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1. Introduction

It is well-known that the ergodic properties of one dimensional dynamical system are
determined by the spectrum of the Perron-Frobenius operator associated with transformations
(for example [2], [3]). In [4] and [5], constructing renewal equations on symbolic dynamics,
Mori defined Fredholm matrix Φ(z). He proved that the determinant det(I − Φ(z)) plays
similar role as the Fredholm determinant of nuclear operators, that is, the zeros of the deter-
minant are the reciprocals of the eigenvalues of the Perron-Frobenius operator. So he also
call det(I −Φ(z)) the Fredholm determinant. He also showed the reciprocal of the Fredholm
determinant equals the dynamical zeta function.

Using this idea, constructing α-Fredholm matrix, Mori determined the Hausdorff dimen-
sion of Cantor sets generated by piecewise linear transformations on intervals, and studied the
ergodic properties of the dynamical system on Cantor sets ([8]).

In [9], he also calculated the Hausdorff dimension of Cantor sets on a plane generated by
Koch-like mappings or Sierpinskii-like mappings, using the spectra of the Perron-Frobenius
operator associated with piecewise linear mappings on a plane (cf. [7]).

For Cantor sets generated by transformations which are not necessarily piecewise lin-
ear, one considers log |F ′| as potential, and approximates a transformation F by piecewise
linear transformations on symbolic dynamics. Then zeta functions corresponding to these
piecewise linear transformations converges to that of F . Using this fact, Mori ([6]) estimated

the Hausdorff dimension of Cantor sets generated by piecewise C2 and Markov transforma-
tions. Jenkinson and Pollicott ([10]) also estimated the Hausdorff dimension of the Cantor set
generated by continued fraction expansion in a similar way.

In this article, we will consider a Cantor set generated by a piecewise linear and Markov

transformation on R1 with parameter p. Roughly speaking, our Cantor set is the set of points
which returns infinitely many times. We will consider the Hausdorff dimension of this Cantor
set as a function of p. If 0 < p < 1/4, Markov chain is recurrent, hence the Hausdorff
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dimension of our Cantor set equals 1. On the contrary, if 1/4 < p < 1/2, Markov chain
is transient and the Hausdorff dimension of Cantor set is less than 1. Therefore at p = 1/4,
Markov chain has drastic change from recurent to transient. We may call this a phase transition
of Markov chain. But as we will see later, the Hausdorff dimension is a smooth function of p.

2. Rough sketch of the proof in [8]

To make our discussion clear, we will review how to calculate the Hausdorff dimension
generated by piecewise linear Markov transformations on a bounded interval, and at the same
time we will explain notations. In [8], we considered general piecewise linear transformations
on a bounded interval. However, we will treat in this section only piecewise linear and Markov
cases.

DEFINITION 1. 1. We call a transformation F from a bounded interval into itself
piecewise linear, if there exists at most countable set A, and for each a ∈ A, there exists a
subinterval 〈a〉 ⊂ I and {〈a〉}a∈A is a partition of I , and F ′ is constant on each 〈a〉.

2. A piecewise linear transformation F is called Markov if for each a ∈ A, if F(〈a〉)∩
〈b〉o �= ∅, then F(〈a〉) ⊃ 〈b〉, where J o and J are the interior and the closure of a set J ,
respectively.

A finite sequence of symbols w = a1 · · · an (ai ∈ A) is called a word, and we define

|w| = n, (the length of a word)

〈w〉 =
n⋂
i=1

F−i+1(〈ai〉) . (interval corresponding to a word)

Put A0 ⊂ A and let A0 be a finite set. Then we define a Cantor set

C = {x ∈ I : Fn(x) ∈ ∪a∈A0〈a〉, for all n ≥ 0} .
We will express the Hausdorff dimension of C by dimH C. To estimate dimH C, we cover C
by words with same length. Let Φ(α) be a A0 × A0 matrix defined by

Φ(α)a,b =
{∣∣(F |〈a〉)′

∣∣−α if F(〈a〉) ⊃ 〈b〉o,
0 otherwise.

We call this matrix the Fredholm matrix. Assume that the matrix Φ(α) is aperiodic and
irreducible. Then we get ∑

|w|=n
|〈w〉|α = (1, . . . , 1)Φ(α)nx , (1)

where x is the vector such that xa = |〈a〉|α and |J | is the Lebesgue measure of a set J . First
note that because the matrixΦ(α) is nonnegative and irreducible, from the Perron-Frobenius’s
theorem, the maximal eigenvalue of Φ(α) is positive and simple. So, if Φ(α) has no eigen-
values greater than 1, then the right hand term of (1) converges to 0. This shows α ≥ dimH C.
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On the contrary, if there exists at least one eigenvalue which is greater than 1, then the right
hand term of (1) diverges. To calculate the Hausdorff dimension, we need to estimate all the
coverings by intervals, and here we only calculate covers by words with same length. But
from the above discussion, we can expect α ≤ dimH C, and we can get the estimate from
below rigorously using the Billingsley’s theorem ([1]). This says the Hausdorff dimension
dimH C equals the maximal solution of det(I −Φ(α)) = 0.

