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Introduction

All manifolds considered in this paper are in the smooth category, and they are all unori-
ented, with or without boundary. Z2 denotes the cyclic group of order 2.

We will consider families of submanifolds of a manifold, and define the SK-group of
such families. We will investigate the relationship between the SK-group of families and the
SK-group of Z2-manifolds.

Let m ≥ 0 be an integer. Let P and Q be m-dimensional compact manifolds with
boundary ∂P and ∂Q, respectively, and ϕ : ∂P → ∂Q be a diffeomorphism. Pasting P and
Q along the boundary by ϕ, we obtain a closed manifold P ∪ϕQ. For another diffeomorphism
ψ : ∂P → ∂Qwe obtain another closed manifold P ∪ψ Q. The two closed manifolds P ∪ϕQ
and P ∪ψ Q are said to be obtained from each other by cutting and pasting (Schneiden und
Kleben in German). Two m-dimensional closed manifolds M and N are said to be SK-
equivalent to each other, if there is an m-dimensional closed manifold L such that the disjoint
union M +L is obtained fromN +L by a finite sequence of cuttings and pastings. This is an
equivalence relation on Mm, the set of m-dimensional closed manifolds. Note that if M and
N are SK-equivalent then χ(M) = χ(N) since

χ(P ∪ϕ Q) = χ(P )+ χ(Q)− χ(∂P ) = χ(P ∪ψ Q) ,
where χ denotes the Euler characteristic. Denote by [M] the equivalence class represented
by M , and by Mm/SK the quotient set of Mm by the SK-equivalence. Mm/SK becomes a
semigroup with the addition induced from the disjoint union of manifolds. The Grothendieck
group of Mm/SK is called the SK-group of m-dimensional closed manifolds and is denoted
by SKm. This group has been introduced and observed by Karras, Kreck, Neumann and Ossa
[7]. Note that [M] = [N] in SKm if and only if M , N are SK-equivalent to each other.

Let MZ2
m be the set ofm-dimensional closed Z2-manifolds. Taking Z2-equivariant diffeo-

morphisms as pasting diffeomorphisms, we can perform Z2-equivariant cuttings and pastings

in M
Z2
m in a similar way as in Mm, and define an SK-equivalence relation on M

Z2
m . Then we
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obtain the SK-group SKZ2
m of m-dimensional closed Z2-manifolds. See for details Karras et

al [7] and Kosniowski [14].
The fixed point set MZ2 of a Z2-manifold M is a submanifold ofM with various dimen-

sions. Let MZ2
i be the i-dimensional component of MZ2 for 0 ≤ i ≤ m = dimM . Then

we have a family of submanifolds of M , denoted by (M;MZ2
m ,M

Z2
m−1, · · · ,MZ2

0 ). An equi-

variant cutting and pasting onM induces a cutting and pasting on eachMZ2
i . Taking this into

account, we introduce the following definitions.
Let P be an m-dimensional compact manifold. For any i with 0 ≤ i ≤ m let Pi be an

i-dimensional submanifold of P such that ∂Pi = Pi ∩ ∂P and Pi ∩ Pj = ∅ if i �= j . We

write P̃ = (P ;Pm,Pm−1, · · · , P0) for a family of such submanifolds, and call this an m-

dimensional family. For another such family Q̃ = (Q;Qm,Qm−1, · · · ,Q0), let ϕ : ∂P →
∂Q be a diffeomorphism which restricts to a diffeomorphism ϕi = ϕ|∂Pi : ∂Pi → ∂Qi for
any i. Then we obtain a family of submanifolds of a closed manifold,

P̃ ∪ϕ Q̃ = (P ∪ϕ Q;Pm ∪ϕm Qm, · · · , P0 ∪ϕ0 Q0) .

Here P0 ∪ϕ0 Q0 is a finite set which is the disjoint union of P0 andQ0. Let ψ : ∂P → ∂Q be
another diffeomorphism which restricts to a diffeomorphism ψi : ∂Pi → ∂Qi for any i. We
obtain another family

P̃ ∪ψ Q̃ = (P ∪ψ Q;Pm ∪ψm Qm, · · · , P0 ∪ψ0 Q0) .

The two families P̃ ∪ϕ Q̃ and P̃ ∪ψ Q̃ are said to be obtained from each other by cutting and

pasting. Let MF
m be the set of m-dimensional family of submanifolds of closed manifolds.

