Токуо J. Матн. Vol. 26, No. 2, 2003

Cutting and Pasting of Families of Submanifolds Modeled on Z₂-Manifolds

Katsuhiro KOMIYA

Yamaguchi University

(Communicated by T. Kawasaki)

Introduction

All manifolds considered in this paper are in the smooth category, and they are all unoriented, with or without boundary. \mathbb{Z}_2 denotes the cyclic group of order 2.

We will consider families of submanifolds of a manifold, and define the SK-group of such families. We will investigate the relationship between the SK-group of families and the SK-group of \mathbb{Z}_2 -manifolds.

Let $m \ge 0$ be an integer. Let P and Q be m-dimensional compact manifolds with boundary ∂P and ∂Q , respectively, and $\varphi : \partial P \to \partial Q$ be a diffeomorphism. Pasting P and Q along the boundary by φ , we obtain a closed manifold $P \cup_{\varphi} Q$. For another diffeomorphism $\psi : \partial P \to \partial Q$ we obtain another closed manifold $P \cup_{\psi} Q$. The two closed manifolds $P \cup_{\varphi} Q$ and $P \cup_{\psi} Q$ are said to be *obtained from each other by cutting and pasting* (Schneiden und Kleben in German). Two m-dimensional closed manifolds M and N are said to be SK*equivalent* to each other, if there is an m-dimensional closed manifold L such that the disjoint union M + L is obtained from N + L by a finite sequence of cuttings and pastings. This is an equivalence relation on \mathfrak{M}_m , the set of m-dimensional closed manifolds. Note that if M and N are SK-equivalent then $\chi(M) = \chi(N)$ since

$$\chi(P \cup_{\varphi} Q) = \chi(P) + \chi(Q) - \chi(\partial P) = \chi(P \cup_{\psi} Q),$$

where χ denotes the Euler characteristic. Denote by [M] the equivalence class represented by M, and by \mathfrak{M}_m/SK the quotient set of \mathfrak{M}_m by the SK-equivalence. \mathfrak{M}_m/SK becomes a semigroup with the addition induced from the disjoint union of manifolds. The Grothendieck group of \mathfrak{M}_m/SK is called the SK-group of m-dimensional closed manifolds and is denoted by SK_m . This group has been introduced and observed by Karras, Kreck, Neumann and Ossa [7]. Note that [M] = [N] in SK_m if and only if M, N are SK-equivalent to each other.

Let $\mathfrak{M}_m^{\mathbb{Z}_2}$ be the set of *m*-dimensional closed \mathbb{Z}_2 -manifolds. Taking \mathbb{Z}_2 -equivariant diffeomorphisms as pasting diffeomorphisms, we can perform \mathbb{Z}_2 -equivariant cuttings and pastings in $\mathfrak{M}_m^{\mathbb{Z}_2}$ in a similar way as in \mathfrak{M}_m , and define an *SK*-equivalence relation on $\mathfrak{M}_m^{\mathbb{Z}_2}$. Then we

Received November 7, 2002

obtain the *SK*-group $SK_m^{\mathbb{Z}_2}$ of *m*-dimensional closed \mathbb{Z}_2 -manifolds. See for details Karras et al [7] and Kosniowski [14].

The fixed point set $M^{\mathbb{Z}_2}$ of a \mathbb{Z}_2 -manifold M is a submanifold of M with various dimensions. Let $M_i^{\mathbb{Z}_2}$ be the *i*-dimensional component of $M^{\mathbb{Z}_2}$ for $0 \le i \le m = \dim M$. Then we have a family of submanifolds of M, denoted by $(M; M_m^{\mathbb{Z}_2}, M_{m-1}^{\mathbb{Z}_2}, \cdots, M_0^{\mathbb{Z}_2})$. An equivariant cutting and pasting on M induces a cutting and pasting on each $M_i^{\mathbb{Z}_2}$. Taking this into account, we introduce the following definitions.

Let *P* be an *m*-dimensional compact manifold. For any *i* with $0 \le i \le m$ let P_i be an *i*-dimensional submanifold of *P* such that $\partial P_i = P_i \cap \partial P$ and $P_i \cap P_j = \emptyset$ if $i \ne j$. We write $\tilde{P} = (P; P_m, P_{m-1}, \dots, P_0)$ for a family of such submanifolds, and call this an *m*-dimensional family. For another such family $\tilde{Q} = (Q; Q_m, Q_{m-1}, \dots, Q_0)$, let $\varphi : \partial P \rightarrow \partial Q$ be a diffeomorphism which restricts to a diffeomorphism $\varphi_i = \varphi | \partial P_i : \partial P_i \rightarrow \partial Q_i$ for any *i*. Then we obtain a family of submanifolds of a closed manifold,

$$P \cup_{\varphi} Q = (P \cup_{\varphi} Q; P_m \cup_{\varphi_m} Q_m, \cdots, P_0 \cup_{\varphi_0} Q_0).$$