EXAMPLE 1. Let I = [0, 1], F = 3x (mod 1), A = {0, 1, 2}, A0 = {0, 2}, and

〈0〉 = [0, 1
3 ), 〈1〉 = [ 1

3 ,
2
3 ), and 〈2〉 = [ 2

3 , 1]. The C is the so called mid third Cantor set. For
this case,

Φ(α) =
(
( 1

3 )
α ( 1

3 )
α

( 1
3 )
α ( 1

3 )
α

)
,

and det(I − Φ(α)) = 1 − 2( 1
3 )
α. The Hausdorff dimension of mid third Cantor set equals

log 2
log 3 .

3. Definition

Choose p, q ∈ (0, 1
2 ] such that 2p + 2q = 1. Let A = {±0,±1, . . . } be an alphabet,

and AN be a subset of A such that AN = {±0,±1, . . . ,±(2N − 1)}. For any symbol k ∈ A,
〈±k〉 is a corresponding subinterval (k = 0, 1, 2 · · · ):

〈+2k〉 = [k, k + 2p) ,

〈+(2k + 1)〉 = [k + 2p, k + 1) ,

and 〈−k〉 is the mirror image of the positive part except 〈−0〉 = (−2p, 0). Then

[k, k + 1) = 〈+2k〉 ∪ 〈+(2k + 1)〉 ,
(−1, 0) = 〈−0〉 ∪ 〈−1〉 ,
(−k − 1,−k] = 〈−2k〉 ∪ 〈−(2k + 1)〉 (k ≥ 1) ,

∞⋃
k=−∞

〈k〉 = R .

Set a transformation F from R to R as follows. For x ≥ 0, we define F+ as follows;

F+(x) =




1

p
(x − k)+ k if x ∈ 〈+2k〉 ,

1

q
(x − k − 1)+ k + 1 if x ∈ 〈+(2k + 1)〉 ,
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and define F (see Figure 1):

F(x) =
{
F+(x) if x ≥ 0 ,

−F+(−x) if x < 0 .

Then F satisfies a Markov condition, and its Markov diagram is Figure 3. If p > q , for
almost every x ∈ R the orbit Fn(x) goes to infinity. The reason is the following: We will
see this dynamical system as Markov chain. Then the probability from [k, k + 1) to go to
[k + 1, k + 2) is greater than the probability from [k, k + 1) to [k − 1, k). Hence this Markov
chain is transient.

Now we are interested in a Cantor set generated by F :

C = {x ∈ R : Fn(x) returns (−1, 1) infinitely often} .
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0

1

2

︸ ︷︷ ︸
2p

︸︷︷︸
2q
︸ ︷︷ ︸

2p
︸︷︷︸

2q
︸︷︷︸

2q
︸ ︷︷ ︸

2p
︸︷︷︸

2q
︸ ︷︷ ︸

2p

FIGURE 1. The graph of F .
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To calculate dimH C, we consider following four kinds of Cantor sets. For N ∈ N

CN =
∞⋂
k=0

F−k
N ((−N,N)) ,

where FN is a transformation F restricted to (−N,N) (we give the graph of F2 in Figure 2,
for this case, when a point comes in [1 + p, 1 + 2p) and (−1 − 2p,−1 − p], then it will
disappear). Induce the transformations F and FN to (−1, 1), and let C(−1, 1) and CN(−1, 1)
be the sets generated by them, respectively. Similarly we define F+

N which is a transformation

F restricted to [0, N), and C+
N [0, 1) is the Cantor set generated by the transformation which

is induced F+
N to [0, 1). These induced Cantor sets are equal to the restriction: i.e.

C(−1, 1) = C ∩ (−1, 1) ,

CN(−1, 1) = CN ∩ (−1, 1) .

Note that C+
1 looks like the mid third Cantor set, that is, we remove the interval [p, 2p] first

from [0, 1], then remove with same ratio repeatedly. But we can not choose p and q such that
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︸ ︷︷ ︸
2q

︸ ︷︷ ︸
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︸ ︷︷ ︸
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2q

︸ ︷︷ ︸
2q

︸ ︷︷ ︸
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︸ ︷︷ ︸
p

︸ ︷︷ ︸
2q

︸ ︷︷ ︸
2p

FIGURE 2. The graph of F2.
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C+
1 becomes the mid third Cantor set. By the definition, we can see easily

C1 ⊂ C2 ⊂ · · · ⊂ C ,

C1(−1, 1) ⊂ C2(−1, 1) ⊂ · · · ⊂ C(−1, 1) ,

C+
1 [0, 1) ⊂ C+

2 [0, 1) ⊂ · · · ⊂ C ,

therefore

dimH C1 ≤ dimH C2 ≤ · · · ≤ dimH C ,

dimH C1(−1, 1) ≤ dimH C2(−1, 1) ≤ · · · ≤ dimH C(−1, 1) ,

dimH C
+
1 [0, 1) ≤ dimH C

+
2 [0, 1) ≤ · · · ≤ dimH C .