Two families M̃, Ñ ∈ MF
m are said to be SK-equivalent to each other, if there is an L̃ ∈ MF

m

such that M̃ + L̃ is obtained from Ñ + L̃ by a finite sequence of cuttings and pastings, where

M̃ + L̃ is the disjoint union of M̃ and L̃, i.e.,

M̃ + L̃ = (M + L;Mm + Lm, · · · ,M0 + L0)

for M̃ = (M;Mm, · · · ,M0) and L̃ = (L;Lm, · · · , L0). The quotient set MF
m/SK by this

SK-equivalence becomes a semigroup with the addition induced from the disjoint union
of families. The SK-group of m-dimensional families of submanifolds is defined as the

Grothendieck group of MF
m/SK and is denoted by SKF

m . Any element x ∈ SKF
m is written in

the form x = [M̃] − [Ñ] for some M̃ = (M;Mm, · · · ,M0), Ñ = (N;Nm, · · · , N0) ∈ MF
m .

Define χ(x) = χ(M) − χ(N) and χi(x) = χ(Mi) − χ(Ni) for 0 ≤ i ≤ m. This is well-
defined since a cutting and pasting operation keeps the Euler characteristic invariant.

We have a natural correspondence M
Z2
m → MF

m which assigns to a Z2-manifold M ∈
M

Z2
m the family (M;MZ2

m , · · · ,MZ2
0 ) ∈ MF

m . This induces a homomorphism η : SKZ2
m →

SKF
m . In this paper we will obtain the following results:
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• Two families M̃ = (M;Mm, · · · ,M0) and Ñ = (N;Nm, · · · , N0) are SK-equivalent

in MF
m if and only if χ(M) = χ(N) and χ(Mi) = χ(Ni) for any i with 0 ≤ i ≤ m.

• The homomorphism η : SKZ2
m → SKF

m is injective.

• An element x ∈ SKF
m is in the image of η if and only if χ(x) ≡ ∑m

i=0 χi(x) mod 2.

This implies the following:

• 2x ∈ Im η for any x ∈ SKF
m , and

• η induces an isomorphism SK
Z2
m ⊗ Z[1/2] ∼= SKF

m ⊗ Z[1/2], where Z[1/2] is the
subring of the rationals Q generated by 1/2.

NOTE. Not only the case of Z2, but in a similar way we can also discuss the case of Zp,
the cyclic group of prime order p. But this case is treated in a more general setting, i.e., in the
setting of odd order abelian group, in a separate paper (see Komiya [11]). Komiya [9],[10]
treated a cutting and pasting for Z2-manifolds and pairs of manifolds. Hara [1], [2], [3], Hara
and Koshikawa [4], [5], [6], Koshikawa [12], [13] are also relevant to our present work.

ACKNOWLEDGEMENT. The author would like to thank the referee for pointing out a
couple of errors in the manuscript to be corrected.

1. Homomorphisms

For 0 ≤ i ≤ m + 1, let MF
m,i be the subset of MF

m consisting of those M̃ =
(M;Mm, · · · ,M0) ∈ MF

m for which Mj = ∅ for any j < i. For the simplicity we denote

(M;Mm, · · · ,Mi,∅, · · · ,∅) by (M;Mm, · · · ,Mi). We have a sequence of subsets of MF
m ,

Mm = MF
m,m+1 ⊂ MF

m,m ⊂ · · · ⊂ MF
m,0 = MF

m .

As in the Introduction we can define the SK-group from MF
m,i , which is denoted by SKF

m,i .

Then SKF
m,0 = SKF

m and SKF
m,m+1 = SKm. Let ιFi : SKF

m,i → SKF
m,i−1 be the homomor-

phism induced from the inclusion MF
m,i ⊂ MF

m,i−1.

PROPOSITION 1.1. The homomorphism ιFi : SKF
m,i → SKF

m,i−1 is injective.