Here $P_0 \cup_{\varphi_0} Q_0$ is a finite set which is the disjoint union of P_0 and Q_0 . Let $\psi : \partial P \to \partial Q$ be another diffeomorphism which restricts to a diffeomorphism $\psi_i : \partial P_i \to \partial Q_i$ for any *i*. We obtain another family

$$\tilde{P} \cup_{\psi} \tilde{Q} = (P \cup_{\psi} Q; P_m \cup_{\psi_m} Q_m, \cdots, P_0 \cup_{\psi_0} Q_0).$$

The two families $\tilde{P} \cup_{\varphi} \tilde{Q}$ and $\tilde{P} \cup_{\psi} \tilde{Q}$ are said to be *obtained from each other by cutting and* pasting. Let $\mathfrak{M}_m^{\mathcal{F}}$ be the set of *m*-dimensional family of submanifolds of closed manifolds. Two families $\tilde{M}, \tilde{N} \in \mathfrak{M}_m^{\mathcal{F}}$ are said to be *SK-equivalent* to each other, if there is an $\tilde{L} \in \mathfrak{M}_m^{\mathcal{F}}$ such that $\tilde{M} + \tilde{L}$ is obtained from $\tilde{N} + \tilde{L}$ by a finite sequence of cuttings and pastings, where $\tilde{M} + \tilde{L}$ is the disjoint union of \tilde{M} and \tilde{L} , i.e.,

$$M + L = (M + L; M_m + L_m, \cdots, M_0 + L_0)$$

for $\tilde{M} = (M; M_m, \dots, M_0)$ and $\tilde{L} = (L; L_m, \dots, L_0)$. The quotient set $\mathfrak{M}_m^{\mathcal{F}}/SK$ by this SK-equivalence becomes a semigroup with the addition induced from the disjoint union of families. The SK-group of m-dimensional families of submanifolds is defined as the Grothendieck group of $\mathfrak{M}_m^{\mathcal{F}}/SK$ and is denoted by $SK_m^{\mathcal{F}}$. Any element $x \in SK_m^{\mathcal{F}}$ is written in the form $x = [\tilde{M}] - [\tilde{N}]$ for some $\tilde{M} = (M; M_m, \dots, M_0)$, $\tilde{N} = (N; N_m, \dots, N_0) \in \mathfrak{M}_m^{\mathcal{F}}$. Define $\chi(x) = \chi(M) - \chi(N)$ and $\chi_i(x) = \chi(M_i) - \chi(N_i)$ for $0 \le i \le m$. This is well-defined since a cutting and pasting operation keeps the Euler characteristic invariant.

We have a natural correspondence $\mathfrak{M}_m^{\mathbb{Z}_2} \to \mathfrak{M}_m^{\mathcal{F}}$ which assigns to a \mathbb{Z}_2 -manifold $M \in \mathfrak{M}_m^{\mathbb{Z}_2}$ the family $(M; M_m^{\mathbb{Z}_2}, \dots, M_0^{\mathbb{Z}_2}) \in \mathfrak{M}_m^{\mathcal{F}}$. This induces a homomorphism $\eta : SK_m^{\mathbb{Z}_2} \to SK_m^{\mathcal{F}}$. In this paper we will obtain the following results:

CUTTING AND PASTING OF FAMILIES OF SUBMANIFOLDS

- Two families $\tilde{M} = (M; M_m, \dots, M_0)$ and $\tilde{N} = (N; N_m, \dots, N_0)$ are SK-equivalent in $\mathfrak{M}_m^{\mathcal{F}}$ if and only if $\chi(M) = \chi(N)$ and $\chi(M_i) = \chi(N_i)$ for any i with $0 \le i \le m$.
- The homomorphism $\eta: SK_m^{\mathbb{Z}_2} \to SK_m^{\mathcal{F}}$ is injective.
- An element $x \in SK_m^{\mathcal{F}}$ is in the image of η if and only if $\chi(x) \equiv \sum_{i=0}^m \chi_i(x) \mod 2$.

This implies the following:

- $2x \in \text{Im } \eta$ for any $x \in SK_m^{\mathcal{F}}$, and
- η induces an isomorphism $SK_m^{\mathbb{Z}_2} \otimes \mathbb{Z}[1/2] \cong SK_m^{\mathcal{F}} \otimes \mathbb{Z}[1/2]$, where $\mathbb{Z}[1/2]$ is the subring of the rationals \mathbb{Q} generated by 1/2.

NOTE. Not only the case of \mathbb{Z}_2 , but in a similar way we can also discuss the case of \mathbb{Z}_p , the cyclic group of prime order p. But this case is treated in a more general setting, i.e., in the setting of odd order abelian group, in a separate paper (see Komiya [11]). Komiya [9],[10] treated a cutting and pasting for \mathbb{Z}_2 -manifolds and pairs of manifolds. Hara [1], [2], [3], Hara and Koshikawa [4], [5], [6], Koshikawa [12], [13] are also relevant to our present work.

ACKNOWLEDGEMENT. The author would like to thank the referee for pointing out a couple of errors in the manuscript to be corrected.