At the same time, we can see

C+
N [0, 1) ⊂ CN(−1, 1) ⊂ CN ,

therefore we also have

dimH C
+
N [0, 1) ≤ dimH CN(−1, 1) ≤ dimH CN .

Let Φ(N; α) be a AN × AN matrix whose components are

Φ(N; α)a,b =
{∣∣(F |〈a〉)′

∣∣−α if F(〈a〉) ∩ 〈b〉o �= φ ,

0 if F(〈a〉) ∩ 〈b〉o = φ ,

where a, b ∈ AN . Similarly Φ(α), Φ+(N; α) are defined by F and F+
N respectively. By

induced transformations FN and F+
N to (−1, 1) and [0, 1), we can also define Φ(−1,1)(N; α)

and Φ+
[0,1)(N; α), respectively. Note that Φ(α) is an infinite dimensional matrix. We call

them Fredholm α-matrices. By the definition of F , FN and F+
N , for a, b ≥ +0,

Φ(α)a,b = Φ(N; α)a,b = Φ+(N; α)a,b

=



pα , if a = 2k , a ≤ b ≤ a + 3 ,

qα , if a = 2k + 1 , a − 3 ≤ b ≤ a ,

0 , otherwise .

Let αN be the maximal zero of det(I−Φ(N; α)). In other word,Φ(N; αN) has an eigenvalue

1. Let also α+
N , α(−1,1)(N) and α[0,1)(N) be the one for the matricesΦ+(N; α),Φ(−1,1)(N; α)

and Φ+
[0,1)(N; α), respectively. By [8], we get dimH CN = αN , and dimH C

+
N = α+

N . Since

dimH CN is monotone increasing with respect to N and dimH CN ≤ 1 (because CN ⊂ R),
there exists limN→∞ dimH CN , and we denote it by α0. (α0 = limN→∞ αN )

Using intervals [0, 1), [1, 2) · · · , we can express F by a Markov diagram as Figure 3. As
we mentioned before, the Markov chain is recurrent when p ≤ q , and transient when p > q .
Define
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p
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q

(1,0)

p

 [2,3)

q

p

q

p

 [1,2)

q

p

q

p

 [0,1)

q

q

qp

q

FIGURE 3. Markov diagram of F .

ψ1(α) = pα
∞∑
n=0

(pα + qα)nqα = pαqα

1 − pα − qα
,

which corresponds to the sum of the words which start from [0, 1), then stay [1, 2) and then
return to [0, 1), that is,

ψ1(α) =
∑

|〈w〉|α ,
where the sum is over all the wordsw = a1 · · · an (n ≥ 2) such that a1 = +0, a2, · · · , an−1 =
+2 or + 3 and an = +0 or + 1. Inductively, we define

ψN(α) = pα
∞∑
n=0

(pα + qα + ψN−1(α))
nqα ,

which corresponds to the sum of the words which start from [0, 1) then go to [1, 2), going at
most [N,N + 1), then go back to [0, 1) for the first time. If pα + qα + ψN−1(α) < 1, then
the sum converges and we get the recurrence formula:

ψN(α) = pαqα

1 − pα − qα − ψN−1(α)
.

For convenience, we put ψ0(α) = 0. Using ψN(α), we get Φ+
[0,1)(N; α) and Φ(−1,1)(N; α)

Φ+
[0,1)(N; α) =

(
pα + ψN−1(α) pα + ψN−1(α)

qα qα

)
,

Φ(−1,1)(N; α)

=




qα qα qα qα

pα + ψN−1(α) pα + ψN−1(α) 0 0
0 0 pα + ψN−1(α) pα + ψN−1(α)

qα qα qα qα


 .

Then

det(λI −Φ+
[0,1)(N; α)) = λ(λ− (pα + qα + ψN−1(α))) ,
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det(λI −Φ(−1,1)(N; α))
= λ2(λ− pα − ψN−1(α))(λ− (pα + ψN−1(α)+ 2qα)) .

Now let

D(α) = (1 − pα − qα)2 − 4pαqα =
(

1 − (p
α
2 + q

α
2 )2
) (

1 + (p
α
2 + q

α
2 )2
)
. (2)

We will express by αD the unique solution of D(α) = 0.

