Minimally Knotted Spatial Graphs are Totally Knotted

Makoto OZAWA and Yukihiro TSUTSUMI*

Komazawa University and Keio University

(Communicated by Y. Maeda)

Abstract

Applying Jaco's Handle Addition Lemma, we give a condition for a 3-manifold to have an incompressible boundary. As an application, we show that the boundary of the exterior of a minimally knotted planar graph is incompressible.

1. Introduction

A 3-manifold M is said to be ∂-irreducible if ∂M is incompressible in M, namely, for any disk D properly embedded in $M, \partial D$ bounds a disk in ∂M. Otherwise M is ∂-reducible. See [4] for the basic terminology in three-dimensional topology which is not stated here. In [2], Haken constructed an algorithm to detect if an irreducible 3-manifold is ∂-irreducible or not. See also Jaco-Oertel [6] for a survey. The algorithm is valid for all irreducible 3-manifolds with handle decompositions, but it is not adapted for an execution by hand. In this paper, we give a sufficient condition for a certain 3-manifold with non-empty connected boundary to be ∂-irreducible, and consider some properties of minimally knotted spatial graphs in S^{3}. Indeed our sufficient condition is adaptable for not all irreducible 3-manifolds, but is much easier to check than Haken's algorithm.

In §2, we introduce some concept for curves in the boundary of a 3-manifold to state a sufficient condition to be ∂-irreducible as follows. (See $\S 2$ for definitions and notation.)

THEOREM 1.1. Let M be a 3-manifold with non-empty connected boundary ∂M. If there exists a disjoint union of simple closed curves J in ∂M such that (M, J) is almost trivial, then M is irreducible and ∂-irreducible.

In fact, Theorem 1.1 has various applications to spatial graphs as will be described in §3. A spatial graph means an embedded 1-dimensional graph in S^{3}. A graph G is said to be good if the degree of each vertex of G is greater than one. In this paper, we deal with good planar graphs, and our result obtained here can be generalized for more general good graphs. Let Γ be a spatial graph of a planar graph G embedded in S^{3}. We say that Γ is minimally knotted if any proper subgraph Γ^{\prime} is contained in a sphere in S^{3}, and Γ itself is not. A spatial

[^0]graph Γ is said to be totally knotted if the exterior $E(\Gamma)$ is irreducible and ∂-irreducible. By using some tangles with the Brunnian property, we can show that every planar graph has a spatial embedding which is minimally knotted and totally knotted. Inaba and Soma [3, Theorem 2], Kawauchi [8, Theorem 2.1] and Wu [19] showed that every planar graph has minimally knotted spatial embeddings with some additional conditions. On the other hand, it is easy to construct totally knotted spatial embeddings of every graph which are not minimally knotted by Myers' technique [13] or Kawauchi's [8, Theorem 1.1]. Together with a result of Scharlemann and Thompson [15, Theorem 7.5], the following is obtained by our result. The total knottedness is available under some weaker condition, as will be considered in $\S 3$.

THEOREM 1.2. Minimally knotted connected planar spatial graphs are totally knotted.

Scharlemann and Thompson [15, Theorem 7.5] showed similar results, and gave an algorithm to detect the triviality of embedded planar graphs, via the extended Haken's algorithm [6], and Wu [20] reproved it and gave a necessary and sufficient condition for a planar graph in general 3-manifold to be minimally knotted in terms of "cycle-triviality".

We say that a 3-manifold with non-empty boundary is acylindrical if it is irreducible, ∂-irreducible and does not contain essential tori nor annuli. By Thurston's hyperbolization result ([11], [17]), such a 3-manifold admits a complete hyperbolic structure with totally geodesic boundary. For example, see [7] and [18] for algorithms decomposing 3-manifolds into acylindrical 3-manifolds which are based on normal surface theory.

It is noticed that Theorem 1.2 gives a sufficient condition for a spatial graph Γ to be totally knotted, namely $E(\Gamma)$ is irreducible and ∂-irreducible. Now it is natural to ask the following.

PROBLEM 1.3. Give a sufficient condition for spatial graphs to be acylindrical.
In $\S 3$, several examples of minimally knotted spatial graphs are given. The spatial graphs in Figures 3-(A) and -(C) are acylindrical (cf. [17] and [12, Proposition 4.4]), but the exterior of the graph shown in Figure 4-(A) contains essential annuli.

