and only if
{

uj � 0 for j = 1, 2, 3√
u3 � √

u1 + √
u2 .

(3.4)

The proof is as follows. A few calculations show that s ∈ C if and only if

s = (1 − a(1 − a))−1(ae1 + (1 − a)e2 − a(1 − a)e3) with 0 � a � 1 .(3.5)

If u ∈ K ′, then (3.3) holds, since 〈u, ej 〉 � 0 and 〈u, s〉 � 0 for s of (3.5). If u satisfies
(3.3), then we can show that u ∈ K ′. Indeed, for s ∈ C we have 〈u, s〉 � 0 by (3.5); for

s in the triangle with vertices e1, e2, e3 we have 〈u, s〉 � 0, since uj � 0 for j = 1, 2, 3;
finally for s in D but not in the triangle there is a number 0 � γ � 1 and s̃ ∈ C such that

s = γ e3 + (1 − γ )s̃ and hence 〈u, s〉 � 0. To see the equivalence of (3.3) and (3.4), notice
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that, if u1 � 0 and u2 � 0, then the infimum of u1/(1 − a) + u2/a for 0 < a < 1 equals

(
√

u1 + √
u2)

2.

Let us consider admissibility for K and {e1, e2, e3}. A system {ρ1, ρ2, ρ3} in ID(Rd) is

admissible with respect to {e1, e2, e3} if and only if the triplets (Aj , νj , γj ) of ρj , j = 1, 2, 3,
satisfy

{
aA1 + (1 − a)A2 − a(1 − a)A3 ∈ S+

d for 0 < a < 1,

aν1 + (1 − a)ν2 − a(1 − a)ν3 � 0 on B0(Rd) for 0 < a < 1
(3.6)

or, equivalently,
{√〈A3z, z〉 �

√〈A1z, z〉 + √〈A2z, z〉 for z ∈ Rd,√
ν3(B) �

√
ν1(B) + √

ν2(B) for B ∈ B0(Rd ) .
(3.7)

Indeed, for u1, u2, u3 � 0, the condition that u1s1 +u2s2 +u3s3 � 0 for all s = s1e
1 +s2e

2 +
s3e

3 ∈ K is expressed as above. Hence, by Theorem 2.11 we get the result.
For example, if ρ1 = ρ2 = ρ with triplet (A, ν, γ ), then the admissibility condition for

{ρ, ρ, ρ3} is that 4A − A3 ∈ S+
d and 4ν − ν3 � 0 on B0(Rd ) .

EXAMPLE 3.3. Let K be the circular cone in R3 defined by x2
1 + x2

2 � x2
3 and x3 � 0.

Let e1, e2, e3 be as in (3.1). These form a weak basis of K . Notice that the points e1, e2, e3

are located on the circle C defined by x2
1 + x2

2 = 1, x3 = 1 and that the triangle e1e2e3 is
equilateral. Thus K is the union of three cones, each of which is isomorphic to the cone of

Example 3.2. Hence we conclude the following. Let ρj ∈ ID(Rd) with triplet (Aj , νj , γj )

for j = 1, 2, 3. Then, {ρ1, ρ2, ρ3} is admissible with respect to {e1, e2, e3} if and only if, for
(k, l,m) = (1, 2, 3), (2, 3, 1), and (3, 1, 2),

{
aAk + (1 − a)Al − a(1 − a)Am ∈ S+

d for 0 < a < 1 ,

aνk + (1 − a)νl − a(1 − a)νm � 0 on B0(Rd) for 0 < a < 1
(3.8)

or, equivalently, {√〈Amz, z〉 �
√〈Akz, z〉 + √〈Alz, z〉 for z ∈ Rd ,√

νm(B) �
√

νk(B) + √
νl(B) for B ∈ B0(Rd) .

(3.9)

For example, for any ρ ∈ ID(Rd), {ρ, ρ, ρ} is admissible with respect to {e1, e2, e3} and
the associated semigroup {µs : s ∈ K} satisfies µs = ρ for any s ∈ C, which is proved from

(3.5). As another example, let ρ1 = ρ2 = ρ ∈ ID(Rd ) with triplet (A, ν, γ ). Then, like in
Example 3.2, {ρ, ρ, ρ3} is admissible with respect to {e1, e2, e3} if and only if 4A− A3 ∈ S+

d

and 4ν − ν3 � 0 on B0(Rd).
Suppose that Supp(ρj ) ⊆ Lj for j = 1, 2, 3, where L1, L2, L3 are linear subspaces of

Rd such that L1 + L2 + L3 is the direct sum. Then, {ρ1, ρ2, ρ3} is admissible with respect to

{e1, e2, e3} only if each ρj is trivial, as is seen in Proposition 2.13.
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EXAMPLE 3.4. Let K be the least cone in R3 containing e1, · · · , e4, where

e1 = (0, 0, 1)� , e2 = (1, 1, 1)� , e3 = (1, 0, 1)� , e4 = (0, 1, 1)� .

