Subordination of Semidynamical Systems

Nedra Belhaj RHOUMA and Mounir BEZZARGA

Institut Préparatoire aux Études d'Ingénieurs de Tunis

(Communicated by Y. Maeda)

Abstract

We develop the fundamental properties of multiplicative functional \mathcal{M} defined on a semidynamical system $(X, \mathcal{B}, \Phi, w)$. We give a characterization of semigroups which are subordinate to the deterministic semigroup \mathbf{H} and we show that they are generated by a multiplicative functional. We study the case when a multiplicative semigroup defined on a measurable space (X, \mathcal{B}) is deterministic.

1. Introduction

The semidynamical system arise from a dynamical interpretation of functional differential equations with time lag and evolution type partial differential equations (i.e the heat diffusion equation). In this case a solution $\Phi(t, x)$ with initial condition x is defined on $[0, \rho(x)$ [only and jumps into a "coffin" state " w " afterwards.

Also, a multiplicative functional arise when we "kill" a semidynamical system if it enters in a domain D.

So, starting from a semidynamical system $(X, \mathcal{B}, \Phi, w)$ we give the definition of a terminal time as a first time some physical event occurs and for a subset U of X, we give the notion of a first hitting time and first entry time and we show particularly that any measurable hitting time is a terminal time.

Next, we give some characterization of deterministic semigroups. We show essentially that if $Q_{t}=M_{t} H_{t}$ where \mathcal{M} is a right continuous multiplicative functional and \mathbf{H} is deterministic, then $\left(Q_{t}\right)_{t \geq 0}$ is deterministic if and only if $\mathcal{M}=1_{[0, T[}$ where T is a terminal time and therefore $\left(Q_{t}\right)_{t \geq 0}$ is subordinate to \mathbf{H} (Theorem 2).

Conversely, we prove that any semigroup which is subordinate to \mathbf{H} is generated by a multiplicative functional \mathcal{M} (Theorem 3).

Notice that any deterministic semigroup is multiplicative. However, if we consider a Lusin space (cf. [7]) we will show that under some restrictions any multiplicative semigroup is deterministic (Theorem 6). Note that this Theorem gives a generalization to the results given in [11], [12] and [3]. Indeed, in [11] and [12], the author considered a topological space

[^0](X, \mathcal{T}) which is locally compact and having a countable base. In [3], the authors showed that a multiplicative potential cone is associated to a deterministic semigroup. In our case, we show that every positive constant is excessive and that \mathbf{H} is the unique semigroup associated and also any multiplicative semigroup is a right continuous deterministic semigroup.

2. Preliminary

In this section, we will introduce some definitions which will be useful in the remainder of this paper (For more details see [3], [5], [10] and [15]).

DEFINITION 1. Let (X, \mathcal{B}) be a separable measurable space with a distinguished point ω. A measurable map $\Phi: \mathbf{R}_{+} \times X \rightarrow X$ is called a semidynamical system with cofinal point ω if the following conditions are fulfilled:
$\left(S_{1}\right) \quad$ For any x in X, there exists an element $\rho(x)$ in $[0, \infty]$ such that $\Phi(t, x) \neq \omega$ for all $t \in[0, \rho(x))$ and $\Phi(t, x)=\omega$ for all $t \geq \rho(x)$,
$\left(S_{2}\right)$ For any $s, t \in \mathbf{R}_{+}$and any $x \in X$ we have

$$
\Phi(s, \Phi(t, x))=\Phi(s+t, x)
$$

$\left(S_{3}\right) \quad \Phi(0, x)=x$ for all $x \in X$,
$\left(S_{4}\right)$ If $\Phi(t, x)=\Phi(t, y)$ for all $t>0$, then $x=y$.
Next, we will denote by $X_{0}=X \backslash\{w\}$. For any $x \in X_{0}$ we denote by Γ_{x} the trajectory of x, i.e:

$$
\Gamma_{x}=\{\Phi(t, x) ; t \in[0, \rho(x))\}
$$

and we define the function Φ_{x} on $[0, \rho(x))$ by $\Phi_{x}(t)=\Phi(t, x)$. So for any $x, y \in X_{0}$ we put

$$
x \underset{\Phi}{\leq} y \Leftrightarrow y \in \Gamma_{x} .
$$

A maximal trajectory is a totally ordered subset Γ of $X \backslash\{\omega\}$ with respect to the above order, such that there is no $x_{0} \in X_{0} \backslash \Gamma$ which is minorant of Γ and such for any $x \in \Gamma$, we have $\Gamma_{x} \subset \Gamma$.

In what follows, we shall suppose that $(X, \mathcal{B}, \Phi, \omega)$ is a transient semidynamical system (cf. [3]). It is proved that the map Φ_{x} is a measurable isomorphism between $\left[0, \rho(x)\right.$) and Γ_{x} endowed with trace measurable structures.

In the next, let us denote by $\mathcal{B}_{0}=\left\{U \in \mathcal{B} ; U \subset X_{0}\right\}$. Let Λ be the Lebesgue measure associated with the semidynamical system $(X, \mathcal{B}, \Phi, \omega)$ given by $\Lambda(A)=\lambda\left(\Phi_{x}^{-1}(A)\right)$ for any $x \in X_{0}, A \in \mathcal{B}_{0}$ and $A \subset \Gamma_{x}$, where λ is the Lebesgue measure on \mathbf{R} (cf. [4]). We recall (cf. [1]) that in the same way Λ can be defined on the σ-algebra $\mathcal{B}_{0}(\Lambda)$ which is the set of all subsets A of X_{0} such that $A \cap M \in \mathcal{B}_{0}$ for any countable union M of trajectories of X_{0}.