PROOF. Take an element [M̃] − [Ñ ] ∈ SKF
m,i where M̃ = (M;Mm, · · · ,Mi),

Ñ = (N;Nm, · · · , Ni) ∈ MF
m,i , and assume ιFi ([M̃] − [Ñ]) = 0 in SKF

m,i−1. Then

there is L̃ = (L;Lm, · · · , Li−1) ∈ MF
m,i−1 such that in MF

m,i−1, (M;Mm, · · · ,Mi,∅) +
(L;Lm, · · · , Li−1) is obtained from (N;Nm, · · · , Ni,∅)+ (L;Lm, · · · , Li−1) by a finite
sequence of cuttings and pastings. If we forget here the (i − 1)-dimensional component,
we see that (M;Mm, · · · , Mi) + (L;Lm, · · · , Li) is obtained from (N;Nm, · · · , Ni)+
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(L;Lm, · · · , Li) by a finite sequence of cuttings and pastings in MF
m,i . This implies

[M̃] − [Ñ] = 0 in SKF
m,i . Hence ιFi is injective. �

Let ρFi : SKF
m,i → SKi be the homomorphism induced from the correspondence

MF
m,i → Mi which sends (M;Mm, · · · ,Mi) toMi . Let an (m− i)-dimensional closed man-

ifold S with a base point ∗ be arbitrarily fixed, and consider the correspondence Mi → MF
m,i

which sendsN ∈ Mi to (S×N; ∅, · · · ,∅, {∗}×N) ∈ MF
m,i . This induces a homomorphism

γFi : SKi → SKF
m,i . We see ρFi ◦ γFi = id, and obtain

PROPOSITION 1.2. The homomorphism ρFi : SKF
m,i → SKi is surjective. In fact, ρFi

has a right inverse γFi : SKi → SKF
m,i .

2. Exact sequences

In this section we will prove the following theorem.

THEOREM 2.1. For any i with 0 ≤ i ≤ m we have the split short exact sequence

0 −→ SKF
m,i+1

ιFi+1−→ SKF
m,i

ρFi−→ SKi −→ 0 .

We already know from Propositions 1.1 and 1.2 that ιFi+1 is injective and ρFi has a right

inverse. For a proof of Theorem 2.1 it is sufficient to show Im ιFi+1 = Ker ρFi . This will be
shown in Proposition 2.3.

Given (M;Mm, · · · ,Mi) ∈ MF
m,i , let ν(Mi) be the normal bundle of Mi in M , and

consider the projective space bundle RP(ν(Mi)⊕R) associated to ν(Mi)⊕R, where R is the
trivial line bundle overMi . Then RP(ν(Mi)⊕ R) containsMi (≈ RP(R)) as a submanifold,
and we have a family (RP(ν(Mi) ⊕ R); ∅, · · · ,∅,Mi) ∈ MF

m,i . Let T and T ′ be closed

tubular neighborhoods of Mi in M and in RP(ν(Mi) ⊕ R), respectively. Here we assume T
is sufficiently small so that T ∩ Mj = ∅ for any j with i < j ≤ m. Since T and T ′ are

diffeomorphic to each other, we have a diffeomorphism ϕ : ∂(M− ◦
T ) → ∂(RP(ν(Mi) ⊕

R)− ◦
T ′), and have an m-dimensional closed manifold (M− ◦

T ) ∪ϕ (RP(ν(Mi) ⊕ R)− ◦
T ′),

where
◦
T and

◦
T ′ are the interiors of T and T ′, respectively. We have a family

((M− ◦
T ) ∪ϕ (RP(ν(Mi)⊕ R)− ◦

T
′);Mm, · · · ,Mi+1,∅) ∈ MF

m,i .

Here Mm, · · · ,Mi+1 are contained in the part M− ◦
T . We also have a family

((M− ◦
T ) ∪id (M− ◦

T ); 2Mm, · · · , 2Mi+1,∅) ∈ MF
m,i ,
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where 2Mj = Mj +Mj . In SKF
m,i we see

(∗) [M;Mm, . . . ,Mi] + [(M− ◦
T ) ∪ϕ (RP(ν(Mi)⊕ R)− ◦

T
′);Mm, · · · ,Mi+1,∅]

= [RP(ν(Mi)⊕ R); ∅, · · · ,∅,Mi ] + [(M− ◦
T ) ∪id (M− ◦

T ); 2Mm, · · · , 2Mi+1,∅] ,
since

(M;Mm, . . . ,Mi) = (T ′; ∅, · · · ,∅,Mi) ∪ϕ (M− ◦
T ;Mm, · · · ,Mi+1,∅) .