That is, K is the set of s such that

s = α1e
1 + α2e

2 + α3e
3 + α4e

4 with α1, · · · , α4 � 0 ,(3.10)

but this expression of s is not unique. Note that the section K ∩ {(x1, x2, x3)
� : x1, x2 ∈ R}

for x3 > 0 is the square with vertices (0, 0, x3)
�, (x3, 0, x3)

�, (x3, x3, x3)
� and (0, x3, x3)

�.
Let us use {e1, e2, e3} as a weak basis of K . As in Example 3.2, for s and u in R3, denote

s = s1e
1 + s2e

2 + s3e
3 and uj = 〈u, ej 〉 for j = 1, 2, 3. Then we have (3.2). It follows from

e4 = e1 + e2 − e3 that u ∈ K ′ if and only if
{

uj � 0 for j = 1, 2, 3 ,

u1 + u2 − u3 � 0 .
(3.11)

Indeed, if u ∈ K ′, then we get (3.11) by letting s = ej , j = 1, · · · , 4; conversely, if (3.11)
holds, then 〈u, s〉 � 0 for all s ∈ K by (3.10). In particular, there are vectors u1, · · · , u4 ∈ K ′
such that 〈u1, s〉 = s1, 〈u2, s〉 = s2, 〈u3, s〉 = s1 + s3, 〈u4, s〉 = s2 + s3. Let us show that any
u ∈ K ′ is written as

u = β1u
1 + β2u

2 + β3u
3 + β4u

4 with β1, · · · , β4 � 0 .(3.12)

Let u ∈ K ′. Then, using (3.11), we can find β1, · · · , β4 � 0 such that

〈u, s〉 = (β1 + β3)s1 + (β2 + β4)s2 + (β3 + β4)s3 .

For instance, if u1 � u3, let β1 = 0, β2 = u1 + u2 − u3, β3 = u1, β4 = u3 − u1, and
if u1 > u3, let β1 = u1 − u3, β2 = u2, β3 = u3, β4 = 0. By rearranging terms we see

〈u, s〉 = 〈β1u
1 + · · · + β4u

4, s〉 for s ∈ R3 and hence (3.12) holds.
The admissibility condition for K and {e1, e2, e3} is as follows. Let ρj ∈ ID(Rd) with

triplet (Aj , νj , γj ). Then, {ρ1, ρ2, ρ3} is admissible with respect to {e1, e2, e3} if and only if

{
A1 + A2 − A3 ∈ S+

d

ν1 + ν2 − ν3 � 0 on B0(Rd ) .
(3.13)

This is an immediate consequence of Theorem 2.11 and the characterization (3.11).

EXAMPLE 3.5. Example 3.4 is partly generalized as follows. Let K be a cone in RM .

Suppose that there are e1, · · · , eL with L > M such that {e1, · · · , eM} is linearly independent

and K is the smallest cone that contains e1, · · · , eL. This means that K is the set of s such
that

s = α1e
1 + · · · + αLeL with α1, · · · , αL � 0 .
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Such a cone is called a polyhedral cone (cf. Rockafellar [9]). We use {e1, · · · , eM} as our

weak basis of K . For s and u in RM , we use sj and uj in the meaning that s = s1e
1 + · · · +

sMeM and 〈u, ej 〉 = uj for j = 1, · · · ,M . Then,

〈u, s〉 = u1s1 + · · · + uMsM .

It follows from the linear independence of {e1, · · · , eM} that there are unique expressions

ej = a
j

1e1 + · · · + a
j

MeM for j = M + 1, · · · , L .

Then we can prove the following. The proof is similar to Example 3.4.
(i) u ∈ K ′ if and only if

{
uj � 0 for j = 1, · · · ,M ,

a
j

1u1 + · · · + a
j
MuM � 0 for j = M + 1, · · · , L .

(ii) Let {ρ1, · · · , ρM } ⊂ ID(Rd) and let (Aj , νj , γj ) be the triplet of ρj . Then,

{ρ1, · · · , ρM } is admissible with respect to {e1, · · · , eM } if and only if, for j = M+1, · · · , L,

{
a

j
1A1 + · · · + a

j
MAM ∈ S+

d ,

a
j

1ν1 + · · · + a
j
MνM � 0 on B0(Rd ).

4. Subordination of cone-parameter convolution semigroups

In this section K1 is an N1-dimensional cone in RM1 and K2 is an N2-dimensional cone
in RM2 . We extend the concept of subordination to the case where subordinators and sub-
ordinands have parameters in K1 and K2, respectively. Then we discuss inheritance of self-
decomposability, the Lm property and stability from subordinator to subordinated. As the
subordinators have to be supported on K2, we begin with the following lemma.

LEMMA 4.1. Let ρ ∈ ID(RM2) with triplet (A, ν, γ ). Then Supp(ρ) ⊆ K2 if and only
if

A = 0 , ν(RM2 \ K2) = 0 ,

∫
K2∩{|s|�1}

|s|ν(ds) < ∞ , γ 0 ∈ K2 .(4.1)

Here we recall that γ 0 = γ − ∫
K2∩{|s|�1} sν(ds), the drift of ρ. This lemma is found

in Skorohod [25], Chapter 3, Theorem 21. A proof can be given by extending the proof of
Theorem 21.5 of [11]. Here we have to use Proposition 2.3 as in [8], p. 70–72.

THEOREM 4.2. Let {e1, · · · , eN1} be a weak basis of K1. Let {ρs : s ∈ K1} be a

K1-parameter convolution semigroup on RM2 . Let (As, νs, γs) be the triplet of ρs . Then
Supp(ρs) ⊆ K2 for all s ∈ K1 if and only if the following conditions (a) and (b) are satisfied:

(a) Aej = 0, νej (RM2 \ K2) = 0, and
∫
K2∩{|s|�1} |s|νej (ds) < ∞ for j = 1, · · · , N1;
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(b) if s1, · · · , sN1 ∈ R are such that s1e
1 + · · · + sN1e

N1 ∈ K1, then s1γ
0
e1 + · · · +

sN1γ
0
eN1

∈ K2, where γ 0
ej is the drift of ρej .