1. Homomorphisms

For $0 \leq i \leq m + 1$, let $\mathfrak{M}_{m,i}^{\mathcal{F}}$ be the subset of $\mathfrak{M}_{m}^{\mathcal{F}}$ consisting of those $\tilde{M} = (M; M_{m}, \dots, M_{0}) \in \mathfrak{M}_{m}^{\mathcal{F}}$ for which $M_{j} = \emptyset$ for any j < i. For the simplicity we denote $(M; M_{m}, \dots, M_{i}, \emptyset, \dots, \emptyset)$ by $(M; M_{m}, \dots, M_{i})$. We have a sequence of subsets of $\mathfrak{M}_{m}^{\mathcal{F}}$,

$$\mathfrak{M}_m = \mathfrak{M}_{m,m+1}^{\mathcal{F}} \subset \mathfrak{M}_{m,m}^{\mathcal{F}} \subset \cdots \subset \mathfrak{M}_{m,0}^{\mathcal{F}} = \mathfrak{M}_m^{\mathcal{F}}.$$

As in the Introduction we can define the *SK*-group from $\mathfrak{M}_{m,i}^{\mathcal{F}}$, which is denoted by $SK_{m,i}^{\mathcal{F}}$. Then $SK_{m,0}^{\mathcal{F}} = SK_m^{\mathcal{F}}$ and $SK_{m,m+1}^{\mathcal{F}} = SK_m$. Let $\iota_i^{\mathcal{F}} : SK_{m,i}^{\mathcal{F}} \to SK_{m,i-1}^{\mathcal{F}}$ be the homomorphism induced from the inclusion $\mathfrak{M}_{m,i}^{\mathcal{F}} \subset \mathfrak{M}_{m,i-1}^{\mathcal{F}}$.

PROPOSITION 1.1. The homomorphism $\iota_i^{\mathcal{F}} : SK_{m,i}^{\mathcal{F}} \to SK_{m,i-1}^{\mathcal{F}}$ is injective.

PROOF. Take an element $[\tilde{M}] - [\tilde{N}] \in SK_{m,i}^{\mathcal{F}}$ where $\tilde{M} = (M; M_m, \dots, M_i)$, $\tilde{N} = (N; N_m, \dots, N_i) \in \mathfrak{M}_{m,i}^{\mathcal{F}}$, and assume $\iota_i^{\mathcal{F}}([\tilde{M}] - [\tilde{N}]) = 0$ in $SK_{m,i-1}^{\mathcal{F}}$. Then there is $\tilde{L} = (L; L_m, \dots, L_{i-1}) \in \mathfrak{M}_{m,i-1}^{\mathcal{F}}$ such that in $\mathfrak{M}_{m,i-1}^{\mathcal{F}}$, $(M; M_m, \dots, M_i, \emptyset) + (L; L_m, \dots, L_{i-1})$ is obtained from $(N; N_m, \dots, N_i, \emptyset) + (L; L_m, \dots, L_{i-1})$ by a finite sequence of cuttings and pastings. If we forget here the (i - 1)-dimensional component, we see that $(M; M_m, \dots, M_i) + (L; L_m, \dots, L_i)$ is obtained from $(N; N_m, \dots, N_i) + (M; M_m, \dots, N_i)$

 $(L; L_m, \dots, L_i)$ by a finite sequence of cuttings and pastings in $\mathfrak{M}_{m,i}^{\mathcal{F}}$. This implies $[\tilde{M}] - [\tilde{N}] = 0$ in $SK_{m,i}^{\mathcal{F}}$. Hence $\iota_i^{\mathcal{F}}$ is injective. \Box

Let $\rho_i^{\mathcal{F}} : SK_{m,i}^{\mathcal{F}} \to SK_i$ be the homomorphism induced from the correspondence $\mathfrak{M}_{m,i}^{\mathcal{F}} \to \mathfrak{M}_i$ which sends $(M; M_m, \dots, M_i)$ to M_i . Let an (m-i)-dimensional closed manifold S with a base point * be arbitrarily fixed, and consider the correspondence $\mathfrak{M}_i \to \mathfrak{M}_{m,i}^{\mathcal{F}}$ which sends $N \in \mathfrak{M}_i$ to $(S \times N; \emptyset, \dots, \emptyset, \{*\} \times N) \in \mathfrak{M}_{m,i}^{\mathcal{F}}$. This induces a homomorphism $\gamma_i^{\mathcal{F}} : SK_i \to SK_{m,i}^{\mathcal{F}}$. We see $\rho_i^{\mathcal{F}} \circ \gamma_i^{\mathcal{F}} = id$, and obtain

PROPOSITION 1.2. The homomorphism $\rho_i^{\mathcal{F}} : SK_{m,i}^{\mathcal{F}} \to SK_i$ is surjective. In fact, $\rho_i^{\mathcal{F}}$ has a right inverse $\gamma_i^{\mathcal{F}} : SK_i \to SK_{m,i}^{\mathcal{F}}$.

2. Exact sequences

In this section we will prove the following theorem.