2. Proof of Theorem 1.1

In this paper, we use the following notation:

- $\operatorname{cl}(\cdot)$: the closure,
- $N(Y, X)$: a regular neighborhood of Y in X where $Y \subset X$,
- $\quad \partial N(Y, X)$: the frontier of $N(Y, X)$ in X, and
- $\quad E(Y, X)$: an exterior of Y in X, namely $E(Y, X)=\operatorname{cl}(X-N(Y, X))$.

The total space X is not indicated if it is well-understood.
Let M be a compact, orientable 3-manifold with non-empty boundary ∂M. For a disjoint union J of simple closed curves in the boundary ∂M, the manifold obtained by attaching 2handles $D^{2} \times I$'s along J is denoted by $M(J)$. Let $J=J_{1} \cup \cdots \cup J_{n}$ be a disjoint union of simple closed curves, possibly empty (i.e. $n=0$), in ∂M.

We say that (M, J) is trivial (otherwise it is non-trivial) if:
(T.1) There are mutually disjoint essential disks D_{1}, \cdots, D_{n} in M transverse to J such that $\left|\partial D_{i} \cap J_{j}\right|=\delta_{j}^{i}$, and
(T.2) $M(J)$ is a 3-ball.

For our convenience, we define the quasi-triviality for (M, J) inductively as follows. We say that (M, J) is n-quasi-trivial provided that:
(Q.1) For some i, there is an essential disk D_{i} in M transverse to J with $\left|\partial D_{i} \cap J_{j}\right|=\delta_{j}^{i}$,
(Q.2) for i in (Q.1), the pair $\left(M\left(J_{i}\right), J-J_{i}\right)$ is $(n-1)$-quasi-trivial, and
(Q.3) if $n=0$, then M is a 3-ball.

It is noticed that if (M, J) is trivial, then it is $|J|$-quasi-trivial and the genus of ∂M coincides with the number of the components of J. If (M, J) is n-quasi-trivial, then $n=|J|$ and we say that (M, J) is quasi-trivial.

We say that (M, J) is almost trivial if:
(A.1) For each $J_{i} \subset J,\left(M\left(J_{i}\right), J-J_{i}\right)$ is trivial,
(A.2) (M, J) is not trivial. (By Lemma 2.3, we can replace this with that (M, J) is not quasi-trivial.)
We will prove Theorem 1.1 by applying Jaco's Handle Addition Lemma [5]. The following result is known as the Handle Addition Lemma.

THEOREM 2.1 ([5]). Let M be an irreducible 3-manifold with compressible boundary, and J a simple closed curve in ∂M. If $\partial M-J$ is incompressible, then $\partial M(J)$ is incompressible.

Theorem 2.1 was generalized in several ways. (See [10], [14]). The following is needed later.

Lemma 2.2 ([10, Lemma 1.6], [14, Lemma 2.3]). Suppose $\partial M-\left(J_{1} \cup \cdots \cup J_{n}\right)$ is incompressible in M and $\partial M-\left(J-J_{i}\right)$ is compressible in M. Then, $\partial M\left(J_{i}\right)-\left(J-J_{i}\right)$ is incompressible in $M\left(J_{i}\right)$.

In order to prove Theorem 1.1, we describe some properties of quasi-trivial pairs.
Lemma 2.3. Assume (M, J) is quasi-trivial. Then (M, J) is trivial and M is a handlebody.

Proof. We prove this by induction on $|J|=g(\partial M)$. In the case where $n=0$, we are done by condition (Q.3). Suppose $n>0$. By condition (Q.2) and by the assumption of the induction, $\left(M\left(J_{i}\right), J-J_{i}\right)$ is trivial for some i. In particular, $M\left(J_{i}\right)$ is a handlebody. It is noticed that M is viewed as the exterior of a properly embedded arc τ in the handlebody $M\left(J_{i}\right)$, where τ corresponds to a cocore of the attached 2-handle. By condition (Q.1), there is a disk D properly embedded in $E\left(\tau, M\left(J_{i}\right)\right)$ such that $D \cap \partial N(\tau)$ is a single arc in the annulus $\partial N(\tau)$ and $D \cap\left(J-J_{i}\right)=\emptyset$. Let D^{\prime} be the union of mutually disjoint properly embedded disks in $M\left(J_{i}\right)$ corresponding to the disks of condition (T.1) for ($\left.M\left(J_{i}\right), J-J_{i}\right)$. We may assume that D^{\prime} and τ are in general position and $N(\tau) \cap D^{\prime}$ consists of meridian disks
of $N(\tau)$. By using an innermost disk argument, we can isotope D so that $D \cap D^{\prime}$ consists of arcs.