LEMMA 1. If D(α) ≥ 0, that is, α ≥ αD, then

lim
N→∞ψN(α) = 1 − pα − qα − √

D(α)

2
.

Otherwise, ψN (α) diverges.

PROOF. Note first 1 − pα − qα − √
D(α) > 0. Let

f (x) = pαqα

1 − pα − qα − x

then ψN(α) is the N-th iteration of the function f (x) starting from ψ0(α) (i.e. ψN(α) =
f N(ψ0(α)). The solutions of

x = pαqα

1 − pα − qα − x

equal 1−pα−qα±√
D(α)

2 . Since ψ0(α) = 0, if D(α) ≥ 0, then ψN(α) converges to the smaller
one. �

If ψN(α) converges, then we define ψ(α) = limN ψN(α).
For convenience, we define Φ(0 ; α) = O .

LEMMA 2. For N = 1, 2, 3, · · · , we get

det(I −Φ(N; α)) =
(N−1∏
k=0

det(I −Φ+
[0,1)(k; α))

)2

det(I −Φ(−1,1)(N; α)) . (3)

PROOF. We get the proof by induction. When N = 1, the claim is trivial because
Φ(1; α) = Φ(−1,1)(1; α). Now for 0 ≤ k ≤ N − 1 the component from Φ(α)−2k−1,−2k−1 to
Φ(α)−2k+2,−2k+2, (whose size is 4 × 4) of I −Φ(N; α) equals


1 − qα −qα −qα −qα
−pα 1 − pα 0 0

0 0 1 − qα −qα
−pα −pα −pα 1 − pα


 ,

and the other components of rows and columns from −2k − 1 to 2k + 2 are zero. From the
inductive assumption, using the method described below, at the k-th step, we get a matrix of
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the form: ∣∣∣∣∣∣∣∣
1 − qα −qα −qα −qα

−pα − ψk(α) 1 − pα − ψk(α) 0 0
0 0 1 − qα −qα

−pα −pα −pα 1 − pα

∣∣∣∣∣∣∣∣ .
Now

1. Subtract pα

pα+ψk(α)× the second row from the fourth row.

2. Subtract also qα

pα+ψk(α)× the second row from the first row.

Then we get a new matrix:∣∣∣∣∣∣∣∣∣
1 − qα

pα+ψk(α) −qα −qα
−pα − ψk(α) 1 − pα − ψk(α) 0 0

0 0 1 − qα −qα
0 − pα

pα+ψk(α) −pα 1 − pα

∣∣∣∣∣∣∣∣∣
.

Next by adding (pα + ψk(α))× the first row to the second row, we get∣∣∣∣∣∣∣∣∣
1 − qα

pα+ψk(α) −qα −qα
0 1 − pα − qα − ψk(α) −(pα + ψk(α))q

α −(pα + ψk(α))q
α

0 0 1 − qα −qα
0 − pα

pα+ψk(α) −pα 1 − pα

∣∣∣∣∣∣∣∣∣
.

We can erase the first row and the first column and get the new matrix of the form:∣∣∣∣∣∣∣
1 − pα − qα − ψk(α) −(pα + ψk(α))q

α −(pα + ψk(α))q
α

0 1 − qα −qα
− pα

pα+ψk(α) −pα 1 − pα

∣∣∣∣∣∣∣ .
Next, by adding 1

1−pα−qα−ψk(α) × pα

pα+ψk(α)× the first row to the third row, we get∣∣∣∣∣∣
1 − pα − qα − ψk(α) −(pα + ψk(α))q

α −(pα + ψk(α))q
α

0 1 − qα −qα
0 −pα − ψk+1(α) 1 − pα − ψk+1(α)

∣∣∣∣∣∣
= (1 − pα − qα − ψk(α))

∣∣∣∣ 1 − qα −qα
−pα − ψk+1(α) 1 − pα − ψk+1(α)

∣∣∣∣ ,
where recall

ψk+1(α) = pαqα

1 − pα − qα − ψk(α)
.

Continuing this procedure N − 1 times also from the bottom, we get the proof. �
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LEMMA 3. 1. dimH C
+
N [0, 1) = α[0,1)(N).

2. dimH CN(−1, 1) = α(−1,1)(N).

PROOF. By the definition of Hausdorff dimension, dimH C
+
N [0, 1) ≤ α[0,1)(N). We

will show that dimH C
+
N [0, 1) is greater than or equal to α[0,1)(N).