THEOREM 2.1. For any *i* with $0 \le i \le m$ we have the split short exact sequence

$$0 \longrightarrow SK_{m,i+1}^{\mathcal{F}} \xrightarrow{\iota_{i+1}^{\mathcal{F}}} SK_{m,i}^{\mathcal{F}} \xrightarrow{\rho_i^{\mathcal{F}}} SK_i \longrightarrow 0.$$

We already know from Propositions 1.1 and 1.2 that $\iota_{i+1}^{\mathcal{F}}$ is injective and $\rho_i^{\mathcal{F}}$ has a right inverse. For a proof of Theorem 2.1 it is sufficient to show Im $\iota_{i+1}^{\mathcal{F}} = \text{Ker } \rho_i^{\mathcal{F}}$. This will be shown in Proposition 2.3.

Given $(M; M_m, \dots, M_i) \in \mathfrak{M}_{m,i}^{\mathcal{F}}$, let $\nu(M_i)$ be the normal bundle of M_i in M, and consider the projective space bundle $RP(\nu(M_i) \oplus \mathbf{R})$ associated to $\nu(M_i) \oplus \mathbf{R}$, where \mathbf{R} is the trivial line bundle over M_i . Then $RP(\nu(M_i) \oplus \mathbf{R})$ contains $M_i (\approx RP(\mathbf{R}))$ as a submanifold, and we have a family $(RP(\nu(M_i) \oplus \mathbf{R}); \emptyset, \dots, \emptyset, M_i) \in \mathfrak{M}_{m,i}^{\mathcal{F}}$. Let T and T' be closed tubular neighborhoods of M_i in M and in $RP(\nu(M_i) \oplus \mathbf{R})$, respectively. Here we assume Tis sufficiently small so that $T \cap M_j = \emptyset$ for any j with $i < j \leq m$. Since T and T' are diffeomorphic to each other, we have a diffeomorphism $\varphi : \partial(M - \mathring{T}) \to \partial(RP(\nu(M_i) \oplus \mathbf{R}) - \mathring{T}')$, and have an m-dimensional closed manifold $(M - \mathring{T}) \cup_{\varphi} (RP(\nu(M_i) \oplus \mathbf{R}) - \mathring{T}')$, where \mathring{T} and \mathring{T}' are the interiors of T and T', respectively. We have a family

$$((M-\overset{\circ}{T})\cup_{\varphi}(RP(\nu(M_i)\oplus\mathbf{R})-\overset{\circ}{T}');M_m,\cdots,M_{i+1},\emptyset)\in\mathfrak{M}_{m,i}^{\mathcal{F}}.$$

Here M_m, \dots, M_{i+1} are contained in the part $M - \overset{\circ}{T}$. We also have a family

$$((M - \breve{T}) \cup_{\mathrm{id}} (M - \breve{T}); 2M_m, \cdots, 2M_{i+1}, \emptyset) \in \mathfrak{M}_{m,i}^{\mathcal{F}},$$

where $2M_j = M_j + M_j$. In $SK_{m,i}^{\mathcal{F}}$ we see

(*)
$$[M; M_m, \dots, M_i] + [(M - \mathring{T}) \cup_{\varphi} (RP(\nu(M_i) \oplus \mathbf{R}) - \mathring{T}'); M_m, \dots, M_{i+1}, \emptyset]$$

= $[RP(\nu(M_i) \oplus \mathbf{R}); \emptyset, \dots, \emptyset, M_i] + [(M - \mathring{T}) \cup_{id} (M - \mathring{T}); 2M_m, \dots, 2M_{i+1}, \emptyset],$

since

$$(M; M_m, \ldots, M_i) = (T'; \emptyset, \cdots, \emptyset, M_i) \cup_{\varphi} (M - \mathring{T}; M_m, \cdots, M_{i+1}, \emptyset)$$

LEMMA 2.2. Given $(M; M_m, \dots, M_i), (N; N_m, \dots, N_i) \in \mathfrak{M}_{m,i}^{\mathcal{F}}, \text{ if } [M_i] = [N_i] \text{ in } SK_i, \text{ then }$

$$[RP(\nu(M_i) \oplus \mathbf{R}); \emptyset, \cdots, \emptyset, M_i] = [RP(\nu(N_i) \oplus \mathbf{R}); \emptyset, \cdots, \emptyset, N_i]$$

in $SK_{m_i}^{\mathcal{F}}$.

To prove the lemma we introduce the SK-equivalence for vector bundles and the SK-group of singular manifolds in a space X.

Let *E* and *F* be *k*-dimensional vector bundles over *m*-dimensional compact manifolds *P* and *Q*, respectively, and $\varphi : E|\partial P \to F|\partial Q$ be a bundle isomorphism which induces a diffeomorphism $\overline{\varphi} : \partial P \to \partial Q$. Then we have a *k*-dimensional vector bundle $E \cup_{\varphi} F$ over an *m*-dimensional closed manifold $P \cup_{\overline{\varphi}} Q$. As in the usual way we can define the *SK*-equivalence for vector bundles.