One can show that the resolvent family $\mathbf{V}=\left(V_{\alpha}\right)_{\alpha \geq 0}$ may be considered on the measurable space $\left(X_{0}, \mathcal{B}_{0}(\Lambda)\right)$ and we denote by $\mathcal{F}\left(X_{0}, \Lambda\right)$ the set of all positive $\mathcal{B}_{0}(\Lambda)$ measurable
functions on X_{0}. For every $f \in \mathcal{F}\left(X_{0}, \Lambda\right)$, we have

$$
V_{\alpha} f(x)=\int_{0}^{\infty} e^{-\alpha t} f(\Phi(t, x)) d t
$$

In the sequel, we define the inherent topology \mathcal{T}_{Φ}^{0} as being the set of all subsets D of X_{0} satisfying the following condition:

$$
\begin{gathered}
\left(\forall x \in X_{0}, \forall t_{0} \in\left[0, \rho(x)\left[\text { such that } \Phi\left(t_{0}, x\right) \in D\right) \Rightarrow\right.\right. \\
(\exists \varepsilon>0, \text { such that } \forall t \in] t_{0}-\varepsilon, t_{0}+\varepsilon[\cap[0, \rho(x)[, \Phi(t, x) \in D)
\end{gathered}
$$

(see [3], [10]).
Let us denote by $\mathbf{H}=\left(H_{t}\right)_{t \in \mathbf{R}_{+}}$the deterministic semigroup introduced in [11] and [13] and defined by

$$
\varepsilon_{x} H_{t}= \begin{cases}\varepsilon_{\Phi(t, x)} & \text { if } t<\rho(x), \\ 0 & \text { if } t \geq \rho(x),\end{cases}
$$

for every $(t, x) \in \mathbf{R}_{+} \times X_{0}$.
Then, we get the following results (see [2]).
THEOREM 1. The map $t \rightarrow \Phi(t, x)$ is right continuous with respect to the inherent topology \mathcal{T}_{Φ}^{0}.

Proof. Let $f: X_{0} \rightarrow \mathbf{R}^{+}$be a bounded $\mathcal{B}_{0}(\Lambda)$-measurable function. For every $x \in$ X_{0}, we have

$$
\begin{aligned}
V_{0} f(\Phi(t, x)) & =\int_{0}^{\infty} f(\Phi(s, \Phi(t, x))) d s \\
& =\int_{t}^{\infty} f(\Phi(s, x)) d s
\end{aligned}
$$

Therefore $t \rightarrow\left(V_{0} f\right) \Phi(t, x)$ is right continuous, i.e $t \rightarrow \Phi(t, x)$ is right continuous with respect to \mathcal{T}_{Φ}^{0}.

Corollary 1. The deterministic semigroup is right continuous.
Notation. Throughout this paper we will denote by ε_{x} the Dirac measure concentrated in x. For every subset U of X, we denote $U^{C}=X \backslash U$ and

$$
1_{U}= \begin{cases}1 & \text { if } x \in U \\ 0 & \text { if not }\end{cases}
$$

3. Multiplicative functionals

Definition 2 (see Definition (6.1) of Ch.I from [6]). A mapping $T: X \rightarrow[0,+\infty]$ is called a stopping time if it is $\mathcal{B}_{0}(\Lambda)$ measurable.

Definition 3 (see (10.1) of Ch.I from [6]). Let A be a subset of X. For each $x \in X$, we define the first entry time of A by

$$
D_{A}(x)=\inf \{t \geq 0: \Phi(t, x) \in A\}
$$

and the first hitting time of A by

$$
T_{A}(x)=\inf \{t>0: \Phi(t, x) \in A\}
$$

where in both cases the infinimum of the empty set is understood to be $+\infty$.
Definition 4 (see (2.18) of Ch.II from [6]). A stopping time T is a terminal time if for each $t \geq 0$,

$$
T=t+T(\Phi(t, .)) \quad \text { on }\{T>t\} .
$$

Proposition 1 (see (2.18) of Ch.II from [6]). Any measurable hitting time is a terminal time.

Proof. Let $\left(\alpha_{n}\right)_{n}$ be a sequence which decreases to 0 and such that $\Phi\left(T_{A}(\Phi(t, x))+\right.$ $\left.\alpha_{n}, \Phi(t, x)\right) \in A$. Since

$$
\Phi\left(T_{A}(\Phi(t, x))+\alpha_{n}, \Phi(t, x)\right)=\Phi\left(T_{A}(\Phi(t, x))+\alpha_{n}+t, x\right)
$$

we get

$$
T_{A}(x) \leq t+\alpha_{n}+T_{A}(\Phi(t, x)) .
$$

By letting $n \rightarrow \infty$ we get

$$
\begin{equation*}
T_{A}(x) \leq T_{A}(\Phi(t, x))+t \tag{3.1}
\end{equation*}
$$

