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Abstract. We develop the fundamental properties of multiplicative functional M defined on a semidynamical
system (X,B, Φ,w). We give a characterization of semigroups which are subordinate to the deterministic semigroup
H and we show that they are generated by a multiplicative functional. We study the case when a multiplicative
semigroup defined on a measurable space (X,B) is deterministic.

1. Introduction

The semidynamical system arise from a dynamical interpretation of functional differen-
tial equations with time lag and evolution type partial differential equations (i.e the heat diffu-
sion equation). In this case a solution Φ(t, x) with initial condition x is defined on [0, ρ(x)[
only and jumps into a “coffin” state “w” afterwards.

Also, a multiplicative functional arise when we “kill” a semidynamical system if it enters
in a domain D.

So, starting from a semidynamical system (X,B,Φ,w) we give the definition of a ter-
minal time as a first time some physical event occurs and for a subset U of X, we give the
notion of a first hitting time and first entry time and we show particularly that any measurable
hitting time is a terminal time.

Next, we give some characterization of deterministic semigroups. We show essentially
that if Qt = MtHt where M is a right continuous multiplicative functional and H is deter-
ministic, then (Qt )t≥0 is deterministic if and only if M = 1[0,T [ where T is a terminal time
and therefore (Qt )t≥0 is subordinate to H (Theorem 2).

Conversely, we prove that any semigroup which is subordinate to H is generated by a
multiplicative functional M (Theorem 3).

Notice that any deterministic semigroup is multiplicative. However, if we consider a
Lusin space (cf. [7]) we will show that under some restrictions any multiplicative semigroup
is deterministic (Theorem 6). Note that this Theorem gives a generalization to the results
given in [11], [12] and [3]. Indeed, in [11] and [12], the author considered a topological space

Received May 30, 2002; revised January 20, 2003
1991 Mathematics Subject Classification. Primary: 47D07; Secondary: 31D05, 60J45.
Key words and phrases. deterministic semigroup, excessive functions, multiplicative functional, semidynamical sys-
tem, subordinate semigroup, terminal time.



472 NEDRA BELHAJ RHOUMA AND MOUNIR BEZZARGA

(X,T ) which is locally compact and having a countable base. In [3], the authors showed that
a multiplicative potential cone is associated to a deterministic semigroup. In our case, we
show that every positive constant is excessive and that H is the unique semigroup associated
and also any multiplicative semigroup is a right continuous deterministic semigroup.

2. Preliminary

In this section, we will introduce some definitions which will be useful in the remainder
of this paper (For more details see [3], [5], [10] and [15] ).

DEFINITION 1. Let (X,B) be a separable measurable space with a distinguished point
ω. A measurable map Φ : R+ × X → X is called a semidynamical system with cofinal point
ω if the following conditions are fulfilled:

(S1) For any x in X, there exists an element ρ(x) in [0,∞] such that Φ(t, x) �= ω for
all t ∈ [0, ρ(x)) and Φ(t, x) = ω for all t ≥ ρ(x),

(S2) For any s, t ∈ R+ and any x ∈ X we have

Φ(s,Φ(t, x)) = Φ(s + t, x) ,

(S3) Φ(0, x) = x for all x ∈ X,

(S4) If Φ(t, x) = Φ(t, y) for all t > 0, then x = y.

Next, we will denote by X0 = X \ {w}. For any x ∈ X0 we denote by Γx the trajectory
of x, i.e:

Γx = {Φ(t, x); t ∈ [0, ρ(x))}
and we define the function Φx on [0, ρ(x)) by Φx(t) = Φ(t, x). So for any x, y ∈ X0 we put

x ≤
Φ

y ⇔ y ∈ Γx .

A maximal trajectory is a totally ordered subset Γ of X \ {ω} with respect to the above order,
such that there is no x0 ∈ X0 \ Γ which is minorant of Γ and such for any x ∈ Γ , we have
Γx ⊂ Γ .