If {e1, · · · , eN1} is a strong basis, then condition (b) is simply written as γ 0
ej ∈ K2 for

j = 1, · · · , N1. If {ρs : s ∈ K1} satisfies Supp(ρs) ⊆ K2 for all s ∈ K1, then we say that it is
supported on K2.

PROOF OF THEOREM. Suppose that Supp(ρs) ⊆ K2 for all s ∈ K1. Then the triplet

(As, νs, γs) satisfies (4.1). By Theorem 2.8 we see that γ 0
s = s1γ

0
e1 + · · · + sN1γ

0
N1

for

s = s1e
1 + · · · + sN1e

N1 ∈ K1. Hence (a) and (b) hold. The converse is similarly proved. �

Now we introduce subordination of convolution semigroups. For any measure µ and
µ-integrable function f , we write µ(f ) = ∫

f (x)µ(dx).

THEOREM 4.3. Let {µu : u ∈ K2} be a K2-parameter convolution semigroup on Rd

and {ρs : s ∈ K1} a K1-parameter convolution semigroup supported on K2. Define a proba-
bility measure σs on Rd by

σs(f ) =
∫

K2

µu(f )ρs(du)(4.2)

for bounded continuous functions f on Rd . Then {σs : s ∈ K1} is a K1-parameter convolution
semigroup on Rd .

We call this procedure to get {σs : s ∈ K1} subordination of {µu : u ∈ K2} by {ρs : s ∈
K1}. The new convolution semigroup is said to be subordinate to {µu : u ∈ K2} by {ρs : s ∈
K1}. Sometimes {µu : u ∈ K2}, {ρs : s ∈ K1} and {σs : s ∈ K1} are respectively called
subordinand, subordinating (or subordinator), and subordinated.

PROOF OF THEOREM. If f is bounded and continuous, then µu(f ) is continuous in
u by Corollary 2.9, and hence the integral in (4.2) exists. It is linear in f , nonnegative for
f � 0, and 1 for f = 1. It decreases to 0 whenever f = fn(x) decreases to 0 on Rd as
n → ∞. Thus there is a unique probability measure σs satisfying (4.2) (Dudley [5], Theorem
4.5.2). Moreover, {σs : s ∈ K1} is a convolution semigroup. Indeed, we have

σ̂s (z) =
∫

K2

µ̂u(z)ρs(du) , z ∈ Rd .(4.3)

Since

σ̂s1+s2(z) =
∫

K2

µ̂u(z)ρs1+s2(du) =
∫∫

K2×K2

µ̂u1+u2(z)ρs1(du1)ρs2(du2)

=
∫∫

K2×K2

µ̂u1(z)µ̂u2(z)ρs1(du1)ρs2(du2) = σ̂s1(z)σ̂s2(z) ,

we have σs1+s2 = σs1 ∗ σs2 . As {tn} strictly decreases to 0, ρtns tends to δ0, and hence
σ̂tns(z) → 1, that is, σtns → δ0. �
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Let us give the characteristic functions and the triplets of subordinated semigroups. Let
C be the set of complex numbers. For v = (v1, · · · , vN2 )

� and w = (w1, · · · , wN2)
� in CN2 ,

we write 〈v,w〉 = ∑N2
k=1 vkwk . In the case of ordinary subordination (that is, K1 = K2 =

R+) the following theorem reduces to Theorem 30.1 of [11]. In the case where K1 = R+ and

K2 = RN2+ , it is in Theorems 3.3 and 4.7 of [1].

THEOREM 4.4. Let {µu : u ∈ K2}, {ρs : s ∈ K1}, and {σs : s ∈ K1} be the sub-
ordinand, subordinating, and subordinated convolution semigroups in Theorem 4.3. Let

{h1, · · · , hN2 } be a weak basis of K2. Let (A
µ
k , ν

µ
k , γ

µ
k ) be the triplet of µhk for k =

1, · · · , N2. Let ν
ρ
s and γ

0ρ
s be the Lévy measure and the drift of ρs for s ∈ K1 and decompose

γ
0ρ
s as

γ 0ρ
s = (γ 0ρ

s )1h
1 + · · · + (γ 0ρ

s )N2h
N2 .(4.4)

Let R be the orthogonal projection from RM2 to the linear subspace L2 generated by K2 and

let T be the linear transformation from RM2 onto RN2 defined by

T u = (u1, · · · , uN2)
� where Ru = u1h

1 + · · · + uN2h
N2 .

Then we have the following.
(i) For any s ∈ K1,

σ̂s (z) = exp Ψ ρ
s (w) , z ∈ Rd ,(4.5)

where

Ψ ρ
s (w) =

∫
K2

(e〈w,T u〉 − 1)νρ
s (du) + 〈T γ 0ρ

s , w〉(4.6)

with w = (w1, · · · , wN2)
� given by

wk = −1

2
〈z,Aµ

k z〉 +
∫

Rd

g (z, x)ν
µ
k (dx) + i〈γ µ

k , z〉.(4.7)

Here g (z, x) is the function appearing in (1.1).
(ii) For any s ∈ K1 the triplet (Aσ

s , νσ
s , γ σ

s ) of σs is represented as follows:

Aσ
s =

N2∑
k=1

(γ 0ρ
s )k A

µ
k ,(4.8)

νσ
s (B) =

∫
K2

µu(B)νρ
s (du) +

N2∑
k=1

(γ 0ρ
s )k ν

µ
k (B), B ∈ B(Rd \ {0}) ,(4.9)

γ σ
s =

∫
K2

νρ
s (du)

∫
|x|�1

xµu(dx) +
N2∑
k=1

(γ 0ρ
s )k γ

µ
k .(4.10)
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(iii) Fix s ∈ K1. If
∫
K2∩{|u|�1} |u|1/2ν

ρ
s (du) < ∞ and γ

0ρ
s = 0, then Aσ

s = 0,∫
|x|�1 |x|νσ

s (dx) < ∞, and the drift γ 0σ
s is zero.