On the other hand, let t be such that $T_{A}(x)>t$, then there exists $\left(\beta_{n}\right)_{n}$ which decreases to 0 such that $\Phi\left(T_{A}(x)+\beta_{n}, x\right) \in A$. Since

$$
\Phi\left(T_{A}(x)-t+t+\beta_{n}, x\right)=\Phi\left(T_{A}(x)-t+\beta_{n}, \Phi(t, x)\right)
$$

we get that

$$
T_{A}(\Phi(t, x)) \leq T_{A}(x)-t+\beta_{n}
$$

for every $n \in \mathbf{N}$, which yields that

$$
\begin{equation*}
T_{A}(\Phi(t, x)) \leq T_{A}(x)-t . \tag{3.2}
\end{equation*}
$$

The proof then is achieved by using (3.1) and (3.2).
Definition 5 (see Definition (1.1) of Ch.III from [6]). A family $\mathcal{M}=\left\{M_{t} ; 0 \leq t<\right.$ $\infty\}$ of measurable functions on (X, \mathcal{B}) is called a multiplicative functional provided:
(1) for every $t \geq 0, M_{t}$ is $\mathcal{B}_{0}(\Lambda)$ measurable,
(2) For each $x \in X$, for every $t, s \geq 0$,

$$
M_{t+s}(x)=M_{t}(x) \cdot M_{s}(\Phi(t, x)),
$$

(3) $0 \leq M_{t}(x) \leq 1$ for all t and x.

We say that \mathcal{M} is right continuous (or continuous) provided $t \rightarrow M_{t}(x)$ is right continuous (or continuous) for every $x \in X$.

REMARK 1. We remark that $M_{0}(x)=M_{0}^{2}(x)$ i.e that $M_{0}(x)=0$ or $M_{0}(x)=1$. Thus, we say that an element x of X is permanent if $M_{0}(x)=1$. Moreover the conditions (2) and (3) gives us that

$$
M_{t}(x) \leq M_{0}(x) \quad \forall t \geq 0 .
$$

Hence, we will assume that every $x \in X$ is permanent.
The following examples are issued from (1.2), (1.3), (1.4) and (1.5) of Chapter III in [6].
Example 1. For each $\alpha \geq 0$, define $M_{t}=e^{-\alpha t}$. Then $\left\{M_{t} ; t \geq 0\right\}$ is a continuous multiplicative functional.

Example 2. Let T be a terminal time and define

$$
M_{t}(x)=1_{[0, T(x)[}(t)
$$

Then $\mathcal{M}=\left\{M_{t} ; 0 \leq t<\infty\right\}$ is a right continuous multiplicative functional. In fact, if $s<T(\Phi(t, x))$ and $t<T(x)$, then

$$
M_{t}(x) M_{s}(\Phi(t, x))=1
$$

Since

$$
s<T(\Phi(t, x))=T(x)-t \text { on }\{T>t\}
$$

we get $t+s<T(x)$ and therefore

$$
M_{t+s}(x)=1_{[0, T(x)[}(t+s)=1=M_{t}(x) M_{s}(\Phi(t, x)) .
$$

Now, if $s \geq T\left((\Phi(t, x))\right.$ or $t \geq T(x)$, then $M_{t}(x) M_{s}(\Phi(t, x))=0$.
In the first case, we have

$$
s \geq T((\Phi(t, x))=T(x)-t \quad \text { if } T(x)>t
$$

which yields that $t+s \geq T(x)$ and therefore

$$
M_{t+s}(x)=1_{[0, T(x)[}(t+s)=0 .
$$

In the second case, $t \geq T(x) \Rightarrow t+s \geq T(x)$ which implies that $M_{t+s}(x)=0$.
Example 3. For every $f \in \mathcal{F}\left(X_{0}, \Lambda\right)$, define

$$
M_{t}(x)=\exp \left(-\int_{0}^{t} f(\Phi(s, x)) d s\right)
$$

It is obvious that \mathcal{M} is a continuous multiplicative functional when f is bounded.

Example 4. For every $f \in \mathcal{F}\left(X_{0}, \Lambda\right)$, define

$$
T=\inf \left\{t: \int_{0}^{t} f(\Phi(s, x)) d s=\infty\right\}
$$

Then T is a terminal time and

$$
M_{t}(x)=1_{[0, T(x)[}(t) \exp \left(-\int_{0}^{t} f(\Phi(s, x)) d s\right)
$$

defines a right continuous multiplicative functional.

4. Subordinate semigroups

In this section, we will deal with the properties of multiplicative semigroups.

4.1 Deterministic semigroup and subordination

Definition 6. Let (X, \mathcal{B}) be a measurable space and let $\mathbf{P}=\left(P_{t}\right)_{t \geq 0}$ be a family of operators such that
(1) For all $A \in \mathcal{B}$, the mapping $(t, x) \rightarrow P_{t} 1_{A}(x)$ is measurable,
(2) For all $x \in X, t \geq 0$, the mapping $A \rightarrow P_{t} 1_{A}(x)$ is a measure on \mathcal{B},
(3) $P_{t+s}=P_{t} P_{s}$,
(4) $P_{0}=I d$.

Then $\left(P_{t}\right)_{t \geq 0}$ is called a semigroup.
Definition 7. Let $\mathbf{P}=\left(P_{t}\right)_{t \geq 0}$ be a semigroup. We say that \mathbf{P} is multiplicative if for every measurable functions f and g on (x, \mathcal{B}), we have

$$
P_{t}(f . g)=P_{t} f . P_{t} g .
$$

Definition 8. Let (X, \mathcal{B}) be a measurable space. We say that a semigroup \mathbf{P} is deterministic if there exists a semidynamical system Φ such that \mathbf{P} is the deterministic semigroup associated.

