Токуо J. Матн. Vol. 26, No. 2, 2003

A Direct Sum Decomposition of the Integers and a Question of Y. Ito

Stanley J. EIGEN

Northeastern University (Communicated by Y. Maeda)

Abstract. A counter example to a conjecture of Y. Ito concerning direct summands of the integers is presented.

1. Introduction

This paper continues the studies begun in [10], [6] and [5] of direct sum decompositions of the integers $\mathbf{Z} = \mathbf{A} \oplus \mathbf{C}$ where

$$\mathbf{A} = \left\{ \sum_{i \ge 0} \varepsilon_i 2^{2i+1} : \varepsilon_i \in \{0, 1\} \text{ and } \varepsilon_i = 1 \text{ for finitely many } i's \right\}$$

and the sum is understood to be unique, *i.e.* $a + c = a' + c' \Rightarrow a = a'$ and c = c'.

The general problem of characterizing complementing pairs of \mathbb{Z} arose in the work of de Bruijn in 1950. That there is no effective characterization of all pairs for \mathbb{Z} was shown by Swenson [9] (see also Post [8]). This contrasts with \mathbb{N} for which a nice characterization exists. Two infinite subsets \mathbb{C} and \mathbb{D} are a complementing pair for the nonnegative integers \mathbb{N} if and only if there exists a sequence of integers $m_0 = 1$ and $m_i \ge 2$ for all $i \ge 1$ such that \mathbb{C} and \mathbb{D} are the sets of all finite sums respectively $c = \sum x_{2i}M_{2i}$ and $d = \sum x_{2i+1}M_{2i+1}$ where $M_i = \prod_{j=0}^i m_j$ and $0 \le x_i < m_{i+1}$ (see [10] for further references). Note, that 0 is in both corresponding to the empty sum, and $1 \in \mathbb{C}$.

The set **A** above, is one of the simpliest direct summands of **N**, arising when $m_i \equiv 2$ for all $i \geq 1$. Many of the results in this paper may be extended though the definitions need to be appropriately modified. The papers [10], [6] and [5] have all worked toward characterizing the complements of **A** in **Z**. We refer the reader to [10] and [2] and references therein for related work and questions in the case one of the summands is finite.

2. Previous results

The set A is fixed throughout the paper as defined in the previous section. Denote by $\mathfrak{C}(\mathbf{A})$ the family of all complements of A.

Received November 15, 2002; revised April 26, 2003

STANLEY J. EIGEN

The following two conditions are necessary for a set $C \in \mathfrak{C}(A)$ (see [10] and [3]).

CONDITIONS 2.1.

(i) For every $c, c' \in \mathbb{C}$ either c = c' or the maximal number *i* such that 2^i divides c - c' is even,

(ii) **C** is maximal with respect to (i). That is if **C**' satisfies (i) and $\mathbf{C} \subset \mathbf{C}'$ then $\mathbf{C} = \mathbf{C}'$.

Clearly C is a complement if and only if $1 + C = \{1 + c : c \in C\}$ is a complement. So we make the normalizing simplification that $0 \in C$. This implies for each $c \in C$ the maximal *i* such that 2^i divides *c* is even.

One obvious complement [7] for \mathbf{A} in \mathbf{Z} is $-\mathbf{B}$ where

$$\mathbf{B} = \left\{ \sum_{i \ge 0} \varepsilon_i 2^{2i} : \varepsilon_i \in \{0, 1\} \text{ and } \varepsilon_i = 1 \text{ for finitely many } i's \right\}$$

In [10], this complement was used to obtain the following.

THEOREM 2.2 (Tijdeman). Let C be a subset of Z containing 0. Then $C \in \mathfrak{C}(A)$ if and only if C satisfies the three conditions (i), (ii) and

(iii) $A \oplus C \supset -B$.

A family of complements of A are

$$\mathbf{B}_{\omega} = \left\{ \sum_{i \ge 0} \varepsilon_i \omega_i 2^{2i} : \varepsilon_i \in \{0, 1\} \text{ and } \varepsilon_i = 1 \text{ for finitely many } i's \right\}$$

where $\omega \in \{-1, 1\}^{\mathbb{N}}$ and $\omega_i = -1$ for infinitely many *i*'s.