(iv) Let K3 be a cone in Rd . If Supp(µu) ⊆ K3 for all u ∈ K2, then Supp(σs) ⊆ K3

for all s ∈ K1 and

γ 0σ
s =

N2∑
k=1

(γ 0ρ
s )k γ

0µ
k .(4.11)

PROOF OF THEOREM 4.4 (i). We start from the identity (4.3). For u = u1h
1 + · · · +

uN2h
N2 ∈ K2 we have

µ̂u(z) = µ̂h1(z)u1 · · · µ̂hN2 (z)uN2(4.12)

= exp

[ N2∑
k=1

uk

(
− 1

2
〈z,Aµ

k z〉 +
∫

Rd

g (z, x)ν
µ
k (dx) + i〈γ µ

k , z〉
)]

by Theorem 2.8. Define Tρs as (Tρs)(B) = ρs(T
−1(B)) for B ∈ B(RN2). Let K

�
2 be

the set of w = (w1, · · · , wN2)
� ∈ CN2 such that Re (u1w1 + · · · + uN2wN2) � 0 for all

u1, · · · , uN2 ∈ R satisfying u1h
1 + · · · + uN2h

N2 ∈ K2. We claim that∫
RN2

e〈w,ũ〉(Tρs)(dũ) =
∫

K2

e〈w,T u〉ρs(du) = exp Ψ ρ
s (w) for w ∈ K

�
2 .(4.13)

By [11], Proposition 11.10, the triplet (A
Tρ
s , ν

Tρ
s , γ

Tρ
s ) of Tρs is given by the triplet

(A
ρ
s , ν

ρ
s , γ

ρ
s ) of ρs as

ATρ
s = T Aρ

s T ′ , νTρ
s = [νρ

s T −1]RN2 \{0} ,

γ Tρ
s = T γ ρ

s +
∫

T u(1{|ũ|�1}(T u) − 1{|u|�1}(u))νρ
s (du) ,

where T ′ is the transpose of T . Hence, A
Tρ
s = 0 and∫

|ũ|�1
|ũ|νTρ

s (dũ) =
∫

|T u|�1
|T u|νρ

s (du) � const
∫

|u|�1
|u|νρ

s (du) +
∫

|u|>1
νρ
s (du) < ∞ .

The drift γ
0Tρ
s of Tρs is represented as γ

0Tρ
s = T γ

0ρ
s , since

γ 0Tρ
s = γ Tρ

s −
∫

|ũ|�1
ũνTρ

s (dũ)

= T γ ρ
s +

∫
T u(1{|ũ|�1}(T u) − 1{|u|�1}(u))νρ

s (du) −
∫

|T u|�1
T uνρ

s (du)

= T γ ρ
s −

∫
|u|�1

T uνρ
s (du) = T γ 0ρ

s .
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Hence, by (4.6),
∫

ei〈z,T u〉ρs(du) = exp Ψ
ρ
s (iz) for z ∈ RN2 . If w ∈ K

�
2, then Re 〈w, T u〉 �

0 for ρs -almost every u and hence
∫

e〈w,T u〉ρs(du) is finite. Now we can apply Theorem

25.17 of [11]. Thus, if w ∈ K
�
2, then (4.6) is definable and (4.13) holds.

Now (4.5) follows from (4.3), (4.12), and (4.13), because w of (4.7) belongs to K
�
2 by

Theorem 2.11. This proves (i). �

We prepare lemmas to prove (ii)–(iv). We say that a subclass Λ of ID(Rd) is bounded

if sup|z|�1〈z,Aµz〉, ∫
Rd (|x|2 ∧ 1)νµ(dx), and |γµ| are bounded with respect to µ ∈ Λ.1 Here

(Aµ, νµ, γµ) is the triplet of µ.

LEMMA 4.5. Let Λ be a bounded subclass of ID(Rd ). Then there are constants C(ε),

C1, C2, C3 such that, for all t � 0,

sup
µ∈Λ

∫
|x|>ε

µt(dx) � C(ε)t for ε > 0 ,(4.14)

sup
µ∈Λ

∫
|x|�1

|x|2µt(dx) � C1t ,(4.15)

sup
µ∈Λ

∣∣∣∣
∫

|x|�1
xµt(dx)

∣∣∣∣ � C2t ,(4.16)

sup
µ∈Λ

∫
|x|�1

|x|µt(dx) � C3t
1/2 .(4.17)

PROOF. Using Example 25.12 of [11], we can extend the proof of Lemma 30.3 of [11].
Details are omitted. �

LEMMA 4.6. Let {µs : s ∈ K} be a K-parameter convolution semigroup on Rd . Then
there are constants C(ε), C1, C2, C3 such that, for all s ∈ K ,∫

|x|>ε

µs(dx) � C(ε)|s| for ε > 0 ,(4.18)