REMARK 2. Let $\left(Q_{t}\right)_{t \geq 0}$ be a deterministic semigroup defined on a measurable space (X, \mathcal{B}). Then, $\left(Q_{t}\right)_{t \geq 0}$ is multiplicative.

REMARK 3. If \mathcal{M} is a multiplicative functional defined on a semidynamical system $(X, \mathcal{B}, \Phi, w)$, we define for each $t \geq 0$ an operator Q_{t} on $\mathcal{F}\left(X_{0}, \Lambda\right)$ by

$$
Q_{t} f(x)=M_{t}(x) \cdot H_{t} f(x)
$$

where $\left(H_{t}\right)_{t \geq 0}$ is the deterministic semigroup. It is clear that $\left(Q_{t}\right)_{t \geq 0}$ is a linear map from $\mathcal{F}\left(X_{0}, \Lambda\right)$ to $\mathcal{F}\left(X_{0}, \Lambda\right)$ such that $Q_{t} \leq H_{t}$. Moreover, we have

$$
\begin{aligned}
Q_{t+s} f(x) & =M_{t+s}(x) \cdot f(\Phi(t+s, x)) \\
& =M_{t}(x) \cdot M_{s}(\Phi(t, x)) \cdot f(\Phi(s,(\Phi(t, x)))) \\
& =M_{t}(x) \cdot\left(Q_{s}(f)(\Phi(t, x))\right) \\
& =Q_{s} Q_{t} f(x)
\end{aligned}
$$

and so $\left\{Q_{t} ; t \geq 0\right\}$ is a semigroup called the semigroup generated by \mathcal{M}.
Theorem 2. Let $(X, \mathcal{B}, \Phi, w)$ be a semidynamical system and \mathbf{H} be the deterministic semigroup associated. Let $\left(Q_{t}\right)_{t \geq 0}$ be a semigroup such that $Q_{t}=M_{t} H_{t}$ where $\left(M_{t}\right)_{t \geq 0}$ is a right continuous multiplicative functional. Then $\left(Q_{t}\right)_{t \geq 0}$ is deterministic if and only if there exists a terminal time T such that $M_{t}(x)=1_{[0, T(x)[}(t)$.

Proof. Suppose that $\left(Q_{t}\right)_{t \geq 0}$ is deterministic, then by Remark $2\left(Q_{t}\right)_{t \geq 0}$ is multiplicative and therefore for $f=g=1$ we get

$$
Q_{t}(f \cdot g)(x)=Q_{t}(f)(x) \cdot Q_{t}(g)(x)
$$

for all $x \in X$, i.e $M_{t}(x)=M_{t}(x)^{2}$. Thus, for each $x \in X$ there exists $A(x)$ such that $M_{t}(x)=1_{A(x)}(t)$.

On the other hand, since $\left(M_{t}\right)_{t \geq 0}$ is multiplicative, then for each $t, s \geq 0$ we have

$$
\begin{aligned}
1_{A(x)}(t+s) & =M_{t+s}(x) \\
& =M_{t}(x) \cdot M_{s}(\Phi(t, x)) \\
& =1_{A(x)}(t) \cdot 1_{A(\Phi(t, x))}(s)
\end{aligned}
$$

Hence

$$
\begin{equation*}
t+s \in A(x) \Leftrightarrow t \in A(x) \quad \text { and } \quad s \in A(\Phi(t, x)) . \tag{4.1}
\end{equation*}
$$

Note that for $t=0$ we have

$$
Q_{0} 1(x)=M_{0}(x) P_{0} 1(x)=M_{0}(x)=1=1_{A(x)}(0)
$$

by Remark 1 which yields that $0 \in A(x)$.
Next, we shall prove that $A(x)$ is an interval. Indeed, let $t \in A(x)$ such that $t>0$ and let $0<t^{\prime}<t$. Then, there exists $s>0$ such that $t=t^{\prime}+s$. By (4.1) we get that $t^{\prime} \in A(x)$.

Set $T(x)=\sup \{t \geq 0: t \in A(x)\}$. If $T(x)<\infty$, we shall prove that $T(x) \notin A(x)$. So assume that $T(x) \in A(x)$, then for all $\varepsilon>0$, we have

$$
\begin{aligned}
0 & =M_{T(x)+\varepsilon}(x) \\
& =1_{A(x)}(T(x)) \cdot M_{\varepsilon}(\Phi(T(x), x)) \\
& =M_{\varepsilon}(\Phi(T(x), x)) .
\end{aligned}
$$

By letting $\varepsilon \rightarrow 0$, we get

$$
0=M_{0}(\Phi(T(x), x))=1_{A(\Phi(T(x), x))}(0)=1
$$

which is impossible. Hence

$$
A(x)=[0, T(x)[
$$

Hence, we define a mapping on X, by setting

$$
T(x)=\sup \{t \geq 0: t \in A(x)\}
$$

Next, we claim that $T: X \rightarrow \overline{\mathbf{R}_{+}}$is a stopping time. In fact, for each $\alpha \geq 0$, we have

$$
\begin{aligned}
\{T>\alpha\} & =\{x: \alpha \in[0, T(x)[\} \\
& =\left\{x: M_{\alpha}(x) \neq 0\right\}
\end{aligned}
$$

which is measurable.
Next, we claim that T is a terminal time. Indeed, let $x \in X$ and let $t \geq 0$ such that $T(x)>t$ (i.e $t \in A(x)$).