These complements were used in [6] to obtain the following.

THEOREM 2.3 (Ito). Let C be a subset of Z containing 0. Then $C \in \mathfrak{C}(A)$ if and only if C satisfies the three conditions (i), (ii) and

(iv) There exists an ω as above such that $\mathbf{A} \oplus \mathbf{C} \supset \mathbf{B}_{\omega}$.

In [5], Dateyama and Kamae extended the family $\{B_{\omega}\}$ of complements and similarly extended the result.

Let $\psi = \{\psi_n\}_{n\geq 0}$ be a set of maps $\psi_n : \{-1, 0, 1\}^{\mathbb{N}} \to \{-1, 1\}$ such that for any $(\varepsilon_0, \varepsilon_1, \cdots) \in \{-1, 0, 1\}^{\mathbb{N}}, \psi_n(\varepsilon_0, \varepsilon_1, \cdots, \varepsilon_{n-1}) = -1$ for infinitely many n's. ψ_0 is a constant of value ± 1 . Define

$$\mathbf{B}_{\psi} = \left\{ \sum_{i \ge 0} \varepsilon_i 2^{2i} : \text{ finite sums where } \varepsilon_i = 0 \text{ or } \varepsilon_i = \psi_i(\varepsilon_0, \cdots, \varepsilon_{i-1}) \right\}$$

THEOREM 2.4 (Dateyama and Kamae). Let C be a subset of Z containing 0. Then $C \in \mathfrak{C}(A)$ if and only if C satisfies the three conditions (i), (ii) and

(v) There exists $a \psi$ as above such that $\mathbf{A} \oplus \mathbf{C} \supset \mathbf{B}_{\psi}$.

CONJECTURE 2.5. In [6], it was conjectured that the third condition in the above theorems could be replaced with

496

(vi) There exists a $\mathbf{D} \in \mathfrak{C}(\mathbf{A})$ such that $\mathbf{A} \oplus \mathbf{C} \supset \mathbf{D}$.

We present a counter example to this in the section 4.

3. 2-adics

In this section, we present and discuss some results on the 2-adic integers which will be used in the sequel.

Let

$$\mathbf{Z}_2 = \left\{ z = \sum_{i \ge 0} z_i 2^i : z_i \in \{0, 1\} \right\}$$

denote the completion of **Z** in the 2-adic valuation norm. For notational convenience we identify \mathbb{Z}_2 with $\{0, 1\}^{\mathbb{N}}$, *i.e.* $z = \sum z_i 2^i \Leftrightarrow (z_0, z_1, z_2, \cdots)$. The positive integers are represented by $n = (z_0, z_1, z_2, \cdots)$ with $z_i = 0$ for all but finitely many *i*'s. The negative integers are represented by $m = (z_0, z_1, z_2, \cdots)$ with $z_i = 1$ for all but finitely many *i*'s.

As usual $\operatorname{ord}(n) = \operatorname{ord}_2(n)$ is the highest power of 2 which divides *n*. This extends to all $z = (z_0, z_1, z_2, \dots) \in \mathbb{Z}_2$ by $\operatorname{ord}_2(z) = i$ where $z_i = 1$ and $z_j = 0$ for all $0 \le j < i$. The ord is used in analyzing the distance of two numbers, that is $\operatorname{ord}(c - d) = n$ means that *c*, *d* are the same for the first *n* coordinates $c_i = d_i$ for $0 \le i \le n - 1$. We will often be concerned with whether the ord is even or odd. Note that $\operatorname{ord}_2(0) = \infty$ and this is considered both odd and even.

Recalling conditions 2.1, a subset **E** of \mathbb{Z}_2 is said to have *even differences* if $\operatorname{ord}_2(e - e')$ is even for all $e \neq e'$. (*Odd differences* is defined similarly.). A set of integers **C** which has even differences is said to be *maximal in* **Z** if it satisfies (ii) of 2.1 A subset **E** of \mathbb{Z}_2 with even differences is *maximal in* \mathbb{Z}_2 if any subset containing **E** with even differences coincides with **E**. We will use the term "maximal" when it is clear from the context which definition applies. (Similar definitions hold for odd differences.)