In what follows, we shall suppose that (X,B,Φ,ω) is a transient semidynamical system
(cf. [3]). It is proved that the map Φx is a measurable isomorphism between [0, ρ(x)) and Γx

endowed with trace measurable structures.
In the next, let us denote by B0 = {U ∈ B; U ⊂ X0}. Let Λ be the Lebesgue measure

associated with the semidynamical system (X,B,Φ,ω) given by Λ(A) = λ(Φ−1
x (A)) for

any x ∈ X0, A ∈ B0 and A ⊂ Γx , where λ is the Lebesgue measure on R (cf. [4]). We recall
(cf. [1]) that in the same way Λ can be defined on the σ -algebra B0(Λ) which is the set of all
subsets A of X0 such that A ∩ M ∈ B0 for any countable union M of trajectories of X0.

One can show that the resolvent family V = (Vα)α≥0 may be considered on the measur-
able space (X0,B0(Λ)) and we denote by F(X0,Λ) the set of all positive B0(Λ) measurable



SUBORDINATION OF SEMIDYNAMICAL SYSTEMS 473

functions on X0. For every f ∈ F(X0,Λ), we have

Vαf (x) =
∫ ∞

0
e−αtf (Φ(t, x))dt.

In the sequel, we define the inherent topology T 0
Φ as being the set of all subsets D of X0

satisfying the following condition:

(∀x ∈ X0,∀t0 ∈ [0, ρ(x)[ such that Φ(t0, x) ∈ D) ⇒
(∃ε > 0, such that ∀t ∈ ]t0 − ε, t0 + ε[ ∩ [0, ρ(x)[,Φ(t, x) ∈ D)

(see [3], [10]).
Let us denote by H = (Ht)t∈R+ the deterministic semigroup introduced in [11] and [13]

and defined by

εxHt =
{

εΦ(t,x) if t < ρ(x) ,

0 if t ≥ ρ(x) ,

for every (t, x) ∈ R+ × X0.
Then, we get the following results (see [2]).

THEOREM 1. The map t → Φ(t, x) is right continuous with respect to the inherent

topology T 0
Φ .

PROOF. Let f : X0 → R+ be a bounded B0(Λ)-measurable function. For every x ∈
X0, we have

V0f (Φ(t, x)) =
∫ ∞

0
f (Φ(s,Φ(t, x)))ds

=
∫ ∞

t

f (Φ(s, x))ds .

Therefore t → (V0f )Φ(t, x) is right continuous, i.e t → Φ(t, x) is right continuous with

respect to T 0
Φ . �

COROLLARY 1. The deterministic semigroup is right continuous.

NOTATION. Throughout this paper we will denote by εx the Dirac measure concen-
trated in x. For every subset U of X, we denote UC = X \ U and

1U =
{

1 if x ∈ U ,

0 if not .

3. Multiplicative functionals

DEFINITION 2 (see Definition (6.1) of Ch.I from [6]). A mapping T : X → [0,+∞]
is called a stopping time if it is B0(Λ) measurable.
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DEFINITION 3 (see (10.1) of Ch.I from [6]). Let A be a subset of X. For each x ∈ X,
we define the first entry time of A by

DA(x) = inf{t ≥ 0 : Φ(t, x) ∈ A}
and the first hitting time of A by

TA(x) = inf{t > 0 : Φ(t, x) ∈ A}
where in both cases the infinimum of the empty set is understood to be +∞.

DEFINITION 4 (see (2.18) of Ch.II from [6]). A stopping time T is a terminal time if
for each t ≥ 0,

T = t + T (Φ(t, .)) on {T > t} .

PROPOSITION 1 (see (2.18) of Ch.II from [6]). Any measurable hitting time is a termi-
nal time.

PROOF. Let (αn)n be a sequence which decreases to 0 and such that Φ(TA(Φ(t, x)) +
αn,Φ(t, x)) ∈ A. Since

Φ(TA(Φ(t, x)) + αn,Φ(t, x)) = Φ(TA(Φ(t, x)) + αn + t, x)

we get

TA(x) ≤ t + αn + TA(Φ(t, x)) .