∫
|x|�1

|x|2µs(dx) � C1|s| ,(4.19)

∣∣∣∣
∫

|x|�1
xµs(dx)

∣∣∣∣ � C2|s| ,(4.20)

∫
|x|�1

|x|µs(dx) � C3|s|1/2 .(4.21)

PROOF. Fix a strictly supporting hyperplane H of K and s0 ∈ K \ {0}. Let K0 =
K ∩ (s0 + H). Then, by Proposition 2.3 (ii), K0 is a compact set. Now {µs : s ∈ K0} is a

1That is, conditions (1)–(3) in E 12.5 of [11] are satisfied. The statement in E 12.5 contains an error; the condition that
liml→∞ supµ∈M

∫
|x|>l νµ(dx) = 0 should be added. Thus boundedness and precompactness are not equivalent.
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bounded subclass of ID(Rd ). Indeed, let {e1, · · · , eN } be a weak basis of K . Then s ∈ K is
uniquely expressed as s = s1e

1 + · · · + sNeN , and s1, · · · , sN are continuous functions of s.
Hence sups∈K0

(|s1| + · · · + |sN |) < ∞. This shows boundedness of {µs : s ∈ K0}, in view
of (2.9)–(2.11) of Theorem 2.8. Since every s ∈ K is written as s = tr with some t � 0 and
r ∈ K0, Lemma 4.5 shows that there is C(ε) such that

∫
|x|>ε

µs(dx) =
∫

|x|>ε

µr
t (dx) � C(ε)t .

Let c = infr∈K0 |r|. We have c > 0, since 0 
∈ K0. Hence t � c−1|s|, and we get (4.18) by
changing a constant. The other assertions are proved similarly. �

PROOF OF THEOREM 4.4 (ii)–(iv). First let us prove (ii). We rewrite (4.5). For w =
(w1, · · · , wN2)

� of (4.7),

〈T γ 0ρ
s , w〉 = − 1

2

〈
z,

N2∑
k=1

(γ 0ρ
s )k A

µ
k z

〉

+
∫

Rd

g (z, x)

( N2∑
k=1

(γ 0ρ
s )k ν

µ
k

)
(dx) + i

〈 N2∑
k=1

(γ 0ρ
s )k γ

µ
k , z

〉
.

This gives the summation terms in (4.8)–(4.10). Further, for w of (4.7),

∫
K2

(e〈w,T u〉 − 1)νρ
s (du) =

∫
K2

( N2∏
k=1

µ̂hk (z)
uk − 1

)
νρ
s (du)

=
∫

K2

(µ̂u(z) − 1)νρ
s (du) =

∫
K2

νρ
s (du)

∫
Rd

(ei〈z,x〉 − 1)µu(dx)

=
∫

K2

νρ
s (du)

∫
Rd

g (z, x)µu(dx) + i

∫
K2

νρ
s (du)

〈
z,

∫
|x|�1

xµu(dx)

〉
.

Here the last equality is valid by Lemma 4.6. Define τs by τs(B) = ∫
K2

µu(B)ν
ρ
s (du) for

B ∈ B(Rd \ {0}). Then, using Lemma 4.6, we can prove that
∫

Rd (1 ∧|x|2)τs(dx) < ∞. Thus
we get (4.8)–(4.10), where τs gives the first term in the expression (4.9).

To show (iii), let
∫
K2∩{|u|�1} |u|1/2ν

ρ
s (du) < ∞ and γ

0ρ
s = 0. Then Aσ

s = 0 by (4.8).

Use (4.9), (4.10) and (4.21) and notice that
∫

|x|�1
|x|νσ

s (dx) =
∫

K2

νρ
s (du)

∫
|x|�1

|x|µu(dx)

� C3

∫
|u|�1

|u|1/2νρ
s (du) +

∫
|u|>1

νρ
s (du) < ∞
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and that

γ 0σ
s = γ σ

s −
∫

|x|�1
xνσ

s (dx) = γ σ
s −

∫
K2

νρ
s (du)

∫
|x|�1

xµu(dx) = 0 .

Thus (iii) is true.
Let us show (iv). Assume that Supp(µu) ⊆ K3 for u ∈ K2. Since Supp(ρs) ⊆ K2 for all

s ∈ K1, we have Supp(σs) ⊆ K3 for all s ∈ K1. Hence, by Lemma 4.1,
∫
|x|�1 |x|νσ

s (dx) <

∞. Thus the drift γ 0σ
s of σs exists and γ 0σ

s = γ σ
s − ∫

|x|�1 xνσ
s (dx). The drift γ

0µ
u of µu also

exists and has a similar expression. Now using (4.9) and (4.10), we get (4.11). �

A random variable Y on R (or its distribution) is said to be of type G if Y
d= Z1/2X,

where
d= stands for the equality in distribution, X is a standard Gaussian, Z is nonnegative

and infinitely divisible, and X and Z are independent (see [10]). Equivalently, Y is of type
G if L(Y ) is the same as the distribution at a fixed time of a Lévy process on R subordinate
to Brownian motion. Barndorff-Nielsen and Pérez-Abreu [2] say that an Rd -valued random
variable Y (or its distribution) is of type extG if, for any c ∈ Rd , 〈c, Y 〉 is of type G. They say

that an Rd -valued random variable Y (or its distribution) is of type multG if

Y
d= Z1/2X ,(4.22)

where X is standard Gaussian on Rd , Z is an S+
d -valued infinitely divisible random variable,

Z1/2 is the nonnegative-definite symmetric square root of Z, and X and Z are independent. If
Y is of type multG, then Y is of type extG. Maejima and Rosiński [6] say that a probability
measure µ on Rd is of type G (we call it type G in the MR sense) if µ is symmetric, in-
finitely divisible with arbitrary Gaussian covariance matrix and Lévy measure ν represented

as ν(B) = E[ν0(X
−1B)] for B ∈ B(Rd) where ν0 is a measure on Rd and X is standard

Gaussian on R. They show that µ is of type multG if it is of type G in the MR sense, and that
type extG distributions are not always of type G in the MR sense. Type multG is related to
subordination of cone-parameter convolution semigroups.