A set of integers **C** is *even complete* if for all $n \ge 1$ and for every $\xi = (\xi_0, \xi_1, \dots, \xi_{n-1}) \in \{0, 1\}^{\mathbb{N}}$ there exists a $c \in \mathbb{C}$ with $c_{2i} = \xi_i, 0 \le i \le n-1$. Similarly a set of integers **D** is *odd complete* if for all $n \ge 1$ and for every $\xi = (\xi_0, \xi_1, \dots, \xi_{n-1}) \in \{0, 1\}^{\mathbb{N}}$ there exists a $d \in \mathbb{D}$ with $d_{2i+1} = \xi_i, 0 \le i \le n-1$.

LEMMA 3.1. Let **C** be a set of integers containing 0 which have even differences and is maximal in **Z**. Then **C** is even complete.

PROOF. This is essentially contained in Lemma 1 in [5] which proves a bit more. Let $n \ge 1$ be the smallest integer such that there exists $(\xi_0, \dots, \xi_{n-1})$ and no $c \in \mathbb{C}$ with $c_{2i} = \xi_i$, $0 \le i \le n-1$. If n = 1 there are two cases depending on the value of ξ_0 . If $\xi_0 = 1$ then \mathbb{C} contains no odd integers and 1 may be adjoined to \mathbb{C} and maintain even differences. If $\xi_0 = 0$ it means all integers in \mathbb{C} are odd and the number 4 may be adjoined. If n > 1 let $c \in \mathbb{C}$ with

STANLEY J. EIGEN

 $c_{2i} = \xi_i, 0 \le i \le n-2$. Hence $c_{2n-2} \ne \xi_{n-1}$ and $\operatorname{ord}(c-c') \ne 2n-2$ for all $c' \in \mathbb{C}$. The number $c+2^{2n-2}$ may then be adjoined to \mathbb{C} as $\operatorname{ord}(c+2^{2n-2}-c') = \min(\operatorname{ord}(c-c'), 2n-2)$.

The two conditions even differences and even complete are not enough to make a set a complement of **A** or even maximal. Consider the set $-\mathbf{B}$ and remove from it the number -1. This is still even complete but is not maximal with respect to even differences and it is not a complement. Observe however that -1 is in the closure of this set.

The following two lemmas appear in [4] in a more general form and are variations of Lemma 3 in [5].

LEMMA 3.2. Let \mathbf{C} be a set of integers containing 0 which has even differences and is even complete. Then $\mathbf{\bar{C}}$ has even differences and is maximal with respect to even differences in \mathbf{Z}_2 . That is if $\mathbf{C}' \supset \mathbf{\bar{C}}$ and \mathbf{C}' has even differences then $\mathbf{C}' = \mathbf{\bar{C}}$.

The corresponding result for odd differences in place of even differences also holds.

PROOF. Let $z, z' \in \overline{\mathbb{C}}$ with $\operatorname{ord}(z - z') = n$. Choose $c, c' \in \mathbb{C}$ with $\operatorname{ord}(c - z) > n$ and $\operatorname{ord}(c' - z') > n$. Hence $\operatorname{ord}(c - c') = n$ and so is even.

Suppose $\operatorname{ord}(z - x)$ is even for all $z \in \overline{\mathbb{C}}$. Put $\xi_i = x_{2i}, i \ge 0$. Then for each $n \ge 0$, by the definition of even complete, there must be a $c_n \in \mathbb{C}$ with $(c_n)_{2i} = x_{2i}$ for $0 \le i < n$. By even differences of $c_n - x$, $(c_n)_j = x_j$, $0 \le j \le 2n$. Therefore c_n converge to x and x is in the closure of \mathbb{C} .

LEMMA 3.3. Let C be a set of integers containing 0 which has even differences and is even complete. Let E be a set of integers containing 0 which has odd differences and is odd complete. Then

$$\overline{\mathbf{C} \oplus \mathbf{E}} = \bar{\mathbf{C}} \oplus \bar{\mathbf{E}} = \mathbf{Z}_2$$

PROOF. Even and odd differences make the sums unique. If c + d = c' + d' then c - c' = d - d'. Hence this difference is both even and odd and so must be 0. The denseness of $\mathbf{C} \oplus \mathbf{E}$ is similar to the reasoning in the previous proof. The equality of the closure of the sum with the sum of the closures is straightforward from the odd/even differences.