By letting n → ∞ we get

TA(x) ≤ TA(Φ(t, x)) + t .(3.1)

On the other hand, let t be such that TA(x) > t , then there exists (βn)n which decreases to 0
such that Φ(TA(x) + βn, x) ∈ A. Since

Φ(TA(x) − t + t + βn, x) = Φ(TA(x) − t + βn,Φ(t, x))

we get that

TA(Φ(t, x)) ≤ TA(x) − t + βn

for every n ∈ N, which yields that

TA(Φ(t, x)) ≤ TA(x) − t .(3.2)

The proof then is achieved by using (3.1) and (3.2). �

DEFINITION 5 (see Definition (1.1) of Ch.III from [6]). A family M = {Mt ; 0 ≤ t <

∞} of measurable functions on (X,B) is called a multiplicative functional provided:
(1) for every t ≥ 0, Mt is B0(Λ) measurable,
(2) For each x ∈ X, for every t, s ≥ 0,

Mt+s(x) = Mt(x).Ms(Φ(t, x)) ,
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(3) 0 ≤ Mt(x) ≤ 1 for all t and x.

We say that M is right continuous (or continuous) provided t → Mt(x) is right continuous
(or continuous) for every x ∈ X.

REMARK 1. We remark that M0(x) = M2
0 (x) i.e that M0(x) = 0 or M0(x) = 1. Thus,

we say that an element x of X is permanent if M0(x) = 1. Moreover the conditions (2) and
(3) gives us that

Mt(x) ≤ M0(x) ∀t ≥ 0 .

Hence, we will assume that every x ∈ X is permanent.

The following examples are issued from (1.2), (1.3), (1.4) and (1.5) of Chapter III in [6].

EXAMPLE 1. For each α ≥ 0, define Mt = e−αt . Then {Mt ; t ≥ 0} is a continuous
multiplicative functional.

EXAMPLE 2. Let T be a terminal time and define

Mt(x) = 1[0,T (x)[(t) .

Then M = {Mt ; 0 ≤ t < ∞} is a right continuous multiplicative functional. In fact, if
s < T (Φ(t, x)) and t < T (x), then

Mt(x)Ms(Φ(t, x)) = 1 .

Since

s < T (Φ(t, x)) = T (x) − t on {T > t}
we get t + s < T (x) and therefore

Mt+s(x) = 1[0,T (x)[(t + s) = 1 = Mt(x)Ms(Φ(t, x)) .

Now, if s ≥ T ((Φ(t, x)) or t ≥ T (x), then Mt(x)Ms(Φ(t, x)) = 0.
In the first case , we have

s ≥ T ((Φ(t, x)) = T (x) − t if T (x) > t

which yields that t + s ≥ T (x) and therefore

Mt+s(x) = 1[0,T (x)[(t + s) = 0 .

In the second case, t ≥ T (x) ⇒ t + s ≥ T (x) which implies that Mt+s(x) = 0.

EXAMPLE 3. For every f ∈ F(X0,Λ), define

Mt(x) = exp

(
−

∫ t

0
f (Φ(s, x))ds

)
.

It is obvious that M is a continuous multiplicative functional when f is bounded.
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EXAMPLE 4. For every f ∈ F(X0,Λ), define

T = inf

{
t :

∫ t

0
f (Φ(s, x))ds = ∞

}

Then T is a terminal time and

Mt(x) = 1[0,T (x)[(t) exp

(
−

∫ t

0
f (Φ(s, x))ds

)

defines a right continuous multiplicative functional.

4. Subordinate semigroups

In this section, we will deal with the properties of multiplicative semigroups.

4.1 Deterministic semigroup and subordination

DEFINITION 6. Let (X,B) be a measurable space and let P = (Pt )t≥0 be a family of
operators such that

(1) For all A ∈ B, the mapping (t, x) → Pt 1A(x) is measurable,
(2) For all x ∈ X, t ≥ 0, the mapping A → Pt 1A(x) is a measure on B,
(3) Pt+s = PtPs ,
(4) P0 = Id .

Then (Pt )t≥0 is called a semigroup.

DEFINITION 7. Let P = (Pt )t≥0 be a semigroup. We say that P is multiplicative if for
every measurable functions f and g on (x,B), we have

Pt (f.g ) = Ptf.Ptg .

DEFINITION 8. Let (X,B) be a measurable space. We say that a semigroup P is deter-
ministic if there exists a semidynamical system Φ such that P is the deterministic semigroup
associated.

REMARK 2. Let (Qt )t≥0 be a deterministic semigroup defined on a measurable space
(X,B) . Then, (Qt )t≥0 is multiplicative.