We showed following results in [8]: Let C be a Cantor set generated by a piecewise lin-
ear, expanding, topologically transitive and Markov transformation F with finite symbols. We
construct α-Fredholm matrix Φ(α), and α0 be the maximal zero of det(I − Φ(α)). Then by
the eigenvector associated with the eigenvalue 1 of Φ(α0), we can construct a 1-dimensional
transformation G. The dynamical system on the unit interval associated with G and the dy-
namical system on C associated with F have the same symbolic dynamics. Thus we can
induce the Lebesgue measure on the unit interval where G acts to C, denote it by µ1. We
denote the Lebesgue measure on the interval where F acts by µ2. Then comparing them, we
have

C ⊂
{
x : lim

n→∞
logµ1〈ax1 · · · axn〉
logµ2〈ax1 · · · axn〉

= α0

}
.

Then we get by Billingsley’s theorem ([1]), between the Hausdorff dimensions of measures
dimµ1 and dimµ2 , we have

dimµ2 = α0 dimµ1 = α0 .

We can apply this discusssion to our case. Namely, the dimension considered by the
covering by words of the Lebesgue measure equals α[0,1)(N) which is the maximal solution

of det(I −Φ+
[0,1)(N; α)) = 0. In the case of [8], we get the Hausdorff dimension of C equals

the Hausdorff dimension of the measure dimµ2 using Markov property. Different from trans-
formations that we considered in [8], the induced transformation FN to [0, 1) has countably
many subintervals of monotonicity. So, what we need to show is that the Hausdorff dimen-
sion of the Lebesgue measure equals the Hausdorff dimension. What we need to show is: for
any interval J ⊂ [0, 1), we need to find a constant K+ = K+(α,N) such that there exists

a covering {〈wj 〉} of J ∩ C+
N [0, 1) by words with

∑ |〈wj 〉|α < K+|J |α for α > α[0,1)(N).
Here |J | stands for the Lebesgue measure of J . If we can find such a constant K+ for any

covering {Ji} of C+
N [0, 1) by intervals, we can take {〈wij 〉} such that

1.
⋃
j 〈wij 〉 ⊃ Ji ∩ C+

N [0, 1),

2.
∑
i,j |〈wij 〉|α < K+∑

i |Ji |α
This leads to the conclusion that dimH C

+
N [0, 1) ≥ α[0,1)(N), and we get the proof of

the lemma.
Now we will determine a constant K+. For a fixed interval J , we take words with the

minimal length which are completely contained in J . Let a1 · · · an be one of them. Next if
J �⊂ 〈a1 · · · an−1〉, we choose a word with minimal length which are completely contained in
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︸ ︷︷ ︸
J

〈a1···an−1〉︷ ︸︸ ︷
︸ ︷︷ ︸

〈a1···an〉 ︸ ︷︷ ︸
〈a1···(an+1)〉

︸ ︷︷ ︸
〈a1···(an+2)〉︸ ︷︷ ︸

〈a1···(an+3)〉

〈b1···bm−1〉︷ ︸︸ ︷
︸ ︷︷ ︸
〈b1···bm〉︸ ︷︷ ︸

〈b1···(bm−1)〉

︸ ︷︷ ︸
〈b1···(bm−2)〉︸ ︷︷ ︸

〈b1···(bm−3)〉

FIGURE 4. Covering of J .

J\〈a1 · · · an−1〉. Let b1 · · · bm be one of them. Each symbol connects to 4 symbols, for exam-
ple, +0 connects to +0, 1, 2 and 3. So there exist at most 3 words (for example, a1 · · · an−1an,
a1 · · · an−1(an+1) and a1 · · · an−1(an+2)), contained in J with length n andm, respectively.
We can choose another at most 2 words which intersect with J , and those 8 words cover J
(see Figure 4). For each one of these 8 words, if it contains a symbol with negative integers
including −0, we need not use them to cover J ∩ C+

N [0, 1). If it ends with the symbol either

+0 or +1, this word corresponds also to a word in the sense of C+
N [0, 1). If it ends with the

positive integer +2k or +(2k + 1) greater than +1, we need to use them with words in the
sense of C+

N [0, 1).
We need another notation. Let ψ[N,k)(α) be a sum corresponding to words starting from

〈+2k〉 or 〈+(2k + 1)〉, going at most 2N + 1 and going back to +0 or 1. Then ψN(α) can be
divided as follows:

1. words which do not reach 〈+2k〉 or 〈+(2k + 1)〉,
2. words which reach 〈+2k〉 or 〈+(2k + 1)〉, and go back to 〈+0〉 or 〈+1〉.

The sum of the first one equalsψk−1(α). To reach 〈+2k〉 or 〈+(2k+ 1)〉, first start from 〈+0〉
or 〈+1〉, then reach 〈+2〉 or 〈+3〉, stay for a while at 〈+2〉 or 〈+3〉, then go to 〈+4〉 or 〈+5〉,
stay for a while 〈+2〉 ∪ 〈+3〉 ∪ 〈+4〉 ∪ 〈+5〉, then go to 〈+6〉 or 〈+7〉, and so on. Thus the
second term must be

pα
1

1 − pα − qα
pα

1

1 − pα − qα − ψ1(α)
· · ·

pα
1

1 − pα − qα − ψk−2(α)
pαψ[N,k](α)

= pα

(qα)k−1ψ1(α) · · ·ψk−1(α)ψ[N,k](α) .