An *m*-dimensional singular manifold (A, f) in a space X is a continuous map $f : A \to X$ with $A \in \mathfrak{M}_m$. We can define the SK-group $SK_m(X)$ of such singular manifolds (A, f) in X. See for details Karras et al [7] or Kosniowski [14]. The correspondence $(A, f) \mapsto A$ induces a homomorphism $\varepsilon : SK_m(X) \to SK_m$. It is known that ε is an isomorphism for some spaces X.

PROOF OF LEMMA 2.2. Let $f: M_i \to BO(m-i)$ and $g: N_i \to BO(m-i)$ be classifying maps for the (m-i)-dimensional vector bundles $v(M_i)$ and $v(N_i)$, respectively. Since $\varepsilon : SK_i(BO(m-i)) \to SK_i$ is an isomorphism ([7, Theorem 2.11], [14, Theorem 3.5.1]), the assumption $[M_i] = [N_i]$ shows $[M_i, f] = [N_i, g]$ in $SK_i(BO(m-i))$. This implies that $v(M_i)$ and $v(N_i)$ are SK-equivalent as bundles, and then that $RP(v(M_i) \oplus \mathbf{R})$ and $RP(v(N_i) \oplus \mathbf{R})$ are SK-equivalent in \mathfrak{M}_m . The cutting and pasting operation performing from $RP(v(M_i) \oplus \mathbf{R})$ to $RP(v(N_i) \oplus \mathbf{R})$ restricts to that from $M_i \ (\approx RP(\mathbf{R}))$ to $N_i \ (\approx RP(\mathbf{R}))$. This implies

$$[RP(\nu(M_i) \oplus \mathbf{R}); \emptyset, \cdots, \emptyset, M_i] = [RP(\nu(N_i) \oplus \mathbf{R}); \emptyset, \cdots, \emptyset, N_i]$$

in $SK_{m,i}^{\mathcal{F}}$.

PROPOSITION 2.3. In the sequence in Theorem 2.1, Im $\iota_{i+1}^{\mathcal{F}} = \text{Ker } \rho_i^{\mathcal{F}}$.

PROOF. Im $\iota_{i+1}^{\mathcal{F}} \subset \text{Ker } \rho_i^{\mathcal{F}}$ is easily shown. To show the reversed inclusion, assume $\rho_i^{\mathcal{F}}(x) = 0$ for $x = [M; M_m, \dots, M_i] - [N; N_m, \dots, N_i] \in SK_{m,i}^{\mathcal{F}}$, i.e., $[M_i] = [N_i]$ in SK_i . Using the equality (*) and Lemma 2.2, we see

$$\begin{aligned} x &= [M; M_m, \cdots, M_i] - [N; N_m, \cdots, N_i] \\ &= [(M - \mathring{T}) \cup_{id} (M - \mathring{T}); 2M_m, \cdots, 2M_{i+1}, \emptyset] \\ &- [(M - \mathring{T}) \cup_{\varphi} (RP(\nu(M_i) \oplus \mathbf{R}) - \mathring{T}'); M_m, \cdots, M_{i+1}, \emptyset] \\ &- [(N - \mathring{U}) \cup_{id} (N - \mathring{U}); 2N_m, \cdots, 2N_{i+1}, \emptyset] \\ &+ [(N - \mathring{U}) \cup_{\psi} (RP(\nu(N_i) \oplus \mathbf{R}) - \mathring{U}'); N_m, \cdots, N_{i+1}, \emptyset], \end{aligned}$$

where ψ , U and U' are ones obtained in the same way as φ , T and T'. This shows $x \in \text{Im } \iota_{i+1}^{\mathcal{F}}$.

From Propositions 1.1, 1.2 and 2.3 we obtain Theorem 2.1.

COROLLARY 2.4. $\tilde{M} = (M; M_m, \dots, M_0), \tilde{N} = (N; N_m, \dots, N_0) \in \mathfrak{M}_m^{\mathcal{F}}$ are SKequivalent if and only if $\chi(M) = \chi(N)$ and $\chi(M_i) = \chi(N_i)$ for any i with $0 \le i \le m$.

PROOF. If \tilde{M} and \tilde{N} are *SK*-equivalent, then it is easily shown $\chi(M) = \chi(N)$ and $\chi(M_i) = \chi(N_i)$ since a cutting and pasting operation keeps the Euler characteristic invariant. The converse is shown by showing the following assertion A(*i*) for any *i* with $0 \le i \le m + 1$ by downward induction.

A(i): If $\chi(M) = \chi(N)$ and $\chi(M_j) = \chi(N_j)$ for any j with $i \leq j \leq m$, then $[M; M_m, \dots, M_i] = [N; N_m, \dots, N_i]$ in $SK_{m,i}^{\mathcal{F}}$.

