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Abstract. A counter example to a conjecture of Y. Ito concerning direct summands of the integers is presented.

1. Introduction

This paper continues the studies begun in [10], [6] and [5] of direct sum decompositions
of the integers Z = A ⊕ C where

A =
{∑
i≥0

εi22i+1 : εi ∈ {0, 1} and εi = 1 for finitely many i ′s
}

and the sum is understood to be unique, i.e. a + c = a′ + c′ ⇒ a = a′ and c = c′.
The general problem of characterizing complementing pairs of Z arose in the work of

de Bruijn in 1950. That there is no effective characterization of all pairs for Z was shown
by Swenson [9] (see also Post [8]). This contrasts with N for which a nice characterization
exists. Two infinite subsets C and D are a complementing pair for the nonnegative integers N
if and only if there exists a sequence of integers m0 = 1 and mi ≥ 2 for all i ≥ 1 such that
C and D are the sets of all finite sums respectively c = ∑

x2iM2i and d = ∑
x2i+1M2i+1

where Mi = ∏i
j=0mj and 0 ≤ xi < mi+1 (see [10] for further references). Note, that 0 is in

both corresponding to the empty sum, and 1 ∈ C.
The set A above, is one of the simpliest direct summands of N, arising when mi ≡ 2 for

all i ≥ 1. Many of the results in this paper may be extended though the definitions need to be
appropriately modified. The papers [10], [6] and [5] have all worked toward characterizing
the complements of A in Z. We refer the reader to [10] and [2] and references therein for
related work and questions in the case one of the summands is finite.

2. Previous results

The set A is fixed throughout the paper as defined in the previous section. Denote by
C(A) the family of all complements of A.
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The following two conditions are necessary for a set C ∈ C(A) (see [10] and [3]).

CONDITIONS 2.1.
(i) For every c, c′ ∈ C either c = c′ or the maximal number i such that 2i divides

c − c′ is even,
(ii) C is maximal with respect to (i). That is if C′ satisfies (i) and C ⊂ C′ then C = C′.
Clearly C is a complement if and only if 1 + C = {1 + c : c ∈ C} is a complement. So

we make the normalizing simplification that 0 ∈ C. This implies for each c ∈ C the maximal
i such that 2i divides c is even.

One obvious complement [7] for A in Z is −B where

B =
{∑
i≥0

εi2
2i : εi ∈ {0, 1} and εi = 1 for finitely many i ′s

}

In [10], this complement was used to obtain the following.

THEOREM 2.2 (Tijdeman). Let C be a subset of Z containing 0. Then C ∈ C(A) if and
only if C satisfies the three conditions (i), (ii) and

(iii) A ⊕ C ⊃ −B.

A family of complements of A are

Bω =
{∑
i≥0

εiωi22i : εi ∈ {0, 1} and εi = 1 for finitely many i ′s
}

where ω ∈ {−1, 1}N and ωi = −1 for infinitely many i ′s.
These complements were used in [6] to obtain the following.

THEOREM 2.3 (Ito). Let C be a subset of Z containing 0. Then C ∈ C(A) if and only
if C satisfies the three conditions (i), (ii) and

(iv) There exists an ω as above such that A ⊕ C ⊃ Bω.

In [5], Dateyama and Kamae extended the family {Bω} of complements and similarly
extended the result.

Let ψ = {ψn}n≥0 be a set of maps ψn : {−1, 0, 1}N → {−1, 1} such that for any

(ε0, ε1, · · · ) ∈ {−1, 0, 1}N, ψn(ε0, ε1, · · · , εn−1) = −1 for infinitely many n′s. ψ0 is a
constant of value ±1. Define

Bψ =
{∑
i≥0

εi22i : finite sums where εi = 0 or εi = ψi(ε0, · · · , εi−1)

}

THEOREM 2.4 (Dateyama and Kamae). Let C be a subset of Z containing 0. Then C ∈
C(A) if and only if C satisfies the three conditions (i), (ii) and

(v) There exists a ψ as above such that A ⊕ C ⊃ Bψ .

CONJECTURE 2.5. In [6], it was conjectured that the third condition in the above the-
orems could be replaced with
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(vi) There exists a D ∈ C(A) such that A ⊕ C ⊃ D.

We present a counter example to this in the section 4.

3. 2-adics

In this section, we present and discuss some results on the 2-adic integers which will be
used in the sequel.