Lemma 3.2 supplies a converse to Lemma 3.1.

LEMMA 3.4. Let C be a set of integers containing 0 which has even differences and is even complete. Then $C' = \overline{C} \cap Z$ has even differences and is maximal in Z.

REMARK 3.5. Lemma 3.3 clarifies how a set **C** can satisfy conditions 2.1 yet not be a complement of **A** in **Z**. For any integer *n* which is not in $\mathbf{A} \oplus \mathbf{C}$ there must be an $\bar{a} \in \bar{\mathbf{A}} \setminus \mathbf{A}$ and a $\bar{c} \in \bar{\mathbf{C}} \setminus \mathbf{C}$ so that $\bar{a} + \bar{c} = n$. Observe that any $\bar{a} = (a_0, a_1, \dots) \in \bar{\mathbf{A}}$ has 1's only in odd locations, *i.e.* $a_{2i} = 0$ for all *i*, and $\bar{a} \in \bar{\mathbf{A}} \setminus \mathbf{A}$ means $a_{2i+1} = 1$ for infinitely many *i*. As an illustration consider the set **B** which satisfies conditions 2.1 but is not a complement. The numbers $-1/3 = (1, 0, 1, 0, \overline{1, 0}) \in \bar{\mathbf{B}}$ and $-2/3 = (0, 1, 0, 1, \overline{0, 1}) \in \bar{\mathbf{A}}$ and so -1 is not

498

be in $A \oplus B$. (That both A and B are positive and so obviously the sum contains no negative integers is a red herring in understanding the situation.)

LEMMA 3.6. Let C be a subset of Z containing 0. Then $C \in \mathfrak{C}(A)$ if and only if C satisfies the three conditions (i), (ii) and

(v) For any $\bar{c} = (c_0, c_1, \cdots) \in \bar{\mathbf{C}} \setminus \mathbf{C}$ $c_{2i} = 0$ for infinitely many *i*.

PROOF. Assume C satsifies conditions (i) and (ii). By maximality and Lemma 3.2 $\bar{c} \in \bar{C} \setminus C$ is not an integer. Therefore there are infinitely many *i* with $c_i = 0$ and infinitely many with $c_i = 1$.

Suppose it has only finitely many *i* such that $c_{2i} = 0$. Then there exist an n > 0 such that if $i \ge n$ and $c_i = 0$ then *i* must be odd. Denote the collection of these *i* as *I*. Define $\bar{a} \in \bar{A} \setminus A$ by $a_i = 1$ for all $i \in I$ and no where else. Then $\bar{a} + \bar{c}$ is a negative integer and **C** cannot be a complement.

Suppose there are infinitely many *i* with $c_{2i} = 0$. Denote this set of *i* as *I*. We claim that there is no $\bar{a} \in \bar{A}$ with $\bar{a} + \bar{c}$ an integer. In order for $\bar{a} + \bar{c}$ to be a negative integer it must have a 1 in all but a finite number of the coordinates $i \in I$. Since these are even there must have been a carry from a lower coordinate. Consider i < j, i, $j \in I$ such that there is no $k \in I$ with i < k < j. There can be no carry from the $2i^{\text{th}}$ coordinate. Hence to get a carry into the $2j^{\text{th}}$ coordinate there must be an odd coordinate 2i < 2k + 1 < 2j which starts the carry. But then the 2k + 1 coordinate of $\bar{a} + \bar{c}$ must be 0 and the sum cannot be an integer. A similar argument shows that the sum cannot be a postive integer.

4. Example

In this section we will construct two subsets of the integers C and D which both satisfy conditions 2.1. The set C will not be a complement, the set D will be a complement and $A \oplus C \supset D$. These sets are a variation of Example 4.2 appearing in [6] and are both built from the same general construction.