For every $s \in A(\Phi(t, x))$ we have by (4.1) that $t+s \in A(x)$ and therefore $t+s<T(x)$.
Hence, by taking the supremum over all $s \in A(\Phi(t, x))$, we get

$$
\begin{equation*}
t+T(\Phi(t, x)) \leq T(x) \tag{4.2}
\end{equation*}
$$

Conversely, for every $s: t<s<T(x)$, there exists $s^{\prime}>0$ such that $s=t+s^{\prime}<T(x)$. Since $t+s^{\prime} \in A(x)$, again by (4.1) we get that $s^{\prime} \in A(\Phi(t, x))$. Consequently, we get

$$
s \leq t+T(\Phi(t, x))
$$

which yields

$$
\begin{equation*}
T(x) \leq t+T(\Phi(t, x)) \tag{4.3}
\end{equation*}
$$

Combining (4.2) and (4.3), we obtain

$$
T(x)=t+T(\Phi(t, x)) \quad \text { on }\{T>t\} .
$$

Definition 9. Let \mathbf{H} be the deterministic semigroup of $(X, \mathcal{B}, \Phi, w)$. A semigroup $\left(Q_{t}\right)_{t \geq 0}$ is subordinate to \mathbf{H} if

$$
Q_{t} f \leq H_{t} f
$$

for each $t \geq 0$ and $f \in \mathcal{F}\left(X_{0}, \Lambda\right)$.
Next, we will prove the following result called the Theorem of Meyer (see [6] and [14]).
THEOREM 3. If $\left(Q_{t}\right)_{t \geq 0}$ is subordinate to \mathbf{H}, then there exists a multiplicative function \mathcal{M} such that $Q_{t}=M_{t} . H_{t}$.

Proof. Since $\varepsilon_{x} Q_{t} \leq \varepsilon_{x} H_{t}$, then by Radon Nikodym Theorem there exists a function $M_{t}(x)$ such that $0 \leq M_{t}(x) \leq 1$ and

$$
\varepsilon_{x} Q_{t}=M_{t}(x) \varepsilon_{x} H_{t}=M_{t}(x) \varepsilon_{\Phi(t, x)}
$$

By setting $f=1$, we get that

$$
M_{t}(x)=Q_{t} 1(x)
$$

and therefore for every $t \geq 0 M_{t}$ is measurable. On the other hand, for every $s, t \geq 0$ we have

$$
\begin{aligned}
M_{t+s}(x) f(\Phi(t+s, x)) & =Q_{t+s} f(x) \\
& =Q_{t}\left(Q_{s} f\right)(x) \\
& =M_{t}(x)\left(Q_{s} f\right)(\Phi(t, x)) \\
& =M_{t}(x) M_{s}(\Phi(t, x)) f(\Phi(t+s, x)) .
\end{aligned}
$$

Hence

$$
M_{t+s}(x)=M_{t}(x) \cdot M_{s}(\Phi(t, x)) .
$$

Corollary 2. If $\left(Q_{t}\right)_{t \geq 0}$ is subordinate to $\left(H_{t}\right)_{t \geq 0}$ and $\left(Q_{t}\right)_{t \geq 0}$ is deterministic, then there exists a terminal time T such that $Q_{t}=1_{[0, T[} H_{t}$.

Definition 10. Let $(X, \mathcal{B}, \Phi, w)$ be a semidynamical system. A semidynamical system Φ^{\prime} is said to be subordinated to Φ if there exists a terminal time T such that

$$
\Phi^{\prime}(t, x)= \begin{cases}\Phi(t, x) & \text { if } t<T(x) \\ w & \text { if } t \geq T(x)\end{cases}
$$

Proposition 2. Let $\left(Q_{t}\right)_{t \geq 0}$ be a deterministic semigroup associated to a semidynamical system Φ^{\prime} and such that $\left(Q_{t}\right)_{t \geq 0}$ is subordinate to $\left(H_{t}\right)_{t \geq 0}$. Then, Φ^{\prime} is subordinate to Φ.

Proof. By Corollary 2, there exists a terminal time T such that $Q_{t}={ }_{[0, T[} H_{t}$. Hence

$$
\varepsilon_{x} Q_{t}= \begin{cases}\varepsilon_{x} H_{t}=\varepsilon_{\Phi(t, x)} & \text { if } t<T(x) \\ 0 & \text { if } t \geq T(x)\end{cases}
$$

It is obvious that Φ^{\prime} is subordinate to Φ.
Example 5. Let T be a terminal time and set $A=\{T=0\}$. Next, we claim that $T \leq T_{A}$. Indeed, let $s \geq 0$ such that $\Phi(s, x) \in A$. Since

$$
T(x)=s+T(\Phi(s, x))=s \quad \text { on }\{T>s\}
$$

we conclude that $T(x) \leq s$ which yields that $T(x) \leq T_{A}(x)$. By setting

$$
\Phi^{\prime}(t, x)= \begin{cases}\Phi(t, x) & \text { if } t<T(x) \\ w & \text { if } t \geq T(x)\end{cases}
$$

We get that Φ^{\prime} is subordinate to Φ.
4.2 Characterization of multiplicative semigroups. In this section, we will show that under mild restrictions any multiplicative semigroup is deterministic with respect to some semidynamical system. So let (X, \mathcal{B}) be a measurable space and let $\mathbf{P}=\left(P_{t}\right)_{t \geq 0}$ be a multiplicative semigroup defined on (X, \mathcal{B}).