LEMMA 2.2. Given (M;Mm, · · · ,Mi), (N;Nm, · · · , Ni) ∈ MF
m,i, if [Mi] = [Ni] in

SKi, then

[RP(ν(Mi)⊕ R); ∅, · · · ,∅,Mi ] = [RP(ν(Ni)⊕ R); ∅, · · · ,∅, Ni ]
in SKF

m,i .

To prove the lemma we introduce the SK-equivalence for vector bundles and the SK-
group of singular manifolds in a space X.

Let E and F be k-dimensional vector bundles over m-dimensional compact manifolds
P and Q, respectively, and ϕ : E|∂P → F |∂Q be a bundle isomorphism which induces
a diffeomorphism ϕ : ∂P → ∂Q. Then we have a k-dimensional vector bundle E ∪ϕ F
over an m-dimensional closed manifold P ∪ϕ Q. As in the usual way we can define the
SK-equivalence for vector bundles.

An m-dimensional singular manifold (A, f ) in a space X is a continuous map f : A →
X with A ∈ Mm. We can define the SK-group SKm(X) of such singular manifolds (A, f )
in X. See for details Karras et al [7] or Kosniowski [14]. The correspondence (A, f ) �→ A

induces a homomorphism ε : SKm(X) → SKm. It is known that ε is an isomorphism for
some spaces X.

PROOF OF LEMMA 2.2. Let f : Mi → BO(m − i) and g : Ni → BO(m − i) be
classifying maps for the (m − i)-dimensional vector bundles ν(Mi) and ν(Ni), respectively.
Since ε : SKi(BO(m − i)) → SKi is an isomorphism ([7, Theorem 2.11], [14, Theorem
3.5.1]), the assumption [Mi] = [Ni ] shows [Mi, f ] = [Ni, g] in SKi(BO(m − i)). This
implies that ν(Mi) and ν(Ni) are SK-equivalent as bundles, and then thatRP(ν(Mi)⊕R) and
RP(ν(Ni)⊕R) are SK-equivalent in Mm. The cutting and pasting operation performing from
RP(ν(Mi)⊕ R) to RP(ν(Ni)⊕ R) restricts to that fromMi (≈ RP(R)) to Ni (≈ RP(R)).
This implies

[RP(ν(Mi)⊕ R); ∅, · · · ,∅,Mi ] = [RP(ν(Ni)⊕ R); ∅, · · · ,∅, Ni ]
in SKF

m,i . �

PROPOSITION 2.3. In the sequence in Theorem 2.1, Im ιFi+1 = Ker ρFi .
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PROOF. Im ιFi+1 ⊂ Ker ρFi is easily shown. To show the reversed inclusion, assume

ρFi (x) = 0 for x = [M;Mm, · · · ,Mi] − [N;Nm, · · · , Ni ] ∈ SKF
m,i , i.e., [Mi] = [Ni ] in

SKi . Using the equality (∗) and Lemma 2.2, we see

x = [M;Mm, · · · ,Mi ] − [N;Nm, · · · , Ni ]
= [(M− ◦

T ) ∪id (M− ◦
T ); 2Mm, · · · , 2Mi+1,∅]

− [(M− ◦
T ) ∪ϕ (RP(ν(Mi)⊕ R)− ◦

T
′);Mm, · · · ,Mi+1,∅]

− [(N− ◦
U) ∪id (N− ◦

U); 2Nm, · · · , 2Ni+1,∅]
+ [(N− ◦

U) ∪ψ (RP(ν(Ni)⊕ R)− ◦
U

′);Nm, · · · , Ni+1,∅] ,
where ψ , U and U ′ are ones obtained in the same way as ϕ, T and T ′. This shows

x ∈ Im ιFi+1. �

From Propositions 1.1, 1.2 and 2.3 we obtain Theorem 2.1.

COROLLARY 2.4. M̃ = (M;Mm, · · · ,M0), Ñ = (N;Nm, · · · , N0) ∈ MF
m are SK-

equivalent if and only if χ(M) = χ(N) and χ(Mi) = χ(Ni) for any i with 0 ≤ i ≤ m.

PROOF. If M̃ and Ñ are SK-equivalent, then it is easily shown χ(M) = χ(N) and
χ(Mi) = χ(Ni) since a cutting and pasting operation keeps the Euler characteristic invariant.
The converse is shown by showing the following assertion A(i) for any i with 0 ≤ i ≤ m+ 1
by downward induction.