Let Δ be an outermost disk of D with respect to $D \cap D^{\prime}$. Put $\alpha=\Delta \cap \partial D$ and $\beta=$ $\operatorname{cl}(\partial \Delta-\alpha)$. Notice that there are three possibilities for Δ as follows: (A) $\alpha \subset \partial N(\tau),(\mathrm{B}) \alpha$ consists of two connected $\operatorname{arcs} \alpha \cap \partial N(\tau)$ and $\alpha \cap \partial M\left(J_{i}\right)$, and (C) $\alpha \subset \partial M\left(J_{i}\right)$. In the case of (A), by sliding τ along Δ, we can isotope τ so that $D \cap D^{\prime}$ is reduced. This isotopy preserves $\partial M\left(J_{i}\right)$. In the case of (B), we can also isotope τ so that $D \cap D^{\prime}$ is reduced by sliding along Δ. Though this isotopy does not preserve $\partial \tau$, by condition (Q.1), $\alpha \cap \partial M\left(J_{i}\right)$ does not meet $J-J_{i}$. In the case of (C), we can replace D^{\prime} by another union of disks as follows. Let $D^{\prime \prime}$ be the component of D^{\prime} containing β. Let D_{1} and D_{2} be components of $D^{\prime \prime}-\beta$. By condition (T.1), we may assume that D_{1} does not meet $J-J_{i}$. By removing D_{1} from $D^{\prime \prime}$, pasting Δ, and pushing it slightly, we obtain the new system D^{*} of disks satisfying condition (T.1) and $\left|D^{*} \cap D\right|<\left|D^{\prime} \cap D\right|$. Thus we may assume $D^{\prime} \cap D=\emptyset$. Now we see that $D^{\prime} \cup D$ satisfies condition (T.1), and $M=E\left(\tau, M\left(J_{i}\right)\right)$ is a handlebody.

Note that by Lemma 2.3, any quasi-trivial pair (M, J) is a handlebody of genus $|J|$ and J is a primitive set (in Gordon's notion [1]) of simple closed curves in ∂M as illustrated in Figure 1.

Lemma 2.4. Assume (M, J) is almost trivial. Then $M\left(J_{i}\right)$ is a handlebody for each i, and either $\partial M\left(J_{i}\right)-\left(J-J_{i}\right)$ is compressible in $M\left(J_{i}\right)$, or $M\left(J_{i}\right)$ is a solid torus.

Proof. By condition (A.1), the pair $\left(M\left(J_{i}\right), J-J_{i}\right)$ is trivial, and thus quasi-trivial. By Lemma 2.3, $M\left(J_{i}\right)$ is a handlebody. By conditions (A.1) and (T.1), for some j, there is a disk $D \subset M\left(J_{i}\right)$ such that $D \cap J=D \cap J_{j}$ is a transverse point. If $M\left(J_{i}\right)$ is not a solid torus, the frontier $\partial N\left(D \cup J_{j}\right)$ is actually a compressing disk of $\partial M\left(J_{i}\right)-\left(J-J_{i}\right)$.

Lemma 2.5. For an almost trivial pair $(M, J), M$ is irreducible. If M is not a handlebody, then $\partial M-J$ is incompressible in M.

Proof. By condition (A.1), $\left(M\left(J_{i}\right), J-J_{i}\right)$ is trivial. Thus, $M(J)$ is a 3-ball by condition (T.2) and we see that M is embeddable in S^{3}. Since ∂M is connected, M is irreducible.

Now M is viewed as the exterior of properly embedded arcs $\tau_{1}, \cdots, \tau_{n}$ in a 3 -ball B such that each meridian of τ_{i} corresponds to J_{i}. Thus, any compressing disk D for $\partial M-J$ is isotoped so that $\partial D \subset \partial B$. Hence, D separates B into two 3-balls B_{1} and B_{2}. Let M_{i} denote the submanifold of M corresponding to B_{i}.

Without loss of generality, we may assume $\tau_{1}, \cdots, \tau_{m}(m<n)$ is contained in B_{1}, and the rest in B_{2}, after reordering if necessary. By condition (A.1), $M\left(J_{1}\right)$ is trivial. Thus by Lemma 2.3, $M\left(J_{1}\right)$ is a handlebody. Since M_{2} is a component of the result of cutting the handlebody $M\left(J_{1}\right)$ along D, M_{2} is a handlebody. Similarly, M_{1} is a handlebody. Thus $M=M_{1} \cup_{D} M_{2}$ is a handlebody. Hence we can conclude that if M is not a handlebody, then $\partial M-J$ is incompressible.