THEOREM 4.7. If {σt : t � 0} is an R+-parameter convolution semigroup on Rd sub-

ordinate to the canonical S+
d -parameter convolution semigroup {µu : u ∈ S+

d } by an R+-

parameter convolution semigroup {ρt : t � 0} supported on S+
d , then, for any t � 0, σt is of

type multG. Conversely, any distribution on Rd of type multG is expressible as σ1 of such an
R+-parameter convolution semigroup {σt : t � 0}.

PROOF. Let {σt : t � 0} be as stated above. Then, by (4.3) and by the definition of the

canonical S+
d -parameter convolution semigroup,

σ̂t (z) =
∫

S+
d

e−〈z,uz〉/2ρt (du) , z ∈ Rd .(4.23)
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Let Zt be a random variable on S+
d with distribution ρt , X a standard Gaussian on Rd , where

X and Zt are independent. Then

Eei〈z,Z1/2
t X〉 = Ee−〈z,Zt z〉/2 =

∫
S+

d

e−〈z,uz〉/2ρt (du) .

Therefore σt = L(Zt
1/2X), that is, σt is of type multG.

The converse is obvious, since we can construct, from a given S+
d -valued infinitely

divisible random variable Z, a convolution semigroup {ρt : t � 0} supported on S+
d with

ρ1 = L(Z). �

REMARK 4.8. Let σ = L(Y ) be a distribution on Rd of type multG which satisfies
(4.22) using Z and X and let νρ and γ 0ρ be the Lévy measure and the drift of ρ = L(Z).

Note that νρ is a measure on S+
d and γ 0ρ ∈ S+

d . Then, by Theorem 4.7, σ is infinitely divisible
and we can apply Theorem 4.4 to find the triplet (Aσ , νσ , γ σ ) of σ . Thus, we obtain that

σ̂ (z) = exp

[ ∫
S+

d

(e−〈z,uz〉/2 − 1)νρ(du) − 1

2
〈z, γ 0ρz〉

]
,

and Aσ = γ 0ρ, γ σ = 0 and νσ (B) = ∫
S+

d
µu(B)νρ(du) with µu = Nd(0, u). These results

are noticed in [2] without using subordination.

Inheritance of selfdecomposability and the Lm-property from subordinator to subordi-

nated in subordination of an RN2+ -parameter Lévy process was studied in [1]. In the rest of
this section we extend their results to the cone-parameter case. Our method of proof is simpler
than that of [1]. However, since we do not consider operator selfdecomposability and operator
stability, the results here do not cover those in [1].

A distribution µ on Rd is said to be selfdecomposable if, for every b > 1, there is a
distribution µ′ on Rd such that

µ̂(z) = µ̂(b−1z)µ̂′(z) , z ∈ Rd .(4.24)

The class of selfdecomposable distributions on Rd is denoted by L0 = L0(Rd ). Thus we also
call them of class L0. If µ ∈ L0, then µ is infinitely divisible, µ′ is uniquely determined by
µ and b, and µ′ is also infinitely divisible.

For m = 1, 2, · · · , Lm = Lm(Rd ) is inductively defined as follows: µ ∈ Lm(Rd) if and
only if µ ∈ L0(Rd) and, for every b > 1, µ′ ∈ Lm−1(Rd ). The class L∞ = L∞(Rd) is
defined to be the intersection of Lm(Rd ) for m = 0, 1, 2, · · · . We have

ID ⊃ L0 ⊃ L1 ⊃ · · · ⊃ L∞ ⊃ S ,(4.25)

where S = S(Rd) is the class of stable distributions on Rd .

DEFINITION 4.9. Let K be a cone in RM . Let {µs : s ∈ K} be a K-parameter con-
volution semigroup on Rd . It is called of class Lm if µs ∈ Lm(Rd) for every s ∈ K . Here
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m ∈ {0, 1, · · · ,∞}. Let 0 < α � 2. We call {µs : s ∈ K} strictly α-stable if, for every
s ∈ K ,

µas(B) = µs(a
−1/αB) for all a > 0 and B ∈ B(Rd) .(4.26)

If µas = δ0 for all a > 0, then it satisfies (4.26) for every α. Our terminology is different
from [11] in this respect. In [11] this case is excluded from the definition of strict α-stability.
If {µs} is supported on a cone and µs 
= δ0 for some s, then it cannot be strictly α-stable for
α ∈ (1, 2]. If {µs} is supported on a cone and strictly 1-stable, then µs is trivial for all s.
These follow from Lemma 4.1.

THEOREM 4.10. Let {σs : s ∈ K1} be a K1-parameter convolution semigroup on Rd

subordinate to a K2-parameter convolution semigroup {µu : u ∈ K2} by a K1-parameter
convolution semigroup {ρs : s ∈ K1} supported on K2. Let 0 < α � 2. Suppose that
{µu : u ∈ K2} is strictly α-stable. Then the following are true.