Let

Z2 =
{
z =

∑
i≥0

zi2i : zi ∈ {0, 1}
}

denote the completion of Z in the 2-adic valuation norm. For notational convenience we

identify Z2 with {0, 1}N, i.e. z = ∑
zi2i ↔ (z0, z1, z2, · · · ). The positive integers are

represented by n = (z0, z1, z2, · · · ) with zi = 0 for all but finitely many i’s. The negative
integers are represented by m = (z0, z1, z2, · · · ) with zi = 1 for all but finitely many i’s.

As usual ord(n) = ord2(n) is the highest power of 2 which divides n. This extends to all
z = (z0, z1, z2, · · · ) ∈ Z2 by ord2(z) = i where zi = 1 and zj = 0 for all 0 ≤ j < i. The
ord is used in analyzing the distance of two numbers, that is ord(c − d) = n means that c, d
are the same for the first n coordinates ci = di for 0 ≤ i ≤ n− 1. We will often be concerned
with whether the ord is even or odd. Note that ord2(0) = ∞ and this is considered both odd
and even.

Recalling conditions 2.1, a subset E of Z2 is said to have even differences if ord2(e− e′)
is even for all e = e′. (Odd differences is defined similarly.). A set of integers C which has
even differences is said to be maximal in Z if it satisfies (ii) of 2.1 A subset E of Z2 with even
differences is maximal in Z2 if any subset containing E with even differences coincides with
E. We will use the term “maximal” when it is clear from the context which definition applies.
(Similar definitions hold for odd differences.)

A set of integers C is even complete if for all n≥1 and for every ξ=(ξ0, ξ1,· · · ,ξn−1) ∈
{0, 1}N there exists a c ∈ C with c2i = ξi , 0 ≤ i ≤ n− 1. Similarly a set of integers D is odd

complete if for all n ≥ 1 and for every ξ = (ξ0, ξ1, · · · , ξn−1) ∈ {0, 1}N there exists a d ∈ D
with d2i+1 = ξi , 0 ≤ i ≤ n− 1.

LEMMA 3.1. Let C be a set of integers containing 0 which have even differences and
is maximal in Z. Then C is even complete.

PROOF. This is essentially contained in Lemma 1 in [5] which proves a bit more. Let
n ≥ 1 be the smallest integer such that there exists (ξ0, · · · , ξn−1) and no c ∈ C with c2i = ξi ,
0 ≤ i ≤ n − 1. If n = 1 there are two cases depending on the value of ξ0. If ξ0 = 1 then C
contains no odd integers and 1 may be adjoined to C and maintain even differences. If ξ0 = 0
it means all integers in C are odd and the number 4 may be adjoined. If n > 1 let c ∈ C with



498 STANLEY J. EIGEN

c2i = ξi , 0 ≤ i ≤ n − 2. Hence c2n−2 = ξn−1 and ord(c − c′) = 2n− 2 for all c′ ∈ C. The

number c+22n−2 may then be adjoined to C as ord(c+22n−2−c′) = min(ord(c−c′), 2n−2).

The two conditions even differences and even complete are not enough to make a set a
complement of A or even maximal. Consider the set −B and remove from it the number −1.
This is still even complete but is not maximal with respect to even differences and it is not a
complement. Observe however that −1 is in the closure of this set.

The following two lemmas appear in [4] in a more general form and are variations of
Lemma 3 in [5].

LEMMA 3.2. Let C be a set of integers containing 0 which has even differences and is

even complete. Then C̄ has even differences and is maximal with respect to even differences

in Z2. That is if C′ ⊃ C̄ and C′ has even differences then C′ = C̄.

The corresponding result for odd differences in place of even differences also holds.

PROOF. Let z, z′ ∈ C̄ with ord(z− z′) = n. Choose c, c′ ∈ C with ord(c− z) > n and
ord(c′ − z′) > n. Hence ord(c − c′) = n and so is even.

Suppose ord(z − x) is even for all z ∈ C̄. Put ξi = x2i , i ≥ 0. Then for each n ≥ 0, by
the definition of even complete, there must be a cn ∈ C with (cn)2i = x2i for 0 ≤ i < n. By
even differences of cn − x, (cn)j = xj , 0 ≤ j ≤ 2n. Therefore cn converge to x and x is in
the closure of C.