Lemma 2.6. Assume (M, J) is almost trivial. Then M is irreducible and either M is ∂-irreducible or M is a handlebody.

Proof. Suppose that M is ∂-reducible and not a handlebody. First, we consider the case where $g(\partial M)>2$. Then, there is a number $1 \leq h \leq n$ such that $\partial M-\left(J-\bigcup_{k=1}^{h} J_{k}\right)$ is compressible and $\partial M-\left(J-\left(\bigcup_{k=1}^{h} J_{k}-J_{h}\right)\right)$ is incompressible in M. By Lemma 2.5 , $\partial M-J$ is incompressible. Thus, it follows from Lemma 2.2 that $\partial M\left(J_{h}\right)-\left(J-\bigcup_{k=1}^{h} J_{k}\right)$ is incompressible. On the other hand, $\partial M\left(J_{h}\right)-\left(J-J_{h}\right)$ is compressible in $M\left(J_{h}\right)$ by Lemma 2.4, since $M\left(J_{h}\right)$ is not a solid torus for $g(\partial M)>2$. Hence we see that $h>1$. It is noticed that $\partial M\left(J_{h}\right)-\left(J-J_{h}\right)$ is a subsurface of $\partial M\left(J_{h}\right)-\left(J-J_{1} \cup \cdots \cup J_{h-1} \cup J_{h}\right)$ and each of loops J_{1}, \cdots, J_{h-1} is non-separating in $\partial M\left(J_{h}\right)$. Thus a compression of $\partial M\left(J_{h}\right)-$ $\left(J-J_{h}\right)$ gives a compression of $\partial M\left(J_{h}\right)-\left(J-J_{1} \cup \cdots \cup J_{h}\right)$ in $M\left(J_{h}\right)$. This is a contradiction. This shows that ∂M is incompressible in M if M is not a handlebody.

Suppose $g(\partial M)=2$ and $J=J_{1} \cup J_{2}$. Since (M, J) is almost trivial, and $g\left(\partial M\left(J_{i}\right)\right)=$ 1 , the manifold $M\left(J_{i}\right)$ is a solid torus. By Lemma 2.5, $\partial M-J$ is incompressible in M. Suppose $\partial M-J_{1}$ is incompressible in M. It follows from Theorem 2.1 that $\partial M\left(J_{1}\right)$ is incompressible in $M\left(J_{1}\right)$. This contradicts that $M\left(J_{1}\right)$ is a solid torus. Hence $\partial M-J_{1}$ is compressible. Namely a compressing disk D of ∂M can be chosen so that $\partial D \cap J_{1}=\emptyset$. Similarly, $\partial M-J_{2}$ is compressible and we let E be a compressing disk of $\partial M-J_{2}$, possibly $E \cap J_{1} \neq \emptyset$. Now M is viewed as the exterior of an arc τ_{1} properly embedded in a solid torus V and J_{2} is considered to be a longitude of V. Thus, D is isotoped so that $\partial D \subset \partial V$ since $\partial D \cap J_{1}=\emptyset$. If D separates V, then V is separated into a 3-ball V_{1} and a solid torus V_{2} such that V_{1} contains τ_{1}, and a meridian disk of V_{2} is a compressing disk of $\partial M-J_{1}$. Hence we may assume D is non-separating and D is a meridian disk of V. If $E(D, M)$ is a solid torus, then M is a handlebody and we are done.