Hence,

ψ[N,k](α) = (qα)k−1

pα

ψN(α)− ψk−1(α)

ψ1(α) · · ·ψk−1(α)
. (4)
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Recall

ψm(α) = pαqα

1 − pα − qα − ψm−1(α)
.

Thus

ψm−1(α) = 1 − pα − qα − pαqα

ψm(α)
.

Therefore for m > n

ψm(α)− ψn(α) = ψm(α)ψn(α)(ψm−1(α)− ψn−1(α))

pαqα
.

Substituting this to (4), we get

ψ[N,k](α) = 1

(pα)k
ψN(α) · · ·ψN−k+1(α) .

For fixed N , put

K ′ = max
k=1,··· ,N

{
1

(pα)k
ψN (α) · · ·ψN−k+1(α)

}
< ∞ .

Thus, the sum of words which do not start from [0, 1) are less than K ′|J |. Summing up all
these and takingK+ = 8K ′α , we get

∑
i,j

|〈wij 〉|α < K+∑
i

|Ji |α .

This proves the lemma. The proof of the second assertion is just the same as above. �

LEMMA 4. dimH CN = dimH CN(−1, 1).

PROOF. In the above equation (3) in Lemma 2, the left-hand side is a polynomial of
pα and qα, and the right-hand side is the factorization into the rational expression. By the
Perron-Frobenius’ Theorem, the maximal zero of the left-hand side is simple, so it is not the
zero of Φ+

[0,1)(k; α) (0 ≤ k ≤ N − 1). Therefore it is the zero of Φ(−1,1)(N; α). If this

zero of Φ(−1,1)(N; α) is the diverging point of Φ+
[0,1)(k; α), by the same reason, this zero

is not simple. This shows the maximal zero of the equation (3) is the maximal zero of the
Φ(−1,1)(N; α). This proves the lemma. �
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4. Eigenvectors

In this section, we consider the conditions that Φ(N; α) has an eigenvalue equal to 1.
From the equation

Φ(N; α)x = x, x =




x−2N−1

x−2N
...

x−1

x−0

x+0
...

x2N+1



,

we get the following equations.

x2N+1 = qαx2N−2 + qαx2N−1 + qαx2N + qαx2N+1 , (5)

x2N = pαx2N + pαx2N+1 , (6)

x2N−2 = pαx2N−2 + pαx2N−1 + pαx2N + pαx2N+1 , (7)

...

x1 = qαx−1 + qαx−0 + qαx+0 + qαx1 , (8)

x+0 = pαx+0 + pαx1 ,

x−0 = pαx−0 + pαx−1 ,

x−1 = qαx−1 + qαx−0 + qαx+0 + qαx1 , (9)

...

x−2N = pαx−2N + pαx−2N−1 ,

x−2N−1 = qαx−2N+2 + qαx−2N+1 + qαx−2N + qαx−2N−1 ,

By (8) and (9), we get

x1 = qαx−1 + qαx−0 + qαx0 + qαx1 = x−1 . (10)

From the Perron-Frobenius’ theorem, the maximal eigenvalue is simple, so we get xk = x−k
for 0 ≤ k ≤ 2N + 1. By (6), we get some constant K for which(

x2N

x2N+1

)
=
(

pα

1 − pα

)
K ,

and by (10) (
1 − 2qα

2qα

)
=
(
x0

x1

)
.
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By (5) and (7), we get (
x2N−2

x2N−1

)
= A

(
x2N

x2N+1

)
,

where

A =
(

0 pα

qα

−1 1−pα−qα
qα

)
.

Thus, we can inductively get(
x0

x1

)
= AN

(
x2N

x2N+1

)
= AN

(
pα

1 − pα

)
K . (11)

Note that

(
pα

1 − pα

)
is not an eigenvector of A. It is because if

(
pα

1 − pα

)
is an eigen-

vector of A then

pα(1 − pα)

qα
= λpα ,

−pα + (1 − pα − qα)(1 − pα)

qα
= λ(1 − pα) .

So

(1 − pα)

qα
= λ = − pα

1 − pα
+ (1 − pα − qα)

qα
.

Therefore, we get

(1 − pα)2 = −pαqα + (1 − pα − qα)(1 − pα) .

This leads to the conclusion that q = 0, and this is the contradiction.
As in the above observation, the eigenvector associated with the eigenvalue 1 ofΦ(N; α)

can be expressed by two eigenvalues of A. Note here

det(λI − A) = λ2 − 1 − pα − qα

qα
λ+ pα

qα
.