THEOREM 4. There exists a stopping T time such that for each $x \in X$,
(1) $T(x)>0$,
(2) $\quad P_{t} 1(x)=1_{[0, T(x)[}(t), \forall t \geq 0$.

Proof. Since \mathbf{P} is multiplicative, then $P_{t} 1(x)$ is 1 or 0 . Set

$$
A(x)=\left\{t: P_{t} 1(x)=1\right\} .
$$

Then

$$
P_{t} 1(x)=1_{A(x)}(t) .
$$

Next, we shall prove that $A(x)$ is an interval. Indeed, by (4) in Definition 6 we have that $0 \in A(x)$ and we will prove that for each $t \in A(x)$ we have $[0, t] \subset A(x)$. Let $t \in A(x)$ and $s<t$, then $t=s+s^{\prime}$ for some $s^{\prime}>0$. Using the fact that $t \in A(x)$, we get

$$
1=P_{t} 1(x)=P_{s}\left(P_{s^{\prime}} 1\right)(x) \leq P_{s} 1(x)
$$

which gives us that $P_{s} 1(x)=1$ and therefore $s \in A(x)$.
Set $T(x)=\sup A(x)$. Suppose that $T(x)<\infty$ and that $T(x) \in A(x)$. We choose a sequence $\left(\varepsilon_{n}\right)$ which decreases to 0 . Using the fact that $T(x)=\sup A(x)$, we get that

$$
P_{T(x)}\left(P_{\varepsilon_{n}}\right) 1(x)=P_{T(x)+\varepsilon_{n}} 1(x)=0 .
$$

On the other hand, for every $y \in X$ we have $P_{\varepsilon_{n}} 1(y)=1_{[0, T(y))}\left(\varepsilon_{n}\right)$ which converges to 1 as $n \rightarrow \infty$. Since $P_{\varepsilon_{n}} 1$ is increasing, then $P_{T(x)}\left(P_{\varepsilon_{n}}\right) 1(x)$ converges to $P_{T(x)} 1(x)=1$ which is impossible.

Finally, we shall prove that T is measurable. So, let $\alpha \in \mathbf{R}$, since the map $x \rightarrow P_{\alpha} 1(x)$ is measurable, we get that the set $\left\{x: P_{\alpha} 1(x)=1\right\}$ is measurable. On the other hand,

$$
\left\{x: P_{\alpha} 1(x)=1\right\}=\{x: \alpha \in[0, T(x)[\}=\{T(x)>\alpha\} .
$$

Thus, T is a stopping time.
REMARK 4. For every measurable function f on X, we have that

$$
P_{t} f(x)=1_{[0, T(x)[}(t) P_{t} f(x)
$$

and consequently, we have $P_{t} f(x)=0$ if $t \geq T(x)$.
Next, we introduce the following notation which will be needed later. Let us denote by $\mathcal{E}_{\mathbf{P}}$ the set of excessive functions of \mathbf{P} (cf. [8]) and by

$$
V 1(x)=\int_{0}^{\infty} P_{t} 1(x) d t=T(x)
$$

the potential of \mathbf{P}.
Proposition 3. The function 1 is excessive and therefore every nonnegative constant is excessive.

Proof. Since, by Theorem $4, T(x)>0$ and $P_{t} 1(x)=1_{[0, T(x)[}(t)$, then $\sup _{t \geq 0} P_{t} 1(x)=$ 1.

Next, we denote by

$$
x \underset{\mathcal{E}_{\mathbf{P}}}{\leq} y
$$

if $s(y) \leq s(x)$ for all $s \in \mathcal{E}_{\mathbf{P}}$ and by

$$
\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}=\left\{y: x \underset{\mathcal{E}_{\mathbf{P}}}{ } y\right\}
$$

Note that if $\mathcal{E}_{\mathbf{P}}$ separates the elements of X, then " \leq " is an order on X.
TheOrem 5. Suppose that $V 1<\infty$ and that $\mathcal{E}_{\mathbf{P}}$ is minstable and that it separates the elements of X. Then, $\mathcal{E}_{\mathbf{P}}$ is equal to the set of all positive decreasing functions with respect to $" \leq "$ and lower semicontinuous with respect to the fine topology which is the coarsest topology on X for which all the excessive functions are continuous.

Proof. Let f, g tow excessive functions, then

$$
\sup _{t \geq 0} P_{t}(f \cdot g)=\sup _{t \geq 0} P_{t}(f) \cdot P_{t}(g)=\sup _{t \geq 0} P_{t}(f) \cdot \sup _{t \geq 0} P_{t}(g)=f \cdot g
$$

and therefore $f . g$ is excessive. On the other hand, by Proposition 3 all positive constants are excessive. By using Theorem 16 in [3], we get that $\mathcal{E}_{\mathbf{W}}$ is equal to the set of all positive decreasing functions with respect to " $\overline{\mathcal{E}_{\mathbf{P}}}$ " and lower semicontinuous with respect to the fine topology where \mathbf{W} is the resolvent associated to \mathbf{P}. On the other hand, by [8], we get that $\mathcal{E}_{\mathbf{W}}=\mathcal{E}_{\mathbf{P}}$.

Theorem 6. Suppose that (X, \mathcal{B}) is a Lusin space (cf. [7]), V1 $<\infty$ and that $\mathcal{E}_{\mathbf{P}}$ is minstable and that it separates the elements of X. Moreover, assume that for each $x \in X$, there exists $\alpha_{x}<\beta_{x}$ such that T is an isomorphism from $\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}$ to $\left.] \alpha_{x}, \beta_{x}\right]$. Then, the semigroup \mathbf{P} is a right continuous deterministic semigroup and T is a terminal time with respect to \mathbf{P}.