A(i): If χ(M) = χ(N) and χ(Mj) = χ(Nj ) for any j with i ≤ j ≤ m, then

[M;Mm, · · · ,Mi ] = [N;Nm, · · · , Ni ] in SKF
m,i .

Since SKF
m,m+1 = SKm, the assertion A(m+ 1) is already known from Karras et al. [7].

As the induction hypothesis we assume A(i + 1) holds, and also assume the assumption in
A(i). In the sequence in Theorem 2.1 we see in SKi ,

ρFi ([M;Mm, · · · ,Mi ] − [N;Nm, · · · , Ni ]) = [Mi] − [Ni ] = 0 .

Hence we have (M ′;M ′
m, · · · ,M ′

i+1), (N
′;N ′

m, · · · , N ′
i+1) ∈ MF

m,i+1 such that

ιFi+1([M ′;M ′
m, · · · ,M ′

i+1]− [N ′;N ′
m, · · · , N ′

i+1]) = [M;Mm, · · · ,Mi ]− [N;Nm, · · · , Ni ]
in SKF

m,i , i.e.,

[M;Mm, · · · ,Mi ]+[N ′;N ′
m, · · · , N ′

i+1,∅] = [N;Nm, · · · , Ni ]+[M ′;M ′
m, · · · ,M ′

i+1,∅] .
From this and the assumption in A(i) we have χ(M ′) = χ(N ′) and χ(M ′

j ) = χ(N ′
j ) for

i + 1 ≤ j ≤ m. A(i + 1) says [M ′;M ′
m, · · · ,M ′

i+1] = [N ′;N ′
m, · · · , N ′

i+1] in SKF
m,i+1.

Hence we have [M;Mm, · · · ,Mi ] = [N;Nm, · · · , Ni ] in SKF
m,i . This proves A(i). �
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3. SK-group of Z2-manifolds

For 0 ≤ i ≤ m + 1, let M
Z2
m,i be the subset of M

Z2
m consisting of those M ∈ M

Z2
m for

whichMZ2
j = ∅ for any j < i. Then we have a sequence of subsets of M

Z2
m ,

M
Z2
m,m+1 ⊂ MZ2

m,m ⊂ · · · ⊂ M
Z2
m,0 = MZ2

m .

As in the same way for M
Z2
m we can define the SK-equivalence in M

Z2
m,i and then define the

SK-group SKZ2
m,i as the Grothendieck group of the semigroup M

Z2
m,i/SK . SKZ2

m,i is the same

group as SKZ2
m [Fm−i] in his notation in Kosniowski [14, §5.3].

The inclusion M
Z2
m,i ⊂ M

Z2
m,i−1 induces a homomorphism ι

Z2
i : SKZ2

m,i → SK
Z2
m,i−1.

It is well-known that χ(M) ≡ χ(MZ2) mod 2 forM ∈ M
Z2
m (see for example Kawakubo

[8, Chapter 5]). For M ∈ M
Z2
m,m−1 we see χ(MZ2

m−1) ≡ 0 mod 2. This is seen as follows. If

m is even, then χ(MZ2
m−1) = 0. If m is odd, then

0 = χ(M) ≡ χ(MZ2) mod 2

= χ(M
Z2
m−1)+ χ(MZ2

m ) = χ(M
Z2
m−1) .

Hence we have M ′ ∈ Mm−1 such that χ(M ′) = χ(M
Z2
m−1)/2. Hence the correspondence

M �→ M ′ induces a homomorphism ρ
Z2
m−1 : SKZ2

m,m−1 → SKm−1. For i �= m− 1 we define

a homomorphism ρ
Z2
i : SKZ2

m,i → SKi by the correspondence M �→ M
Z2
i .

THEOREM 3.1. For any i with 0 ≤ i ≤ m we have the split short exact sequence

0 −→ SK
Z2
m,i+1

ι
Z2
i+1−→ SK

Z2
m,i

ρ
Z2
i−→ SKi −→ 0 .

PROOF. Let SKZ2
m [Fj ] and SKZ2

m [σj ] be the ones in Kosniowski [14, §5.3]. We see

SKi ∼= SK
Z2
m [σm−i], and SKZ2

m,i = SK
Z2
m [Fm−i ] as noted before. Therefore the sequence in

the theorem is already shown in Kosniowski [14, §5.3] to be split short exact. �

4. Relations of SKF
m to SKZ2

m

In this section we will prove the results stated in the Introduction.