(i) Let m ∈ {0, 1, · · · ,∞}. If {ρs : s ∈ K1} is of class Lm, then {σs : s ∈ K1} is of
class Lm.

(ii) Let 0 < α′ � 1. If {ρs : s ∈ K1} is strictly α′-stable, then {σs : s ∈ K1} is strictly
αα′-stable.

We need two lemmas.

LEMMA 4.11. Let K be a cone in RM . Let µ be in L0(RM) and satisfy Supp(µ) ⊆ K .
Then, for any b > 1, the probability measure µ′ defined by (4.24) satisfies Supp(µ′) ⊆ K .

PROOF. We fix b > 1 and denote by µ′′ the probability measure defined by µ̂′′(z) =
µ̂(b−1z). Thus (4.24) means that µ = µ′ ∗µ′′. Let (A, ν, γ ), (A′, ν′, γ ′), and (A′′, ν′′, γ ′′) be
the triplets of µ, µ′, and µ′′, respectively. Then, A = A′ +A′′, ν = ν′ +ν′′, and γ = γ ′ +γ ′′.
Applying Lemma 4.1, we have

A = 0 , ν(RM \ K) = 0 ,

∫
|s|�1

|s|ν(ds) < ∞ , γ 0 ∈ K ,

where γ 0 is the drift of µ. Therefore, we have A′ = 0, ν′(RM \K) = 0,
∫
|s|�1 |s|ν′(ds) < ∞,

and similarly for A′′ and ν′′. Thus µ′ and µ′′ have drifts γ 0′
and γ 0′′

, and γ 0 = γ 0′ + γ 0′′
.

Since γ 0′′ = b−1γ 0, we have γ 0′ = (1 − b−1)γ 0 ∈ K . Now we can conclude that µ′ is
supported on K , using Lemma 4.1 again. �

LEMMA 4.12. Let K be a cone in RM . Let {µs : s ∈ K} be a K-parameter convolution
semigroup of class L0 on Rd . Fix b > 1 and define µ′

s by

µ̂s(z) = µ̂s(b
−1z)µ̂′

s(z) .(4.27)

Then {µ′
s : s ∈ K} is a K-parameter convolution semigroup.

PROOF. We have µ̂s1+s2(z) = µ̂s1(z)µ̂s2(z) = µ̂s1+s2(b−1z)µ̂′
s1(z)µ̂′

s2(z). On the

other hand, µ̂s1+s2(z) = µ̂s1+s2(b−1z)µ̂′
s1+s2(z). Since µ̂s(z) 
= 0, we have µ̂′

s1+s2(z) =
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µ̂′
s1(z)µ̂′

s2(z). As tn strictly decreases to 0, µ̂tns(z) → 1 and hence, by (4.27), µ̂′
tns (z) → 1.

Therefore, {µ′
s : s ∈ K} is a K-parameter convolution semigroup. �

PROOF OF THEOREM 4.10. (i) Suppose that {ρs : s ∈ K} is of class L0. Fix b > 1.

There are ρ′
s and ρ′′

s such that ρs = ρ′
s ∗ ρ′′

s and ρ̂′′
s (z) = ρ̂s (b

−1z). Since Supp(ρs) ⊆ K2,
we have Supp(ρ′

s) ⊆ K2 by Lemma 4.11. It is evident that Supp(ρ′′
s ) ⊆ K2. Therefore, by

(4.3),

σ̂s(z) =
∫

K2

µ̂u(z)ρs(du) =
∫∫

K2×K2

µ̂u1(z)µ̂u2(z)ρ′
s(du1)ρ′′

s (du2)

=
∫

K2

µ̂u1(z)ρ′
s(du1)

∫
K2

µ̂b−1u2(z)ρs(du2) .

Now we utilize the assumption that µ̂au(z) = µ̂u(a
1/αz) for a > 0. Then

σ̂s(z) = σ̂s (b
−1/αz)

∫
K2

µ̂u1(z)ρ′
s (du1) .(4.28)

By Lemma 4.12,
∫
K2

µ̂u1(z)ρ′
s (du1) is the characteristic function of a subordinated convolu-

tion semigroup. Since b1/α can be an arbitrary real larger than 1, (4.28) shows that σs ∈ L0,
that is, {σs : s ∈ K1} is of class L0.

If {ρs : s ∈ K1} is of class L1, then {ρ′
s : s ∈ K1} is of class L0 by the definition of the

class L1 and
∫
K2

µ̂u1(z)ρ′
s(du1) is the characteristic function of a convolution semigroup of

class L0, which, combined with (4.28), shows that {σs : s ∈ K1} is of class L1. Repeating this
argument, we see that, if {ρs : s ∈ K1} is of class Lm for some m < ∞, then {σs : s ∈ K1} is
of class Lm. Finally, if {ρs : s ∈ K1} is of class L∞, then {σs : s ∈ K1} is of class Lm for all
m < ∞, that is, it is of class L∞.

(ii) Assume that {ρs : s ∈ K1} is strictly α′-stable. Then

σ̂as(z) =
∫

K2

µ̂u(z)ρas(du) =
∫

K2

µ̂
a1/α′

u
(z)ρs(du)

=
∫

K2

µ̂u(a
1/(αα′)z)ρs(du) = σ̂s (a

1/(αα′)z) .