Proof. Let $x \in X$ and $t \in[0, T(x)$ [. Since \mathbf{P} is multiplicative, then for each $A \in \mathcal{B}$ we have $P_{t}\left(1_{A}\right) \in\{0,1\}$. By Hunt's approximation Theorem (see [8]) we get that

$$
x \underset{\mathcal{E}_{\mathbf{P}}}{\leq} y \Leftrightarrow V f(y) \leq V f(x)
$$

for every positive bounded measurable function on X. On the other hand, since V is proper, then there exists $\left(B_{n}\right)_{n} \subset \mathcal{B}^{\mathbf{N}}$ such that

$$
\mathcal{C}=\left\{B_{n}: n \in \mathbf{N}\right\}
$$

is a ring of sets satisfying the following properties
(1) For each $n \in \mathbf{N}, V 1_{B_{n}}$ is bounded,
(2) $X=\bigcup_{n \in \mathbf{N}} B_{n}$,
(3) The σ-algebra generated by \mathcal{C} is equal to \mathcal{B}.

Hence

$$
\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}=\bigcap_{n \in \mathbf{N}}\left\{V\left(1_{B_{n}}\right) \leq V\left(1_{B_{n}}\right)(x)\right\}
$$

is measurable. Next, we claim that $1_{\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)_{C}}$ is excessive. Indeed, Let $y \underset{\mathcal{E}_{\mathbf{P}}}{\leq} z$, then $z \in \Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}$ when $y \in \Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}$ and hence

$$
1_{\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)^{C}}(z)=1_{\left(\Gamma_{x}^{\left.\mathcal{E}_{\mathbf{P}}\right)^{C}}\right.}(y)
$$

But if $y \notin \Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}$, we get

$$
1_{\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)^{C}}(y)=1 \geq 1_{\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)^{C}}(z)
$$

which yields that $1_{\left(\Gamma_{x}^{\left.\mathcal{E}_{\mathbf{P}}\right) C}\right.}$ is decreasing with respect to $\underset{\mathcal{E}_{\mathbf{P}}}{\leq}$.
Now, let α be a real, then

$$
\left\{1_{\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)^{c}}>\alpha\right\}= \begin{cases}X & \text { if } \alpha<0 \\ \left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)^{C} & \text { if } \alpha \in[0,1[\\ \emptyset & \text { if } \alpha \geq 1\end{cases}
$$

which gives us that $1_{\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)^{C}}$ is lower semicontinuous with respect to the fine topology and therefore is excessive by Theorem 5 .

Next, we claim that $\varepsilon_{x} P_{t}$ is concentrated in $\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}\right)$. Indeed, since $1_{\left(\Gamma_{x} \mathcal{E}_{\mathbf{P}}\right)^{C}}$ is excessive, we get that

$$
\varepsilon_{x} P_{t}\left(1_{\left(\Gamma_{x}^{\left.\mathcal{E}_{\mathbf{P}}\right) C}\right.}\right) \leq 1_{\left(\Gamma_{x}^{\left.\mathcal{E}_{\mathbf{P}}\right) C}\right.}(x)=0
$$

In the following, let

$$
\left.\left.T: \Gamma_{x}^{\mathcal{E}_{\mathbf{P}}} \rightarrow\right] \alpha_{x}, \beta_{x}\right]
$$

be an isomorphism. Let us denote by \mathcal{T}_{x} the topology defined on $\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}$ and generated by the collection of subsets $V \subset \Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}$ such that $\forall y \in V$ there exists $\varepsilon>0$ such that $] T(y)-$
$\left.\varepsilon, T(y)+\varepsilon[\subset] \alpha_{x}, \beta_{x}\right]$ if $y \neq x$ and $\left.\left.\left.] T(y)-\varepsilon, T(y)\right] \subset\right] \alpha_{x}, \beta_{x}\right]$ if $y=x$. It follows that T is an homeomorphism from $\left(\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}, \mathcal{T}_{x}\right)$ to $] \alpha_{x}, \beta_{x}$] and by Lusin Theorem (cf. [7]), T is a measurable isomorphism. Let us denote by

$$
\operatorname{Supp}\left(\varepsilon_{x} P_{t}\right)=\left\{y \in \Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}: \forall V \in \mathcal{T}_{x} \varepsilon_{x} P_{t}(V)>0\right\} .
$$

In the sequel, let us assume that there exist $y, z \in \operatorname{Supp}\left(\varepsilon_{x} P_{t}\right)$ such that $y \neq z$. We can choose $y \in U \in \mathcal{T}_{x}$ and $z \in W \in \mathcal{T}_{x}$ such that $U \cap W=\emptyset$. Since

$$
0=\varepsilon_{x} P_{t}\left(1_{U} 1_{W}\right)=\varepsilon_{x} P_{t}\left(1_{U}\right) \varepsilon_{x} P_{t}\left(1_{W}\right)
$$

we get that $\varepsilon_{x} P_{t}\left(1_{U}\right)=0$ or $\varepsilon_{x} P_{t}\left(1_{W}\right)=0$ which is impossible. Thus there exists a unique element y of $\Gamma_{x}^{\mathcal{E}_{\mathbf{P}}}$ which will be denoted by $\Phi_{0}(t, x)$ such that $\varepsilon_{x} P_{t}=\varepsilon_{\Phi_{0}(t, x)}$.