Then, the eigenvalues of A are

λ± = 1 − pα − qα ± √
D(α)

2qα
,

and the eigenvectors of A with respect to λ± are

v± =
(

1 − pα − qα ∓ √
D(α)

2qα

)
,
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respectively. Let us decompose

(
pα

1 − pα

)
K to eigenvectors of A:

(
pα

1 − pα

)
= a+

(
1 − pα − qα − √

D(α)

2qα

)
− a−

(
1 − pα − qα + √

D(α)

2qα

)
,

where

a± = 1 − pα + qα ± √
D(α)

4
√
D(α)

· 2pα

1 − pα − qα ∓ √
D(α)

,

Then we get an expression: (
x0

x1

)
= (a+λN+v+ − a−λN−v−)K .

LEMMA 5. If p > q (p + q = 1
2 , 0 < q < 1

2 ), then α0 ≤ αD .

PROOF. Note first 1 − 2qα > 0. Otherwise, either x0 or x1 is negative. If α > αD ,
D(α) is positive, therefore the eigenvalues λ± are positive, and λ+λ− > 1. Then, we get(

1 − 2qα

2qα

)
=
(
x0

x1

)

= λN+a+
(

1 − pα − qα + √
D(α)

2qα

)
K − λN−a−

(
1 − pα − qα − √

D(α)

2qα

)
K .

Thus we get

1 − 2qα

2qα
= λN+a+(1 − pα − qα − √

D(α))− λN−a−(1 − pα − qα + √
D(α))

(λN+a+ − λN−a−)2qα
.

Therefore,

1 − 2qα = a+
a+ − (λ−/λ+)Na−

(1 − pα − qα −√
D(α))

−
(
λ−
λ+

)N
a−

a+ − (λ−/λ+)Na−
(1 − pα − qα +√

D(α)) .

Hence

pα − qα = −√D(α) +
(
λ−
λ+

)N
a−
a+
(−pα + qα +√

D(α)) . (12)

If N is sufficiently large, this contradicts the assumption p > q . Thus if α > αD , Φ(N; α)
cannot have an eigenvalue equal to 1. Assume that α0 > αD , then there exists sufficiently
large N such that αN > αD , and for this N , D(α) > 0. This is the contradiction. Therefore
we get αN ≤ αD for all N , that is, α0 ≤ αD . �
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LEMMA 6. α0 ≥ αD.

PROOF. Note that by Perron-Frobenius’ theorem every x0, x1, . . . , x2N+1 must be pos-
itive, and that λ± and a± are complex conjugates, respectively. Thus the argument of λ+
must be in [0, π

2N ]. When N goes to infinity, the argument converges to 0. This means that
D(α) = 0 at α = α0. This proves αD ≤ α0. �

Combining Lemma 5 and Lemma 6, we get αD = α0. This says dimH C ≥ α0 = αD .

5. Covering of C

In the previous section, we see dimH C ≥ α0. Our final purpose is to show that α0

is equal to dimH C. To show this, we consider a certain δ-covering of C as follows. Let
fα(k; n)ab be a sum corresponding to words with length n, which start from a, end with b,
and there exists no symbol a in the subsequent letters from k to n− 1, that is,

fα(k; n)a,b =
∑
w

|〈w〉|α ,

where, the summation is all over the wordsw, which satisfy the above condition. {fα(k; n)a,b ;
a, b ∈ A, n ≥ k} gives a cover of C by words. Since Φ(α)n corresponds to words with length
n, the diagonal components are expressed by fα(k; n) as follows;

(Φ(α)n)a,a

= fα(k; n)a,a + fα(k; n− 1)a,aΦ(α)a,a + · · · + fα(k; k)a,a(Φ(α)n−k)a,a

=
n∑
i=k

fα(k; i)a,a(Φ(α)n−i )a,a .

Similarly, we get

(Φ(α)n)a,b

= fα(k; n)a,b + fα(k; n− 1)a,aΦ(α)a,b + · · · + fα(k; k)a,a(Φ(α)n−k)a,b

= fα(k; n)a,b +
n−1∑
i=k

fα(k; i)a,a(Φ(α)n−i )a,b .

Let

φ(α)ka,b =
∑
n≥k
(Φ(α)n)a,b , (13)

that is, φ(α)ka,b includes all words start from 〈a〉 and end with 〈b〉, and whose lengths are

longer than k. Then
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φ(α)ka,a =
∑
n≥k

n∑
i=k

fα(k; i)a,a(Φ(α)n−i )a,a

=
∞∑
i=k

∑
n≥i

fα(k; i)a,a(Φ(α)n−i )a,a

=
∞∑
i=k

fα(k; i)a,aφ(α)0a,a ,

and ∑
n≥k

fα(k; n)a,a = φ(α)ka,a

φ(α)0a,a
.