REMARK 3. If M is a multiplicative functional defined on a semidynamical system
(X,B,Φ,w), we define for each t ≥ 0 an operator Qt on F(X0,Λ) by

Qtf (x) = Mt(x).Htf (x)
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where (Ht)t≥0 is the deterministic semigroup. It is clear that (Qt )t≥0 is a linear map from
F(X0,Λ) to F(X0,Λ) such that Qt ≤ Ht . Moreover, we have

Qt+sf (x) = Mt+s(x).f (Φ(t + s, x))

= Mt(x).Ms(Φ(t, x)).f (Φ(s, (Φ(t, x))))

= Mt(x).(Qs(f )(Φ(t, x)))

= QsQtf (x)

and so {Qt ; t ≥ 0} is a semigroup called the semigroup generated by M.

THEOREM 2. Let (X,B,Φ,w) be a semidynamical system and H be the deterministic
semigroup associated. Let (Qt)t≥0 be a semigroup such that Qt = MtHt where (Mt )t≥0 is a
right continuous multiplicative functional. Then (Qt)t≥0 is deterministic if and only if there
exists a terminal time T such that Mt(x) = 1[0,T (x)[(t).

PROOF. Suppose that (Qt )t≥0 is deterministic, then by Remark 2 (Qt )t≥0 is multiplica-
tive and therefore for f = g = 1 we get

Qt(f.g )(x) = Qt(f )(x).Qt(g )(x)

for all x ∈ X, i.e Mt(x) = Mt(x)2. Thus, for each x ∈ X there exists A(x) such that
Mt(x) = 1A(x)(t).

On the other hand, since (Mt)t≥0 is multiplicative, then for each t, s ≥ 0 we have

1A(x)(t + s) = Mt+s(x)

= Mt(x).Ms(Φ(t, x))

= 1A(x)(t).1A(Φ(t,x))(s) .

Hence

t + s ∈ A(x) ⇔ t ∈ A(x) and s ∈ A(Φ(t, x)) .(4.1)

Note that for t = 0 we have

Q01(x) = M0(x)P01(x) = M0(x) = 1 = 1A(x)(0)

by Remark 1 which yields that 0 ∈ A(x).
Next, we shall prove that A(x) is an interval. Indeed, let t ∈ A(x) such that t > 0 and

let 0 < t ′ < t . Then, there exists s > 0 such that t = t ′ + s. By (4.1) we get that t ′ ∈ A(x).
Set T (x) = sup{t ≥ 0 : t ∈ A(x)}. If T (x) < ∞, we shall prove that T (x) /∈ A(x). So

assume that T (x) ∈ A(x), then for all ε > 0, we have

0 = MT (x)+ε(x)

= 1A(x)(T (x)).Mε(Φ(T (x), x))

= Mε(Φ(T (x), x)) .
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By letting ε → 0, we get

0 = M0(Φ(T (x), x)) = 1A(Φ(T (x),x))(0) = 1

which is impossible. Hence

A(x) = [0, T (x)[ .

Hence, we define a mapping on X, by setting

T (x) = sup{t ≥ 0 : t ∈ A(x)} .

Next, we claim that T : X → R+ is a stopping time. In fact, for each α ≥ 0, we have

{T > α} = {x : α ∈ [0, T (x)[}
= {x : Mα(x) �= 0}

which is measurable.
Next, we claim that T is a terminal time. Indeed, let x ∈ X and let t ≥ 0 such that

T (x) > t (i.e t ∈ A(x)).
For every s ∈ A(Φ(t, x)) we have by (4.1) that t + s ∈ A(x) and therefore t + s < T (x).
Hence, by taking the supremum over all s ∈ A(Φ(t, x)) , we get

t + T (Φ(t, x)) ≤ T (x) .(4.2)

Conversely, for every s : t < s < T (x), there exists s′ > 0 such that s = t + s′ < T (x).
Since t + s′ ∈ A(x), again by (4.1) we get that s′ ∈ A(Φ(t, x)). Consequently, we get

s ≤ t + T (Φ(t, x))

which yields

T (x) ≤ t + T (Φ(t, x)) .(4.3)

Combining (4.2) and (4.3), we obtain

T (x) = t + T (Φ(t, x)) on {T > t} . �

DEFINITION 9. Let H be the deterministic semigroup of (X,B,Φ,w). A semigroup
(Qt )t≥0 is subordinate to H if

Qtf ≤ Htf

for each t ≥ 0 and f ∈ F(X0,Λ).