In what follows, Let $X_{w}=X \cup\{w\}$ where w is an element not in X and \mathcal{B}_{w} be the σ-algebra on X_{w} generated by \mathcal{B} and $\{w\}$. Note that $\{w\} \in \mathcal{B}_{w}$. We define Φ on X_{w} by

$$
\Phi(t, x)= \begin{cases}\Phi_{0}(t, x) & \text { if } x \in X, \quad t \in[0, T(x)[\\ w & \text { if } x \in X, \quad t \geq T(x) \\ w & \text { if } x=w, \quad t \geq 0\end{cases}
$$

Next, we claim that $\left(X_{w}, \mathcal{B}_{w}, \Phi, w\right)$ is a semidynamical system. In fact, let $s, t \geq 0$ such that $t+s<T(x)$. Then

$$
\varepsilon_{\Phi(t+s, x)}=\varepsilon_{x} P_{t+s}=\varepsilon_{x} P_{t} P_{s}=\varepsilon_{\Phi(t, x)} P_{s}=\varepsilon_{\Phi(s, \Phi(t, x))}
$$

which yields that $\Phi(t+s, x)=\Phi(s, \Phi(t, x))$.
For $t=0$, we have $\varepsilon_{x}=\varepsilon_{\Phi(0, x)}$ which gives us that $\Phi(0, x)=x$.
Now, consider $x, y \in X$ such that $\Phi(t, x)=\Phi(t, y)$ for every $t>0$. Thus, we get that

$$
1_{[0, T(x)[}(t)=1_{[0, T(y)[}(t)
$$

for every $t>0$. Hence $T(x)=T(y)$ and therefore $x=y$.
Next, we shall prove that Φ is measurable and T is a terminal time. In fact, let $t<T(x)$. Since

$$
\varepsilon_{\Phi(t, x)} P_{s} 1=\varepsilon_{\Phi(t+s, x)} 1=\varepsilon_{x} P_{(t+s)} 1,
$$

we get that

$$
1_{[0, T(\Phi(t, x))[}(s)=1_{[0, T(x)[}(t+s)
$$

which gives us that

$$
s<T(\Phi(t, x)) \Leftrightarrow s+t<T(x)
$$

and hence

$$
\begin{equation*}
t+T(\Phi(t, x))=T(x) \tag{4.4}
\end{equation*}
$$

Now, using the fact that T is a measurable isomorphism, we get that

$$
\Phi(t, x)=T^{-1}(T(x)-t)
$$

on the set $\{t<T(x)\}$. $\left(X_{w}, \mathcal{B}_{w}\right)$ being a Lusin space, we get then that Φ is measurable and hence is a semidynamical system. Moreover, by (4.4), we obtain that T is a terminal time.

Finally, since $V 1<\infty$, then $\left(X_{w}, \mathcal{B}_{w}, \Phi, w\right)$ is a transient semidynamical system (cf. [3] and [9]) and by Corollary 1 we get that \mathbf{P} is right continuous.

We thank the referee for the useful suggestions and for the careful reading of the paper.

References

[1] M. Bezzarga, Coexcessive functions and duality for semi-dynamical systems, Romanian Journal of Pure and Applied Mathematics, Tome XLII N ${ }^{0} 1-2$, (1997), 15-30.
[2] M. Bezzarga, Right dual process for semidynamical systems, to appear in Potential Analysis.
[3] M. Bezzarga and Gh. Bucur, Théorie du potentiel pour les systèmes semi-dynamiques, Rev. Roumaine Math. Pures. Appl. 39 (1994), 439-456.
[4] M. BezZarga and Gh. Bucur, Duality for semi-dynamical systems. Potential Theory-ICPT94, Walter de Gruyter (1996), 275-286.
[5] N. P. Bhatia and O. Hajek, Local semi-dynamical systems, Lecture Notes in Math. 90 (1969), Springer.
[6] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic Press (1968).
[7] N. Bourbaki, Éléments de mathématiques. Intégration, Hermann (1965).
[8] C. Dellacherie and P. A. Meyer, Probabilités et Potentiel. Vol XII-XVI, Hermann (1987).
[9] R. K. Getoor, Transience and recurrence of Markov Process, Séminaire de Probabilité XIV (1978/1979); Lecture Notes in Math. 784, Springer (1980), 397-409.
[10] O. Hajek, Dynamical systems in the plane, Academic Press (1968).
[11] M. Hmissi, Semi-groupe déterministe, Lecture notes in Math. 1393 (1989), 135-144.
[12] M. Hmissi, Cone de potentiels stables par produit et systmes semidynamiques, Expo. Maths 7 (1989), 265273.
[13] B. O. Koopmann, Hamiltoniens systems and transformation in Hilbert spaces, Proc. Nat. Acad. Sci. USA 17 (1931), 315-318.
[14] P. A. MEyER, Fonctionnelles multiplicatives et additives de Markov, Ann. Inst. Fourier 12 (1962), 125-230.
[15] S. H. Saperstone, Semidynamical systems in infinite dimensional space, App. Math. Sciences 37 (1981), Springer.

[^0]: Received May 30, 2002; revised January 20, 2003
 1991 Mathematics Subject Classification. Primary: 47D07; Secondary: 31D05, 60J45.
 Key words and phrases. deterministic semigroup, excessive functions, multiplicative functional, semidynamical system, subordinate semigroup, terminal time.