This shows that {σs : s ∈ K1} is strictly αα′-stable. �

REMARK 4.13. Let Y be a random variable of type multG on Rd . Then L(Y ) can
be embedded into an R+-parameter convolution semigroup subordinate to the canonical S+

d -
parameter convolution semigroup, which is strictly 2-stable. Hence we can apply Theorem
4.10. Thus, if the S+

d -valued random variable Z in (4.22) is of class Lm, then Y is of class
Lm.

REMARK 4.14. The problem how much we can weaken the assumption of strict α-
stability of {µu : u ∈ K2} in Theorem 4.10 is open even in the case of the ordinary subordi-
nation. In the subordination of Brownian motion with drift on Rd (2-stable but not strictly
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2-stable), the selfdecomposability is inherited from subordinator to subordinated if d = 1
(Sato [12]), but it is not always inherited if d � 2 (Takano [14]).

Appendix

Proposition 2.3 is obvious in two or three dimensions. Here we present a general proof.

PROOF OF PROPOSITION 2.3. (i) Suppose that L is a linear subspace of RM such that
L∩K = {0}. We will prove that there is an (M−1)-dimensional linear subspace H containing
L such that H ∩ K = {0}. This will entail the assertion (i) by taking L = {0}. Let dim L = l.
If l = M − 1, then there is nothing to prove. Suppose that 0 � l � M − 2. It is enough to

show that, under this assumption, there is an (l + 1)-dimensional linear subspace L̃ of RM

such that L̃ ⊇ L and L̃ ∩ K = {0}. There is a 2-dimensional linear subspace D such that

D ∩ L = {0}. Denote K̃ = K − L = {s − y : s ∈ K, y ∈ L} and K� = D ∩ K̃ . Then

we see that both K̃ and K� are convex and closed under multiplication by nonnegative reals.

Moreover K̃ is a closed set. Indeed, suppose that xn ∈ K̃ , n = 1, 2, · · · , and xn → x. Then
xn = sn −yn with sn ∈ K and yn ∈ L. If there is a subsequence {sni }i=1,2,··· of {sn} such that

|sni | → ∞, then |sni |−1sni tends to some s ∈ K with |s| = 1 via a further subsequence while
|sni |−1xni → 0, and hence |sni |−1yni → s ∈ L via this subsequence, which contradicts
L ∩ K = {0}. Therefore {sn}n=1,2,··· is bounded. It also follows that {yn}n=1,2,··· is bounded.

Choosing a convergent subsequence, we see that x ∈ K − L = K̃ . Thus K̃ is closed. It
follows that K� is closed. If x and −x are in K�, then x = 0. Indeed, let x = s − y and
−x = s′ − y ′ with s, s′ ∈ K and y, y ′ ∈ L. Then s + s′ = y + y ′ ∈ K ∩ L = {0}, and hence
s = s′ = 0, showing x ∈ D ∩ L = {0}. It follows that K� is a cone or a singleton {0}. If K�

is a cone, then it is a half line with endpoint 0 or a closed sector in D with angle < π . In any

case there is a straight line L� in D through 0 such that L� ∩ K� = {0}. Now let L̃ = L + L�.

If x ∈ L̃ ∩ K , then x − y ∈ L� ∩ (K − L) = L� ∩ K� = {0} for some y ∈ L, and hence

x ∈ K ∩ L = {0}. Hence L̃ ∩ K = {0} and dim L̃ = l + 1.
(ii) If 0 ∈ s0 + H , then −s0 ∈ H and hence s0 ∈ H , contradicting H ∩ K = {0}.

Therefore 0 
∈ s0 + H . The set H has a representation H = {x : 〈x, γ 〉 = 0} with γ 
= 0 such

that 〈s, γ 〉 > 0 for all s ∈ K \ {0}. Thus we have D = {x : 〈x − s0, γ 〉 � 0}. Let us show
that K ∩ D is bounded. Suppose, on the contrary, that there is {xn}n=1,2,··· in K ∩ D with

|xn| → ∞. Then 〈|xn|−1(xn − s0), γ 〉 � 0 and the limit s of a convergent subsequence of

{|xn|−1xn} satisfies |s| = 1, s ∈ K , and 〈s, γ 〉 ≤ 0, which is absurd.
(iii) Let {sn} be a K-decreasing sequence in K . Then s1 − sn = (s1 − s2) + · · · +

(sn−1 − sn) ∈ K . If s1 = 0, then we have −sn ∈ K and hence sn = 0 for all n. Assume
that s1 
= 0. Let K ∩ D be the bounded set in the assertion (ii) with s1 in place of s0. Using

the representation of H in the proof of (ii), we have 〈s1 − sn, γ 〉 � 0. Hence sn ∈ K ∩ D. It
follows that {sn}n=1,2,··· is bounded. Let {sni } and {smj } be subsequences of {sn} convergent
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to x and y, respectively. If ni > mj , then smj − sni ∈ K and thus smj − x ∈ K . Hence
y − x ∈ K . Similarly, x − y ∈ K . Hence x − y = 0. Thus {sn} is convergent. �
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[ 6 ] M. MAEJIMA and J. ROSIŃSKI, Type G distributions on Rd , J. Theoret. Probab. 15 (2002), 323–341.
[ 7 ] J. PEDERSEN and K. SATO, Relations between cone-parameter Lévy processes and convolution semigroups

(preprint).
[ 8 ] A. ROCHA-ARTEAGA and K. SATO, Topics in Infinitely Divisible Distributions and Lévy Processes, Commu-

nicaciónes del CIMAT, Guanajuato, Mexico (2001).
[ 9 ] T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press, (1970).
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