Next, we will prove the following result called the Theorem of Meyer (see [6] and [14]).

THEOREM 3. If (Qt )t≥0 is subordinate to H, then there exists a multiplicative function
M such that Qt = Mt.Ht .



SUBORDINATION OF SEMIDYNAMICAL SYSTEMS 479

PROOF. Since εxQt ≤ εxHt , then by Radon Nikodym Theorem there exists a function
Mt(x) such that 0 ≤ Mt(x) ≤ 1 and

εxQt = Mt(x)εxHt = Mt(x)εΦ(t,x) .

By setting f = 1, we get that

Mt(x) = Qt 1(x)

and therefore for every t ≥ 0 Mt is measurable. On the other hand, for every s, t ≥ 0 we have

Mt+s(x)f (Φ(t + s, x)) = Qt+sf (x)

= Qt(Qsf )(x)

= Mt(x)(Qsf )(Φ(t, x))

= Mt(x)Ms(Φ(t, x))f (Φ(t + s, x)) .

Hence

Mt+s(x) = Mt(x).Ms(Φ(t, x)) . �

COROLLARY 2. If (Qt )t≥0 is subordinate to (Ht)t≥0 and (Qt)t≥0 is deterministic, then
there exists a terminal time T such that Qt = 1[0,T [Ht .

DEFINITION 10. Let (X,B,Φ,w) be a semidynamical system. A semidynamical sys-
tem Φ ′ is said to be subordinated to Φ if there exists a terminal time T such that

Φ ′(t, x) =
{

Φ(t, x) if t < T (x) ,

w if t ≥ T (x) .

PROPOSITION 2. Let (Qt)t≥0 be a deterministic semigroup associated to a semidy-
namical system Φ ′ and such that (Qt )t≥0 is subordinate to (Ht)t≥0. Then, Φ ′ is subordinate
to Φ.

PROOF. By Corollary 2, there exists a terminal time T such that Qt = 1[0,T [Ht . Hence

εxQt =
{

εxHt = εΦ(t,x) if t < T (x) ,

0 if t ≥ T (x) .

It is obvious that Φ ′ is subordinate to Φ. �

EXAMPLE 5. Let T be a terminal time and set A = {T = 0}. Next, we claim that
T ≤ TA. Indeed, let s ≥ 0 such that Φ(s, x) ∈ A. Since

T (x) = s + T (Φ(s, x)) = s on {T > s}
we conclude that T (x) ≤ s which yields that T (x) ≤ TA(x). By setting

Φ ′(t, x) =
{

Φ(t, x) if t < T (x) ,

w if t ≥ T (x) .
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We get that Φ ′ is subordinate to Φ.

4.2 Characterization of multiplicative semigroups. In this section, we will show
that under mild restrictions any multiplicative semigroup is deterministic with respect to some
semidynamical system. So let (X,B) be a measurable space and let P = (Pt )t≥0 be a multi-
plicative semigroup defined on (X,B).

THEOREM 4. There exists a stopping T time such that for each x ∈ X,

(1) T (x) > 0,

(2) Pt 1(x) = 1[0,T (x)[(t),∀t ≥ 0.

PROOF. Since P is multiplicative, then Pt 1(x) is 1 or 0. Set

A(x) = {t : Pt 1(x) = 1} .

Then

Pt 1(x) = 1A(x)(t) .

Next, we shall prove that A(x) is an interval. Indeed, by (4) in Definition 6 we have that
0 ∈ A(x) and we will prove that for each t ∈ A(x) we have [0, t] ⊂ A(x). Let t ∈ A(x) and
s < t , then t = s + s′ for some s′ > 0. Using the fact that t ∈ A(x), we get

1 = Pt1(x) = Ps(Ps ′1)(x) ≤ Ps1(x)

which gives us that Ps1(x) = 1 and therefore s ∈ A(x).
Set T (x) = sup A(x). Suppose that T (x) < ∞ and that T (x) ∈ A(x). We choose a

sequence (εn) which decreases to 0. Using the fact that T (x) = sup A(x), we get that

PT (x)(Pεn)1(x) = PT (x)+εn1(x) = 0 .