Since $SK_{m,m+1}^{\mathcal{F}} = SK_m$, the assertion A(m+1) is already known from Karras et al. [7]. As the induction hypothesis we assume A(i + 1) holds, and also assume the assumption in A(i). In the sequence in Theorem 2.1 we see in SK_i ,

$$\rho_i^{\mathcal{F}}([M; M_m, \cdots, M_i] - [N; N_m, \cdots, N_i]) = [M_i] - [N_i] = 0$$

Hence we have $(M'; M'_m, \dots, M'_{i+1}), (N'; N'_m, \dots, N'_{i+1}) \in \mathfrak{M}_{m,i+1}^{\mathcal{F}}$ such that

$$\iota_{i+1}^{\mathcal{F}}([M'; M'_m, \cdots, M'_{i+1}] - [N'; N'_m, \cdots, N'_{i+1}]) = [M; M_m, \cdots, M_i] - [N; N_m, \cdots, N_i]$$

in $SK_{m,i}^{\mathcal{F}}$, i.e.,

 $[M; M_m, \dots, M_i] + [N'; N'_m, \dots, N'_{i+1}, \emptyset] = [N; N_m, \dots, N_i] + [M'; M'_m, \dots, M'_{i+1}, \emptyset].$ From this and the assumption in A(i) we have $\chi(M') = \chi(N')$ and $\chi(M'_j) = \chi(N'_j)$ for $i+1 \le j \le m$. A(i+1) says $[M'; M'_m, \dots, M'_{i+1}] = [N'; N'_m, \dots, N'_{i+1}]$ in $SK_{m,i+1}^{\mathcal{F}}$. Hence we have $[M; M_m, \dots, M_i] = [N; N_m, \dots, N_i]$ in $SK_{m,i}^{\mathcal{F}}$. This proves A(i).

CUTTING AND PASTING OF FAMILIES OF SUBMANIFOLDS

3. *SK*-group of **Z**₂-manifolds

For $0 \le i \le m + 1$, let $\mathfrak{M}_{m,i}^{\mathbb{Z}_2}$ be the subset of $\mathfrak{M}_m^{\mathbb{Z}_2}$ consisting of those $M \in \mathfrak{M}_m^{\mathbb{Z}_2}$ for which $M_j^{\mathbb{Z}_2} = \emptyset$ for any j < i. Then we have a sequence of subsets of $\mathfrak{M}_m^{\mathbb{Z}_2}$,

$$\mathfrak{M}_{m,m+1}^{\mathbf{Z}_2} \subset \mathfrak{M}_{m,m}^{\mathbf{Z}_2} \subset \cdots \subset \mathfrak{M}_{m,0}^{\mathbf{Z}_2} = \mathfrak{M}_m^{\mathbf{Z}_2}$$

As in the same way for $\mathfrak{M}_{m}^{\mathbb{Z}_{2}}$ we can define the *SK*-equivalence in $\mathfrak{M}_{m,i}^{\mathbb{Z}_{2}}$ and then define the *SK*-group $SK_{m,i}^{\mathbb{Z}_{2}}$ as the Grothendieck group of the semigroup $\mathfrak{M}_{m,i}^{\mathbb{Z}_{2}}/SK$. $SK_{m,i}^{\mathbb{Z}_{2}}$ is the same group as $SK_{m}^{\mathbb{Z}_{2}}[\mathcal{F}_{m-i}]$ in his notation in Kosniowski [14, §5.3].

The inclusion $\mathfrak{M}_{m,i}^{\mathbb{Z}_2} \subset \mathfrak{M}_{m,i-1}^{\mathbb{Z}_2}$ induces a homomorphism $\iota_i^{\mathbb{Z}_2} : SK_{m,i}^{\mathbb{Z}_2} \to SK_{m,i-1}^{\mathbb{Z}_2}$.

It is well-known that $\chi(M) \equiv \chi(M^{\mathbb{Z}_2}) \mod 2$ for $M \in \mathfrak{M}_m^{\mathbb{Z}_2}$ (see for example Kawakubo [8, Chapter 5]). For $M \in \mathfrak{M}_{m,m-1}^{\mathbb{Z}_2}$ we see $\chi(M_{m-1}^{\mathbb{Z}_2}) \equiv 0 \mod 2$. This is seen as follows. If *m* is even, then $\chi(M_{m-1}^{\mathbb{Z}_2}) = 0$. If *m* is odd, then

$$0 = \chi(M) \equiv \chi(M^{\mathbf{Z}_2}) \mod 2$$
$$= \chi(M^{\mathbf{Z}_2}_{m-1}) + \chi(M^{\mathbf{Z}_2}_m) = \chi(M^{\mathbf{Z}_2}_{m-1}).$$

Hence we have $M' \in \mathfrak{M}_{m-1}$ such that $\chi(M') = \chi(M_{m-1}^{\mathbf{Z}_2})/2$. Hence the correspondence $M \mapsto M'$ induces a homomorphism $\rho_{m-1}^{\mathbf{Z}_2} : SK_{m,m-1}^{\mathbf{Z}_2} \to SK_{m-1}$. For $i \neq m-1$ we define a homomorphism $\rho_i^{\mathbf{Z}_2} : SK_{m,i}^{\mathbf{Z}_2} \to SK_i$ by the correspondence $M \mapsto M_i^{\mathbf{Z}_2}$.