LEMMA 3.3. Let C be a set of integers containing 0 which has even differences and is
even complete. Let E be a set of integers containing 0 which has odd differences and is odd
complete. Then

C ⊕ E = C̄ ⊕ Ē = Z2

PROOF. Even and odd differences make the sums unique. If c + d = c′ + d ′ then
c− c′ = d − d ′. Hence this difference is both even and odd and so must be 0. The denseness
of C ⊕ E is similar to the reasoning in the previous proof. The equality of the closure of the
sum with the sum of the closures is straightforward from the odd/even differences.

Lemma 3.2 supplies a converse to Lemma 3.1.

LEMMA 3.4. Let C be a set of integers containing 0 which has even differences and is

even complete. Then C′ = C̄ ∩ Z has even differences and is maximal in Z.

REMARK 3.5. Lemma 3.3 clarifies how a set C can satisfy conditions 2.1 yet not be a

complement of A in Z. For any integer n which is not in A ⊕ C there must be an ā ∈ Ā\A
and a c̄ ∈ C̄\C so that ā + c̄ = n. Observe that any ā = (a0, a1, · · · ) ∈ Ā has 1′s only in

odd locations, i.e. a2i = 0 for all i, and ā ∈ Ā\A means a2i+1 = 1 for infinitely many i. As
an illustration consider the set B which satisfies conditions 2.1 but is not a complement. The

numbers −1/3 = (1, 0, 1, 0, 1, 0) ∈ B̄ and −2/3 = (0, 1, 0, 1, 0, 1) ∈ Ā and so −1 is not
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be in A ⊕ B. (That both A and B are positive and so obviously the sum contains no negative
integers is a red herring in understanding the situation.)

LEMMA 3.6. Let C be a subset of Z containing 0. Then C ∈ C(A) if and only if C
satisfies the three conditions (i), (ii) and

(v) For any c̄ = (c0, c1, · · · ) ∈ C̄\C c2i = 0 for infinitely many i.

PROOF. Assume C satsifies conditions (i) and (ii). By maximality and Lemma 3.2

c̄ ∈ C̄\C is not an integer. Therefore there are infinitely many i with ci = 0 and infinitely
many with ci = 1.

Suppose it has only finitely many i such that c2i = 0. Then there exist an n > 0 such
that if i ≥ n and ci = 0 then i must be odd. Denote the collection of these i as I . Define
ā ∈ Ā\A by ai = 1 for all i ∈ I and no where else. Then ā + c̄ is a negative integer and C
cannot be a complement.

Suppose there are infinitely many i with c2i = 0. Denote this set of i as I . We claim that

there is no ā ∈ Ā with ā+ c̄ an integer. In order for ā+ c̄ to be a negative integer it must have
a 1 in all but a finite number of the coordinates i ∈ I . Since these are even there must have
been a carry from a lower coordinate. Consider i < j , i, j ∈ I such that there is no k ∈ I

with i < k < j . There can be no carry from the 2i th coordinate. Hence to get a carry into the
2j th coordinate there must be an odd coordinate 2i < 2k+ 1 < 2j which starts the carry. But
then the 2k + 1 coordinate of ā + c̄ must be 0 and the sum cannot be an integer. A similar
argument shows that the sum cannot be a postive integer.

4. Example

In this section we will construct two subsets of the integers C and D which both satisfy
conditions 2.1. The set C will not be a complement, the set D will be a complement and
A ⊕ C ⊃ D. These sets are a variation of Example 4.2 appearing in [6] and are both built
from the same general construction.

Define

Cp =
⋃
i≥1

{pi − 22iB} =
⋃
i≥1

{pi − 22ib | b ∈ B}

where the set B is as defined in Section 2, and p = {pk}, k ≥ 1, is a sequence of integers
satisfying

(i) p1 = 0,
(ii) 1 ≤ pi < 22i is an odd integer for all i ≥ 2,

(iii) ord2(pi − pi+1) = 2(i − 1).

The utility of this construction is evidenced by the following.

LEMMA 4.1.
1. pi converge to some p̄ in Z2,
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2. Cp has even differences,
3. Cp is even complete,
4. Cp is maximal in Z if and only if p̄ is not an integer,
5. Cp is a complement if and only if p̄ is not an integer and there does not exist an

ā ∈ A with ā + p̄ an integer.

We first present a few examples before proving the lemma including the two sets for the
counter example. (Because of 1, redenote Cp as Cp̄.)