Define

$$\mathbf{C}_{\mathbf{p}} = \bigcup_{i \ge 1} \{ p_i - 2^{2i} \mathbf{B} \} = \bigcup_{i \ge 1} \{ p_i - 2^{2i} b \mid b \in \mathbf{B} \}$$

where the set **B** is as defined in Section 2, and $\mathbf{p} = \{p_k\}, k \ge 1$, is a sequence of integers satisfying

(i) $p_1 = 0$,

(ii) $1 \le p_i < 2^{2i}$ is an odd integer for all $i \ge 2$,

(iii) $\operatorname{ord}_2(p_i - p_{i+1}) = 2(i-1).$

The utility of this construction is evidenced by the following.

Lemma 4.1.

1. p_i converge to some \bar{p} in \mathbb{Z}_2 ,

STANLEY J. EIGEN

- 2. C_p has even differences,
- 3. **C**_p *is even complete,*
- 4. C_p is maximal in Z if and only if \bar{p} is not an integer,

5. **C**_p is a complement if and only if \bar{p} is not an integer and there does not exist an $\bar{a} \in \mathbf{A}$ with $\bar{a} + \bar{p}$ an integer.

We first present a few examples before proving the lemma including the two sets for the counter example. (Because of 1, redenote C_p as $C_{\bar{p}}$.)

EXAMPLE 1.
$$p_k = \sum_{i=0}^{k-2} 2^{2i}$$
 for $k \ge 2$.

This appears in [6]. A few of the representations of these are $p_1 = (0, \bar{0}), p_2 = (1, 0, \bar{0}), p_3 = (1, 0, 1, 0, \bar{0}), p_4 = (1, 0, 1, 0, \bar{0}), and it is easy to see that the limit is <math>\bar{p} = (1, 0, \bar{1}, 0) = -1/3$. Since $-2/3 = (0, 1, \bar{0}, \bar{1}) \in \bar{A}$, the set $C_{-1/3}$ is not a complement.

EXAMPLE 2. $p_k = \sum_{i=0}^{k-2} (2^{2i} + 2^{2i+1})$ for $k \ge 2$.

A few of the representations of these are $p_1 = 0$, $p_2 = (1, 1, 0, \overline{0})$, $p_3 = (1, 1, 1, 1, 0, \overline{0})$, $p_4 = (1, 1, 1, 1, 1, 0, \overline{0})$ and the limit is $\overline{p} = (1, \overline{1}) = -1$. In this case, \overline{C}_{-1} is not maximal as well as not a complement.

EXAMPLE 3. $p_k = \sum_{i=0}^{k-2} 3^{(i+1) \mod 2} \cdot 2^{2i}$ for $k \ge 2$.

A few of the representations of these are $p_1 = 0$, $p_2 = (1, 1, 0, \overline{0})$, $p_3 = (1, 1, 1, 0, \overline{0})$, $p_4 = (1, 1, 1, 0, 1, 1, 0, \overline{0})$, $p_5 = (1, 1, 1, 0, 1, 1, 1, 0, \overline{0})$ and the limit is $\overline{p} = (1, 1, 1, 0, \overline{1, 1, 1, 0}) = -7/15$. $\mathbb{C}_{-7/15}$ is not a complement because $-8/15 = (0, 0, 0, 1, \overline{0, 0, 0, 1}) \in \overline{\mathbf{A}}$.

EXAMPLE 4.
$$p_k = \sum_{i=0}^{k-2} (3^{(i+1) \mod 2} \cdot 2^{2i} + ((i+1) \mod 2) \cdot 2^{2i+1})$$
 for $k \ge 2$.

A few of the representations of these are $p_1 = 0$, $p_2 = (1, 0, 1, 0, \overline{0})$, $p_3 = (1, 0, 0, 1, 0, \overline{0})$, $p_4 = (1, 0, 0, 1, 1, 0, 1, 0, \overline{0})$, $p_5 = (1, 0, 0, 1, 1, 0, 0, 1, 0, \overline{0})$ and the limit is $\overline{p} = (1, 0, 0, 1, \overline{1, 0, 0, 1}) = -9/15$. From the above Lemma as well as Lemma 3.6 it follows that $\mathbf{C}_{-9/15}$ is a complement.

COUNTER EXAMPLE. The sets $C_{-7/15}$ and $C_{-9/15}$ form the promised counter example. To see that $\mathbf{A} \oplus \mathbf{C}_{-7/15} \supset \mathbf{C}_{-9/15}$ simply observe that the difference of the p_k for $\mathbf{C}_{-9/15}$ and $\mathbf{C}_{-7/15}$ is $q_k = \sum_{i=0}^{k-2} ((i + 1) \mod 2) \cdot 2^{2i+1} \in \mathbf{A}$.