THEOREM 3.1. For any *i* with $0 \le i \le m$ we have the split short exact sequence

$$0 \longrightarrow SK_{m,i+1}^{\mathbf{Z}_2} \xrightarrow{\iota_{i+1}^{\mathbf{Z}_2}} SK_{m,i}^{\mathbf{Z}_2} \xrightarrow{\rho_i^{\mathbf{Z}_2}} SK_i \longrightarrow 0.$$

PROOF. Let $SK_m^{\mathbb{Z}_2}[\mathcal{F}_j]$ and $SK_m^{\mathbb{Z}_2}[\sigma_j]$ be the ones in Kosniowski [14, §5.3]. We see $SK_i \cong SK_m^{\mathbb{Z}_2}[\sigma_{m-i}]$, and $SK_{m,i}^{\mathbb{Z}_2} = SK_m^{\mathbb{Z}_2}[\mathcal{F}_{m-i}]$ as noted before. Therefore the sequence in the theorem is already shown in Kosniowski [14, §5.3] to be split short exact.

4. Relations of $SK_m^{\mathcal{F}}$ to $SK_m^{\mathbf{Z}_2}$

In this section we will prove the results stated in the Introduction.

We have a correspondence $\mathfrak{M}_{m,i}^{\mathbb{Z}_2} \to \mathfrak{M}_{m,i}^{\mathcal{F}}$ which assigns to a \mathbb{Z}_2 -manifold $M \in \mathfrak{M}_{m,i}^{\mathbb{Z}_2}$ the family $(M; M_m^{\mathbb{Z}_2}, \dots, M_i^{\mathbb{Z}_2}) \in \mathfrak{M}_{m,i}^{\mathcal{F}}$. This induces a homomorphism $\eta_i : SK_{m,i}^{\mathbb{Z}_2} \to SK_{m,i}^{\mathcal{F}}$. Note that $\eta_0 = \eta : SK_m^{\mathbb{Z}_2} \to \mathfrak{M}_m^{\mathcal{F}}$. Define $\theta_i : SK_i \to SK_i$ by $\theta_i = \text{id if } i \neq m-1$,

and by $\theta_i = 2$ (the multiplication by 2) if i = m - 1. Then we have the following commutative diagram for any *i* with $0 \le i \le m$,

The correspondence $\mathfrak{M}_{m,m+1}^{\mathbb{Z}_2} \to \mathfrak{M}_m, M \mapsto M/\mathbb{Z}_2$, induces an isomorphism $SK_{m,m+1}^{\mathbb{Z}_2} \cong SK_m$, since $\mathfrak{M}_{m,m+1}^{\mathbb{Z}_2}$ is the set of *m*-dimensional closed free \mathbb{Z}_2 -manifolds, where M/\mathbb{Z}_2 denotes the orbit space of $M \in \mathfrak{M}_{m,m+1}^{\mathbb{Z}_2}$. We see $\eta_{m+1} : SK_{m,m+1}^{\mathbb{Z}_2} \to SK_{m,m+1}^{\mathcal{F}}$ is injective, since $\eta_{m+1}([M]) = [M] = 2[M/\mathbb{Z}_2]$ for $M \in \mathfrak{M}_{m,m+1}^{\mathbb{Z}_2}$. θ_i is injective for any *i*. Therefore, using the diagram (D) we have the following theorem by downward induction for *i*.

THEOREM 4.1. The homomorphism $\eta: SK_m^{\mathbb{Z}_2} \to SK_m^{\mathcal{F}}$ is injective.

For any $x \in \text{Im } \eta$ we see $\chi(x) \equiv \sum_{i=0}^{m} \chi_i(x) \mod 2$, since $\chi(M) \equiv \chi(M^{\mathbb{Z}_2}) \mod 2$ for $M \in \mathfrak{M}_m^{\mathbb{Z}_2}$. The following theorem shows that this congruence is also sufficient for $x \in SK_m^{\mathcal{F}}$ to be in the image of η .

THEOREM 4.2. An element $x \in SK_m^{\mathcal{F}}$ to be in the image of η if and only if $\chi(x) \equiv \sum_{i=0}^m \chi_i(x) \mod 2$. In particular, $2x \in \operatorname{Im} \eta$ for any $x \in SK_m^{\mathcal{F}}$.

PROOF. It is sufficient to prove the following assertion B(i) for any i with $0 \le i \le m + 1$:

B(i): If $\chi(x) \equiv \sum_{j=i}^{m} \chi_j(x) \mod 2$ for $x \in SK_{m,i}^{\mathcal{F}}$, then $x \in \text{Im } \eta_i$.