We have a correspondence M
Z2
m,i → MF

m,i which assigns to a Z2-manifold M ∈ M
Z2
m,i

the family (M;MZ2
m , · · · ,MZ2

i ) ∈ MF
m,i . This induces a homomorphism ηi : SKZ2

m,i →
SKF

m,i . Note that η0 = η : SKZ2
m → MF

m . Define θi : SKi → SKi by θi = id if i �= m− 1,
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and by θi = 2 (the multiplication by 2) if i = m−1. Then we have the following commutative
diagram for any i with 0 ≤ i ≤ m,

(D)

0 −→ SK
Z2
m,i+1

ι
Z2
i+1−→ SK

Z2
m,i

ρ
Z2
i−→ SKi −→ 0�ηi+1

�ηi
�θi

0 −→ SKF
m,i+1

ιFi+1−→ SKF
m,i

ρFi−→ SKi −→ 0 .

The correspondence M
Z2
m,m+1 → Mm, M �→ M/Z2, induces an isomorphism SK

Z2
m,m+1

∼=
SKm, since M

Z2
m,m+1 is the set of m-dimensional closed free Z2-manifolds, where M/Z2

denotes the orbit space of M ∈ M
Z2
m,m+1. We see ηm+1 : SKZ2

m,m+1 → SKF
m,m+1 is injective,

since ηm+1([M]) = [M] = 2[M/Z2] for M ∈ M
Z2
m,m+1. θi is injective for any i. Therefore,

using the diagram (D) we have the following theorem by downward induction for i.

THEOREM 4.1. The homomorphism η : SKZ2
m → SKF

m is injective.

For any x ∈ Im η we see χ(x) ≡ ∑m
i=0 χi(x) mod 2, since χ(M) ≡ χ(MZ2) mod 2

for M ∈ M
Z2
m . The following theorem shows that this congruence is also sufficient for x ∈

SKF
m to be in the image of η.

THEOREM 4.2. An element x ∈ SKF
m to be in the image of η if and only if χ(x) ≡

∑m
i=0 χi(x) mod 2. In particular, 2x ∈ Im η for any x ∈ SKF

m .

PROOF. It is sufficient to prove the following assertion B(i) for any i with 0 ≤ i ≤
m+ 1:

B(i): If χ(x) ≡ ∑m
j=i χj (x) mod 2 for x ∈ SKF

m,i , then x ∈ Im ηi .

We prove this by downward induction for i. If i = m+1, then the hypothesis is χ(x) ≡ 0
mod 2. Put x = [M] − [N] for M,N ∈ Mm, then χ(M)− χ(N) ≡ 0 mod 2. If m > 0, or
if m = 0 and χ(x) ≥ 0, we have L ∈ Mm such that χ(L) = (χ(M) − χ(N))/2. Then, for

Z2 ×L ∈ M
Z2
m,m+1 we have ηm+1([Z2 ×L]) = [M]− [N] = x. Ifm = 0 and χ(x) < 0, then

consider −x. This proves B(m+ 1).

As the induction hypothesis, assume B(i + 1) holds. Let x ∈ SKF
m,i be as in B(i). Then

we see ρFi (x) ∈ Im θi even if i = m− 1, since we see χ(ρFi (x)) ≡ 0 mod 2 as in §3. By a

diagram chasing in (D), we have y ∈ SKZ2
m,i and z ∈ SKF

m,i+1 such that ιFi+1(z) = x − ηi(y).

Then

χ(z) = χ(x − ηi(y))

≡
m∑

j=i
χj (x − ηi(y)) mod 2 by the assumption of B(i) ,
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=
m∑

j=i
χj (z) =

m∑

j=i+1

χj (z) (∵ χi(z) = 0) .

Using B(i + 1), we have w ∈ SKZ2
m,i+1 such that ηi+1(w) = z. Using the diagram (D) again,

we have

ηi(ι
Z2
i+1(w)) = ιFi+1(ηi+1(w)) = ιFi+1(z) = x − ηi(y) .

This shows x ∈ Im ηi . �

From Corollary 2.4 we know that SKF
m has no torsion. Hence, tensoring Z[1/2] with the

monomorphism η : SKZ2
m → SKF

m , we have

COROLLARY 4.3. SK
Z2
m ⊗ Z[1/2] ∼= SKF

m ⊗ Z[1/2].
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