On the other hand, for every y ∈ X we have Pεn1(y) = 1[0,T (y))(εn) which converges to 1 as
n → ∞. Since Pεn1 is increasing, then PT (x)(Pεn)1(x) converges to PT (x)1(x) = 1 which is
impossible.

Finally, we shall prove that T is measurable. So, let α ∈ R, since the map x → Pα1(x)

is measurable, we get that the set {x : Pα1(x) = 1} is measurable. On the other hand,

{x : Pα1(x) = 1} = {x : α ∈ [0, T (x)[} = {T (x) > α} .

Thus, T is a stopping time. �

REMARK 4. For every measurable function f on X, we have that

Ptf (x) = 1[0,T (x)[(t)Ptf (x)

and consequently, we have Ptf (x) = 0 if t ≥ T (x).

Next, we introduce the following notation which will be needed later. Let us denote by
EP the set of excessive functions of P (cf. [8]) and by

V 1(x) =
∫ ∞

0
Pt1(x)dt = T (x)
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the potential of P.

PROPOSITION 3. The function 1 is excessive and therefore every nonnegative constant
is excessive.

PROOF. Since, by Theorem 4, T (x)>0 and Pt 1(x)=1[0,T (x)[(t), then supt≥0 Pt1(x)=
1. �

Next, we denote by

x ≤
EP

y

if s(y) ≤ s(x) for all s ∈ EP and by

Γ EP
x = {y : x ≤

EP

y} .

Note that if EP separates the elements of X, then “≤
EP

” is an order on X.

THEOREM 5. Suppose that V 1 < ∞ and that EP is minstable and that it separates the
elements of X. Then, EP is equal to the set of all positive decreasing functions with respect to
“≤
EP

” and lower semicontinuous with respect to the fine topology which is the coarsest topology

on X for which all the excessive functions are continuous.

PROOF. Let f, g tow excessive functions, then

sup
t≥0

Pt(f.g ) = sup
t≥0

Pt(f ).Pt (g ) = sup
t≥0

Pt(f ).sup
t≥0

Pt (g ) = f.g

and therefore f.g is excessive. On the other hand, by Proposition 3 all positive constants
are excessive. By using Theorem 16 in [3], we get that EW is equal to the set of all positive
decreasing functions with respect to “≤

EP

” and lower semicontinuous with respect to the fine

topology where W is the resolvent associated to P. On the other hand, by [8], we get that
EW = EP. �

THEOREM 6. Suppose that (X,B) is a Lusin space (cf. [7]), V 1 < ∞ and that EP is
minstable and that it separates the elements of X. Moreover, assume that for each x ∈ X,

there exists αx < βx such that T is an isomorphism from Γ
EP
x to ]αx, βx]. Then, the semigroup

P is a right continuous deterministic semigroup and T is a terminal time with respect to P.

PROOF. Let x ∈ X and t ∈ [0, T (x)[. Since P is multiplicative, then for each A ∈ B
we have Pt (1A) ∈ {0, 1}. By Hunt’s approximation Theorem (see [8]) we get that

x ≤
EP

y ⇔ Vf (y) ≤ Vf (x)
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for every positive bounded measurable function on X. On the other hand, since V is proper,

then there exists (Bn)n ⊂ BN such that

C = {Bn : n ∈ N}
is a ring of sets satisfying the following properties

(1) For each n ∈ N, V 1Bn is bounded,
(2) X = ⋃

n∈N Bn,
(3) The σ -algebra generated by C is equal to B.

Hence

Γ EP
x =

⋂
n∈N

{V (1Bn) ≤ V (1Bn)(x)}

is measurable. Next, we claim that 1
(Γ

EP
x )C

is excessive. Indeed, Let y ≤
EP

z, then z ∈ Γ
EP
x

when y ∈ Γ
EP
x and hence

1
(Γ

EP
x )C

(z) = 1
(Γ

EP
x )C

(y) .