EXAMPLE 1. pk = ∑k−2
i=0 22i for k ≥ 2.

This appears in [6]. A few of the representations of these are p1 = (0, 0̄), p2 = (1, 0, 0̄),

p3 = (1, 0, 1, 0, 0), p4 = (1, 0, 1, 0, 1, 0, 0̄), and it is easy to see that the limit is p̄ =
(1, 0, 1, 0) = −1/3. Since −2/3 = (0, 1, 0, 1) ∈ Ā, the set C−1/3 is not a complement.

EXAMPLE 2. pk = ∑k−2
i=0 (2

2i + 22i+1) for k ≥ 2.

A few of the representations of these arep1 = 0, p2 = (1, 1, 0, 0̄), p3 = (1, 1, 1, 1, 0, 0̄),

p4 = (1, 1, 1, 1, 1, 1, 0, 0̄) and the limit is p̄ = (1, 1̄) = −1. In this case, C̄−1 is not maximal
as well as not a complement.

EXAMPLE 3. pk = ∑k−2
i=0 3(i+1)mod 2 · 22i for k ≥ 2.

A few of the representations of these are p1 = 0, p2 = (1, 1, 0, 0̄), p3 = (1, 1, 1, 0, 0̄),

p4 = (1, 1, 1, 0, 1, 1, 0, 0̄), p5 = (1, 1, 1, 0, 1, 1, 1, 0, 0̄) and the limit is p̄ =
(1, 1, 1, 0, 1, 1, 1, 0) = −7/15. C−7/15 is not a complement because −8/15 =
(0, 0, 0, 1, 0, 0, 0, 1) ∈ Ā.

EXAMPLE 4. pk = ∑k−2
i=0 (3

(i+1)mod 2 · 22i + ((i + 1)mod 2) · 22i+1) for k ≥ 2.

A few of the representations of these arep1 =0, p2 =(1, 0, 1, 0, 0̄), p3 =(1, 0, 0, 1, 0, 0̄),

p4 = (1, 0, 0, 1, 1, 0, 1, 0, 0̄), p5 = (1, 0, 0, 1, 1, 0, 0, 1, 0, 0̄) and the limit is p̄ =
(1, 0, 0, 1, 1, 0, 0, 1) = −9/15. From the above Lemma as well as Lemma 3.6 it follows
that C−9/15 is a complement.

COUNTER EXAMPLE. The sets C−7/15 and C−9/15 form the promised counter exam-
ple. To see that A ⊕ C−7/15 ⊃ C−9/15 simply observe that the difference of the pk for C−9/15

and C−7/15 is qk = ∑k−2
i=0 ((i + 1) mod 2) · 22i+1 ∈ A.

PROOF OF LEMMA 4.1. 1 and 2 are clear from the definition.

To see 3 begin by observing that −B is even complete. Hence for all (ξ0, · · · , ξn−1) with

ξ1 = 0 = (p1)0 there is a c ∈ {p1 − 22 · B} with c2i = ξi , 0 < i ≤ n− 1.
Next look at all (ξ0, · · · , ξn−1) with ξ0 = 1 = (p2)0 and ξ2 = (p2)2. Since 1 ≤ p2 < 24

it is clear that for each of these patterns there is a c ∈ {p2−24 ·B} with c2i = ξi , 0 < i ≤ n−1.



DIRECT SUM DECOMPOSITION OF THE INTEGERS 501

We don’t know what (p2)2 is (either 0 or 1), but we have by assumption ord(p2 −p3) =
22 ·(2−1) = 22. This means that (p3)0 = (p2)0 and (p3)2 = ((p2)2 + 1) mod 2. Hence for
each (ξ0, · · · , ξn−1) with ξ1 = (p3)0, ξ2 = (p3)2 and ξ3 = (p3)4 there is a c ∈ {p3 − 26 · B}
with c2i = ξi , 0 < i ≤ n− 1.

It is easy to see that the proof of even completeness continues by induction.

4 follows by Lemmas 3.2 and 3.4. First observe that if c̄ ∈ C̄p̄\Cp̄ then either c̄ ∈
{pi − 22iB} for some i or c̄ = p̄. It is clear that pi − 22iB contains no integers so the only

possible additional integer in C̄p̄ can be p̄.
Finally 5 follows by Remark 4.1. This completes the proof.
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