We prove this by downward induction for *i*. If i = m+1, then the hypothesis is $\chi(x) \equiv 0 \mod 2$. Put x = [M] - [N] for $M, N \in \mathfrak{M}_m$, then $\chi(M) - \chi(N) \equiv 0 \mod 2$. If m > 0, or if m = 0 and $\chi(x) \ge 0$, we have $L \in \mathfrak{M}_m$ such that $\chi(L) = (\chi(M) - \chi(N))/2$. Then, for $\mathbb{Z}_2 \times L \in \mathfrak{M}_{m,m+1}^{\mathbb{Z}_2}$ we have $\eta_{m+1}([\mathbb{Z}_2 \times L]) = [M] - [N] = x$. If m = 0 and $\chi(x) < 0$, then consider -x. This proves B(m + 1).

As the induction hypothesis, assume B(i + 1) holds. Let $x \in SK_{m,i}^{\mathcal{F}}$ be as in B(i). Then we see $\rho_i^{\mathcal{F}}(x) \in \text{Im } \theta_i$ even if i = m - 1, since we see $\chi(\rho_i^{\mathcal{F}}(x)) \equiv 0 \mod 2$ as in §3. By a diagram chasing in (D), we have $y \in SK_{m,i}^{\mathbb{Z}_2}$ and $z \in SK_{m,i+1}^{\mathcal{F}}$ such that $\iota_{i+1}^{\mathcal{F}}(z) = x - \eta_i(y)$. Then

$$\chi(z) = \chi(x - \eta_i(y))$$

$$\equiv \sum_{j=i}^m \chi_j(x - \eta_i(y)) \mod 2 \text{ by the assumption of } B(i),$$

CUTTING AND PASTING OF FAMILIES OF SUBMANIFOLDS

$$= \sum_{j=i}^{m} \chi_j(z) = \sum_{j=i+1}^{m} \chi_j(z) \quad (\because \chi_i(z) = 0).$$

Using B(*i* + 1), we have $w \in SK_{m,i+1}^{\mathbb{Z}_2}$ such that $\eta_{i+1}(w) = z$. Using the diagram (D) again, we have

$$\eta_i(\iota_{i+1}^{\mathbf{Z}_2}(w)) = \iota_{i+1}^{\mathcal{F}}(\eta_{i+1}(w)) = \iota_{i+1}^{\mathcal{F}}(z) = x - \eta_i(y) \,.$$

This shows $x \in \text{Im } \eta_i$.

From Corollary 2.4 we know that $SK_m^{\mathcal{F}}$ has no torsion. Hence, tensoring $\mathbb{Z}[1/2]$ with the monomorphism $\eta: SK_m^{\mathbb{Z}_2} \to SK_m^{\mathcal{F}}$, we have

COROLLARY 4.3.
$$SK_m^{\mathbb{Z}_2} \otimes \mathbb{Z}[1/2] \cong SK_m^{\mathcal{F}} \otimes \mathbb{Z}[1/2].$$

References

- [1] T. HARA, Equivariant SK invariants on \mathbb{Z}_{2^r} manifolds with boundary, Kyushu J. Math. 53 (1999), 17–36.
- [2] T. HARA, Equivariant cutting and pasting of *G* manifolds, Tokyo J. Math. **23** (2000), 69–85.
- [3] T. HARA, SK invariants on closed \mathbb{Z}_{2^r} manifolds, Kyushu J. Math. 54 (2000), 307–331.
- [4] T. HARA and H. KOSHIKAWA, Equivariant SK group of manifolds with boundary, Kyushu J. Math. 49 (1995), 455–461.
- [5] T. HARA and H. KOSHIKAWA, Cutting and pasting of G manifolds with boundary, Kyushu J. Math. 51 (1997), 165–178.
- [6] T. HARA and H. KOSHIKAWA, A homomorphism between an equivariant SK ring and the Burnside ring for Z₄, Hokkaido Math. J. 28 (1999), 461–474.
- [7] U. KARRAS, M. KRECK, W. D. NEUMANN and E. OSSA, *Cutting and pasting of manifolds; SK-groups*, Publish or Perish (1973).
- [8] K. KAWAKUBO, *The theory of transformation groups*, Oxford Univ. Press (1991).
- [9] K. KOMIYA, Cutting and pasting of pairs, Osaka J. Math. 23 (1986), 577–584.
- [10] K. KOMIYA, Cutting, pasting and the doubles of manifolds with boundary, Kyushu J. Math. 55 (2001), 321– 328.
- [11] K. KOMIYA, Cutting and pasting of manifolds into G-manifolds, Kodai Math. J. 26 (2003), 230–243.
- [12] K. KOSHIKAWA, On the homomorphism between the equivariant SK ring and the Burnside ring for involution, Hokkaido Math. J. 14 (1985), 169–174.
- [13] K. KOSHIKAWA, SK groups of manifolds with boundary, Kyushu J. Math. 49 (1995), 47–57.
- [14] C. KOSNIOWSKI, Actions of finite abelian groups, Pitman (1978).

Present Address: DEPARTMENT OF MATHEMATICS, YAMAGUCHI UNIVERSITY, YAMAGUCHI 753–8512, JAPAN. *e-mail*: komiya@yamaguchi-u.ac.jp 411