But if y /∈ Γ
EP
x , we get

1
(Γ

EP
x )C

(y) = 1 ≥ 1
(Γ

EP
x )C

(z)

which yields that 1
(Γ

EP
x )C

is decreasing with respect to ≤
EP

.

Now, let α be a real, then

{1
(Γ

EP
x )C

> α} =




X if α < 0 ,

(Γ
EP
x )C if α ∈ [0, 1[ ,

Ø if α ≥ 1 ,

which gives us that 1
(Γ

EP
x )C

is lower semicontinuous with respect to the fine topology and

therefore is excessive by Theorem 5.

Next, we claim that εxPt is concentrated in (Γ
EP
x ). Indeed, since 1

(Γ
EP
x )C

is excessive,

we get that

εxPt (1
(Γ

EP
x )C

) ≤ 1
(Γ

EP
x )C

(x) = 0 .

In the following, let

T : Γ EP
x →]αx, βx]

be an isomorphism. Let us denote by Tx the topology defined on Γ
EP
x and generated by the

collection of subsets V ⊂ Γ
EP
x such that ∀y ∈ V there exists ε > 0 such that ]T (y) −
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ε, T (y) + ε[ ⊂ ]αx, βx ] if y �= x and ]T (y) − ε, T (y)] ⊂ ]αx, βx] if y = x. It follows that

T is an homeomorphism from (Γ
EP
x ,Tx) to ]αx, βx ] and by Lusin Theorem (cf. [7]), T is a

measurable isomorphism. Let us denote by

Supp(εxPt ) = {y ∈ Γ EP
x : ∀V ∈ Tx εx Pt (V ) > 0} .

In the sequel, let us assume that there exist y, z ∈ Supp(εxPt ) such that y �= z. We can
choose y ∈ U ∈ Tx and z ∈ W ∈ Tx such that U ∩ W = Ø. Since

0 = εxPt (1U 1W) = εxPt (1U)εxPt (1W)

we get that εxPt (1U) = 0 or εxPt (1W) = 0 which is impossible. Thus there exists a unique

element y of Γ
EP
x which will be denoted by Φ0(t, x) such that εxPt = εΦ0(t,x).

In what follows, Let Xw = X ∪ {w} where w is an element not in X and Bw be the
σ -algebra on Xw generated by B and {w}. Note that {w} ∈ Bw. We define Φ on Xw by

Φ(t, x) =




Φ0(t, x) if x ∈ X , t ∈ [0, T (x)[ ,

w if x ∈ X , t ≥ T (x) ,

w if x = w , t ≥ 0 .

Next, we claim that (Xw,Bw,Φ,w) is a semidynamical system. In fact, let s, t ≥ 0 such that
t + s < T (x). Then

εΦ(t+s,x) = εxPt+s = εxPtPs = εΦ(t,x)Ps = εΦ(s,Φ(t,x))

which yields that Φ(t + s, x) = Φ(s,Φ(t, x)).
For t = 0, we have εx = εΦ(0,x) which gives us that Φ(0, x) = x.
Now, consider x, y ∈ X such that Φ(t, x) = Φ(t, y) for every t > 0. Thus, we get that

1[0,T (x)[(t) = 1[0,T (y)[(t)

for every t > 0. Hence T (x) = T (y) and therefore x = y.
Next, we shall prove that Φ is measurable and T is a terminal time. In fact, let t < T (x).

Since

εΦ(t,x)Ps1 = εΦ(t+s,x)1 = εxP(t+s)1 ,

we get that

1[0,T (Φ(t,x))[(s) = 1[0,T (x)[(t + s)

which gives us that

s < T (Φ(t, x)) ⇔ s + t < T (x)

and hence

t + T (Φ(t, x)) = T (x) .(4.4)
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Now, using the fact that T is a measurable isomorphism, we get that

Φ(t, x) = T −1(T (x) − t)

on the set {t < T (x)}. (Xw,Bw) being a Lusin space, we get then that Φ is measurable and
hence is a semidynamical system. Moreover, by (4.4), we obtain that T is a terminal time.

Finally, since V 1 < ∞, then (Xw,Bw,Φ,w) is a transient semidynamical system (cf.
[3] and [9]) and by Corollary 1 we get that P is right continuous. �

We thank the referee for the useful suggestions and for the careful reading of the paper.
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