PROOF OF LEMMA 4.1. 1 and 2 are clear from the definition.

To see 3 begin by observing that $-\mathbf{B}$ is even complete. Hence for all $(\xi_0, \dots, \xi_{n-1})$ with $\xi_1 = 0 = (p_1)_0$ there is a $c \in \{p_1 - 2^2 \cdot \mathbf{B}\}$ with $c_{2i} = \xi_i, 0 < i \le n-1$.

Next look at all $(\xi_0, \dots, \xi_{n-1})$ with $\xi_0 = 1 = (p_2)_0$ and $\xi_2 = (p_2)_2$. Since $1 \le p_2 < 2^4$ it is clear that for each of these patterns there is a $c \in \{p_2 - 2^4 \cdot \mathbf{B}\}$ with $c_{2i} = \xi_i, 0 < i \le n-1$.

500

We don't know what $(p_2)_2$ is (either 0 or 1), but we have by assumption $\operatorname{ord}(p_2 - p_3) = 2^{2 \cdot (2-1)} = 2^2$. This means that $(p_3)_0 = (p_2)_0$ and $(p_3)_2 = ((p_2)_2 + 1) \mod 2$. Hence for each $(\xi_0, \dots, \xi_{n-1})$ with $\xi_1 = (p_3)_0$, $\xi_2 = (p_3)_2$ and $\xi_3 = (p_3)_4$ there is a $c \in \{p_3 - 2^6 \cdot \mathbf{B}\}$ with $c_{2i} = \xi_i$, $0 < i \le n - 1$.

It is easy to see that the proof of even completeness continues by induction.

4 follows by Lemmas 3.2 and 3.4. First observe that if $\bar{c} \in \bar{\mathbf{C}}_{\bar{p}} \setminus \mathbf{C}_{\bar{p}}$ then either $\bar{c} \in \{p_i - 2^{2i}\mathbf{B}\}\$ for some i or $\bar{c} = \bar{p}$. It is clear that $\overline{p_i - 2^{2i}\mathbf{B}}\$ contains no integers so the only possible additional integer in $\bar{\mathbf{C}}_{\bar{p}}\$ can be \bar{p} .

Finally 5 follows by Remark 4.1. This completes the proof.

References

- [1] N. G. DE BRUIJN, On bases for Sets of Integers, Publ. Math. Debrecen 1 (1950), 232-242.
- [2] E. COVEN and A. MEYEROWITZ, Tiling the Integers with Translates of One Finite Set, J. Algebra **212** (1999), 161–174.
- [3] S. EIGEN, A. HAJIAN and S. KAKUNTAI, Complementing Sets of Integers—A Result from Ergodic Theory, Japan. J. Math. 18 (1992), 205–211.
- [4] S. EIGEN, A. HAJIAN and S. KAKUNTAI, Complementing Sets of Integers II, preprint.
- [5] M. DATEYAMA and T. KAMAE, On Direct Sum Decomposition of Integers and Y. Ito's Conjecture, Tokyo J. Math. 21 (1998), 433–440.
- [6] Y. ITO, Direct Sum Decomposition of the Integers Tokyo J. Math. 18 (1995), 259–270.
- [7] C. T. LONG, Addition Theorems of Sets of Integers, Pacific J. Math. 23 (1967), 107–112.
- [8] K. POST, Problem 71, Nieuw Arch. Wisk. (3) 14 (1966), 274–275.
- [9] C. SWENSON, Direct Sum Subset Decompositions of Z, Pacific J. Math. 53 (1974), 629-633.
- [10] R. TIJDEMAN, Decomposition of the Integers as a Direct Sum of Two Subsets, *Number theory* (Paris, 1992– 1993), London Math. Soc. Lecture Note Ser. 215 (1995), Cambridge Univ. Press, 261–276.

Present Address: MATHEMATICS DEPARTMENT, NORTHEASTERN UNIVERSITY, BOSTON, MA 02115 *e-mail*: eigen@neu.edu