By the same reason as above, E can be assumed to be non-separating in M so that E is a meridian disk of the solid torus $M\left(J_{2}\right)$. Thus, we may assume that the algebraic intersection number $\partial E \cdot J_{1}=1$. Let us consider the intersection $D \cap E$. By using an innermost argument, we can remove all circles of $D \cap E$. Let Δ be an outermost disk in D. Now E is ∂-compressed by Δ to two disks E_{1} and E_{2}, possibly $\partial E_{i} \cap J_{2} \neq \emptyset$. Without loss of generality, we may assume $\partial E_{1} \cdot J_{1}$ is odd since $\partial E_{1} \cdot J_{1}+\partial E_{2} \cdot J_{1}=\partial E \cdot J_{1}$ is odd. Repeating such ∂ compressions, finally we get a properly embedded disk E^{\prime} in $M^{\prime}=E(D, M)$ with $\partial E^{\prime} \cdot J_{1}$ odd. This means that E^{\prime} is a non-separating compressing disk of ∂M^{\prime} in M^{\prime}. Since M is irreducible, M^{\prime} is also irreducible. Thus, the sphere obtained by compressing ∂M^{\prime} along E^{\prime}
bounds a 3-ball in M^{\prime} on the side not containing E^{\prime}, and we see that M^{\prime} is a solid torus. Hence, $M=M^{\prime} \cup N(D)$ is a handlebody of genus two and the conclusion follows in the case $g(\partial M)=2$.

In the case where $g(\partial M)=1$, it is easy to see that if M is not a solid torus, then it is a non-trivial knot exterior in S^{3} and it is ∂-irreducible.

Lemma 2.7. If (M, J) is almost trivial, then M is not a handlebody.
Proof. Suppose M is a handlebody. By condition (A.1) and Lemma 2.3, we see that $M\left(J^{\prime}\right)$ is a handlebody for any subsystem J^{\prime} of J. Now the conclusion follows directly form [1, Theorem 1].

Proof of Theorem 1.1. By Lemmas 2.6 and 2.7, M is irreducible and ∂-irreducible.

Now the following is available. (Compare with [1, Theorem 1].)
THEOREM 2.8. Let (M, J) be such that for any $J_{i} \subset J,\left(M\left(J_{i}\right), J-J_{i}\right)$ is trivial. Then either

- If M is ∂-reducible, then M is a handlebody and (M, J) is trivial, or
- M is ∂-irreducible.

3. Proof of Theorem 1.2 and examples

Let Γ be a spatial graph in S^{3} of a connected graph G. For edges $\mathcal{E}=\left\{e_{1}, \cdots, e_{n}\right\}$ of Γ, we denote the simple closed curve in $\partial E(\Gamma)$ corresponding to a meridian of e_{i} by e_{i}^{*}, and put $\mathcal{E}^{*}=\left\{e_{1}^{*}, \cdots, e_{n}^{*}\right\}$. Then by the notion of 2-handle addition, we have $E(\Gamma-\mathcal{E})=E(\Gamma)\left(\mathcal{E}^{*}\right)$. (cf. Figure 2) We use the same letters for the edges of Γ corresponding to edges of G. For a graph or a spatial graph, we denote the set of vertices, edges by $\mathfrak{V}(\cdot)$ and $\mathfrak{E}(\cdot)$ respectively.

A set of edges \mathcal{E} of G is called a base edge system of G if $G-\mathcal{E}$ is connected and simply connected, and a set of edges \mathcal{E} of Γ is called a base edge system of Γ if $\Gamma-\mathcal{E}$ is connected and simply connected, equivalently $E(\Gamma-\mathcal{E})=E(\Gamma)\left(\mathcal{E}^{*}\right)$ is a 3-ball.

Lemma 3.1. Let Γ be a spatial graph in a sphere F in S^{3}. For any base edge system $\mathcal{E}=\left\{e_{1}, \cdots, e_{n}\right\}$ of Γ, the pair $\left(E(\Gamma), \mathcal{E}^{*}\right)$ is trivial.

Figure 2.

Proof. By Lemma 2.3, it is sufficient to prove that $\left(E(\Gamma), \mathcal{E}^{*}\right)$ is quasi-trivial.
Let $\Gamma_{\mathcal{E}}^{*}$ be the subgraph of the dual graph of Γ in F whose vertices are dual of all faces of $F-\Gamma$ and edges consist of the dual of \mathcal{E}. Since \mathcal{E} is a base edge system, $\Gamma-\mathcal{E}$ is simply connected.

First we claim that $\Gamma_{\mathcal{E}}^{*}$ contains a vertex of valence 1. Put $v=|\mathfrak{V}(\Gamma)|, e=|\mathfrak{E}(\Gamma)|, f=$ $|F-\Gamma|$, and put $v_{\mathcal{E}}^{*}=\left|\mathfrak{V}\left(\Gamma_{\mathcal{E}}^{*}\right)\right|, e_{\mathcal{E}}^{*}=\left|\mathfrak{E}\left(\Gamma_{\mathcal{E}}^{*}\right)\right|$. Since Γ is embedded in the sphere F, we have $v-e+f=2$. Put $g=1+e-v$. Notice that g is equal to the genus of the handlebody $N(\Gamma)$. Clearly, $e_{\mathcal{E}}^{*}=g, v_{\mathcal{E}}^{*}=f$. Hence we have $v_{\mathcal{E}}^{*}=e_{\mathcal{E}}^{*}+1$. On the other hand, if we assume that all valences are greater than or equal to 2 , then we have $e_{\mathcal{E}}^{*} \geq 2 v_{\mathcal{E}}^{*} / 2=v_{\mathcal{E}}^{*}=e_{\mathcal{E}}^{*}+1$. This is a contradiction.

Since $E(\Gamma-\mathcal{E})$ is homeomorphic to a 3-ball, the subgraph $\Gamma-\mathcal{E}$ does not contain any cycles. Hence, each face of $F-\Gamma$ meets \mathcal{E}. Thus, each vertex of $\Gamma_{\mathcal{E}}^{*}$ has non-zero valence. Thus, the exterior $E(\Gamma)$ contains a non-separating disk D coming from a face of $F-\Gamma$ corresponding to a vertex with valence 1 of $\Gamma_{\mathcal{E}}^{*}$ such that $\left|\partial D \cap \mathcal{E}^{*}\right|=1$. Now it is easy to check that $\left(E(\Gamma), \mathcal{E}^{*}\right)$ is quasi-trivial by induction on $|\mathcal{E}|$.

Now we are ready to prove the following.
Lemma 3.2. If Γ is a minimally knotted planar spatial graph, then for any base edge system $\mathcal{E}=\left\{e_{1}, \cdots, e_{n}\right\}$ of Γ, the pair $\left(E(\Gamma), \mathcal{E}^{*}\right)$ is almost trivial.

Proof. Since Γ is minimally knotted, $\Gamma-e_{i}$ is in a sphere in S^{3}. By Lemma 3.1, we have $\left(E\left(\Gamma-e_{i}\right), \mathcal{E}^{*}-e_{i}^{*}\right)$ is trivial. Hence condition $(A .1)$ holds for $\left(E(\Gamma), \mathcal{E}^{*}\right)$. By [15, Theorem 7.5], if the exterior $E(\Gamma)$ is a handlebody $\left(\pi_{1}(E(\Gamma))\right.$ is free), then Γ is trivial, namely, Γ is embedded in a sphere in S^{3}, since $\pi_{1}(E(\Gamma-e))$ is free for each non-separating edge e by the minimal knottedness. Thus, $E(\Gamma)$ is not a handlebody. Hence $\left(E(\Gamma), \mathcal{E}^{*}\right)$ is non-trivial by Lemma 2.3. Thus, it is an almost trivial pair.

The converse is true in the following sense.
Proposition 3.3. For any almost trivial pair (M, J), there exists a spatial graph Γ such that $\left(E(\Gamma), \mathcal{E}^{*}\right)=(M, J)$ for some base edge system \mathcal{E} of Γ. In fact, Γ can be chosen to be a bouquet with n loops.

Proof. Since $M(J)$ is a 3-ball, M is the exterior of some properly embedded arcs $\tau_{1}, \cdots, \tau_{n}$ in a 3-ball B. Embedding (B, τ) in S^{3} and shrinking $S^{3}-B$ into a point, we obtain a bouquet Γ embedded in S^{3} such that $E(\Gamma)=M$. This completes the proof.

Theorem 3.4. Let Γ be a spatial graph. If Γ has a base edge system \mathcal{E} such that $\left(E(\Gamma), \mathcal{E}^{*}\right)$ is almost trivial, then Γ is totally knotted.

Proof. By Theorem 1.1, $E(\Gamma)$ is irreducible and ∂-irreducible. Thus Γ is totally knotted.

Proof of Theorem 1.2. Theorem 1.2 follows directly from Lemma 3.2 and Theorem 3.4.

(A)

(B)

(C)

Figure 3.

(A)

(B)

Figure 4.

Here we describe some examples of spatial graphs which are totally knotted. The θ curve Γ_{1} illustrated in Figure 3-(A) is known to be non-trivial ([9]), but is minimally knotted. The handcuff graph Γ_{2} embedded as shown in Figure 3-(B) is not minimally knotted for the two loops e_{1}, e_{2} have the linking number one. However it is not hard to see that the exterior M contains an incompressible torus, thus M is not a handlebody. On the other hand, taking meridians of e_{1}, e_{2} as J, we see that (M, J) is almost trivial. Hence by Theorem 3.4, Γ_{2} is totally knotted. The graph Γ_{3} illustrated in Figure 3-(C) is not minimally knotted, in fact, each subgraph is a trefoil knot and we cannot adapt Theorem 3.4, but it is totally knotted since $E\left(\Gamma_{3}\right)$ is homeomorphic to the tangle space of the "true lover's tangle", which was proved by Myers [12, Proposition 4.1] to be atoroidal.

In [16], Taniyama gave a useful method to confirm the non-triviality of certain spatial graphs, and the graph illustrated in Figure 4-(A) is shown to be irreducible (see [16] for definition), thus it is non-trivial. Now it is easy to see that it is minimally knotted. Hence by Theorem 1.2, it is totally knotted. It is remarked that the exterior is homeomorphic to the tangle space of the tangle illustrated in Figure 4-(B), and the tangle is non-trivial.

Acknowledgments. The authors thank the referee for his/her useful comments.

References

[1] C. McA. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987), 285-299.
[2] W. HAKEN, Theorie der Normalflächen, Acta. Math. 105 (1961), 245-375.
[3] H. InABA and T. Soma, On spatial graphs isotopic to planar embeddings, KNOTS '96 (Tokyo), World Sci. (1997), 1-22.
[4] W. JACO, Lectures on Three Manifold Topology, AMS Conference board of Math. 43 (1980).
[5] W. JACO, Adding a 2-handle to a 3-manifold: an application to property R, Proc. Amer. Math. Soc. 92 (1984), 288-292.
[6] W. JACO and U. OERTEL, An algorithm to detect if a 3-manifold is a Haken manifold, Topology 23 (1984), 195-209.
[7] W. JACO and J. L. Tollefson, Algorithms for the complete decomposition of a closed 3-manifold, Illinois J. Math. 39 (1995), 358-406.
[8] A. KAWAUCHI, Almost identical imitations of (3, 1)-dimensional manifold pairs, Osaka J. Math. 26 (1989), 743-758.
[9] S. Kinoshita, Elementary ideals in knot theory, Lectures at Kwansei Gakuin University 1983. (Notes by H. Murakami, A. Pizer and K. Sugishita)
[10] F. LeI, A general handle addition theorem, Math. Z. 221 (1996), 211-216.
[11] J. W. Morgan, On Thurston's uniformization theorem for three dimensional manifolds, The Smith Conjecture (eds. H. Bass and J. W. Morgan), Academic Press (1984), 37-125.
[12] R. MYERS, Simple knots in compact, orientable 3-manifolds, Trans. Amer. Math. Soc. 273 (1982), 75-91.
[13] R. MYERS, Excellent 1-manifolds in compact 3-manifolds, Topology Appl. 49 (1993), 115-127.
[14] J. PRZYTYCKI, n-relator 3-manifolds with incompressible boundary, London Math. Soc. Lecture Note Series, 112 (1986), 273-285.
[15] M. Scharlemann and A. Thompson, Detecting unknotted graphs in 3-space, J. Diff. Geom. 34 (1991), 539-560.
[16] K. Taniyama, Irreducibility of spatial graphs, J. Knot Theory and its Ramifications. 11 (2002), 121-124.
[17] W. P. Thurston, The geometry and topology of 3-manifolds, Lecture Note, Princeton University (1978).
[18] Y. Tsutsumi, An algorithm for acylindrical surfaces in 3-manifolds, Tokyo J. Math. 24 (2001), 395-405.
[19] Y.-Q. WU, Minimally knotted embeddings of planar graphs, Math. Z. 214 (1993), 653-658.
[20] Y.-Q. Wu, Trivial cycles in graphs embedded in 3-manifolds, Bull. London Math. Soc. 28 (1996), 190-196.

Present addresses:

Makoto Ozawa
Natural Science Faculty, Faculty of Letters, Komazawa University, Komazawa 1-23-1, Setagaya-ku, TOKyo, 154-8525 Japan.
e-mail: ozawa@musubime.com
Yukihiro Tsutsumi
Department of Mathematics, Faculty of Science and Technology, Keio University,
Hiyoshi 3-14-1, KOHOKU-KU, Yoконama, 223-8522 Japan.
e-mail: yukihiro@math.keio.ac.jp

[^0]: Received November 14, 2002; revised April 24, 2003

 * The second author was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