For b �= a, we get

φ(α)ka,b =
∑
n≥k

fα(k; n)a,b +
∑
n≥k

n−1∑
i=k

fα(k; i)a,a(Φ(α)n−i )a,b

=
∑
n≥k

fα(k; n)a,b +
∞∑
i=k

∑
n≥i+1

fα(k; i)a,a(Φ(α)n−i )a,b

=
∑
n≥k

fα(k; n)a,b +
∞∑
i=k

fα(k; i)a,aφ(α)0a,b .

Here note that (Φ(α)0)a,b = 0 if a �= b. Then

∑
n≥k

fα(k; n)a,b = φ(α)ka,b − φ(α)0a,b

φ(α)0a,a
φ(α)ka,a .

Thus, by (13) for fixed α, if φ(α)0a,b converges, then φ(α)ka,b converges to zero as k → ∞.

Let A1 = {−1,−0,+0,+1}. For fixed δ > 0, there exists a sufficiently large k such that
{fα(k; n)a,b; a, b ∈ A1, n ≥ k} gives a δ-covering of C[0, 1), and

∑
b∈A1

∑
n≥k

fα(k; n)a,b = φ(α)ka,a

φ(α)0a,a
+
∑
b �=a
bA1

(
φ(α)ka,b − φ(α)ka,a

φ(α)0a,a
φ(α)0a,b

)

= φ(α)ka,a +∑
b∈A1

(φ(α)ka,bφ(α)
0
a,a − φ(α)ka,aφ(α)

0
a,b)

φ(α)0a,a
(14)

covers 〈a〉.
THEOREM 1. If p > q, then the Hausdorff dimension of C equals α0 = αD . On the

contrary, if p ≤ q, then the Hausdorff dimension of C equals 1.
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PROOF. As we showed before the Hausdorff dimension of C is greater than or equal
to α0 = αD . Since dimH C = dimH C(−1, 1) by Lemma 4, instead of C, we consider the
Hausdorff dimension of C(−1, 1). By (14), a covering of C(−1, 1) is given as follows.∑

a,b∈A1

∑
n≥k

fα(k; n)a,b

=
∑
a∈A1

(
φ(α)ka,a +∑

b∈A(φ(α)ka,bφ(α)0a,a − φ(α)ka,aφ(α)
0
a,b)

φ(α)0a,a

)
. (15)

Since the summation over a and b is finite, if φ(α)0a,b converges, then (15) converges. By

Lemma 1, if α > αD = α0, then ψN(α) converges to ψ(α) = 1−pα−qα−√
D(α)

2 . Note that

1 − (pα + qα + 2ψ(α)) = √
D(α) > 0 ,

and

∑
a,b∈{0,1}

φ(α)0a,b = 1

1 − pα − qα − (1 + qα)ψ(α)
.

This shows
∑
b∈A1

φ(α)0a,b < ∞. Therefore, there exists a sequence of coverings of C, for

which the above sum converges to 0. This proves α is greater than or equal to the Hausdorff
dimension of C. Namely, the dimH C ≤ α0. This proves the first part of the theorem.

On the contrary if p ≤ q , we get by the equation (12)

2pα + 2qα = 1 .

Note 2p + 2q = 1. This shows α = 1. �

Since the transformation F depends on p, we express F = Fp. So we consider the

family of transformations {Fp| 0 < p < 1
2 }. According to Fp , we denote the corresponding

Cantor sets by Cp.

If 0 < p ≤ 1
4 , then Fp is recurrent. In this case dimH C = 1. On the contrary, if

1
4 < p < 1

2 , then Fp is transient. In this case, by the expression (2), dimH C is the solution α
of

p
α
2 +

(
1

2
− p

) α
2 = 1 .

Therefore

dα

dp
= α{pα

2 −1 − ( 1
2 − p)

α
2 −1}

p
α
2 logp + ( 1

2 − p)
α
2 log( 1

2 − p)
.
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0.1 0.2 0.3 0.4 0.5
p

0.2

0.4

0.6

0.8

1

dim C

FIGURE 5. Relation between p and dimH C.

So if p ↓ 1
4 then dα

dp
→ 0. This implies the Hausdorff dimension of Cp is differentiable at

p = 1
4 . But, as easily seen, the Hausdorff dimension ofC does not belong toC2 at p = q = 1

4 .
Summarizing the results:

THEOREM 2. The Hausdorff dimension dimH(Cp) is C1 but not C2.

The Hausdroff dimension dimH C as a function of p is shown in Figure 5.

6. Example

Let p = 1
3 and q = 1

6 . Then the Fredholm α-matrix associated with F1 equals


(
1
6

)α (
1
6

)α (
1
6

)α (
1
6

)α(
1
3

)α (
1
3

)α
0 0

0 0
(

1
3

)α (
1
3

)α(
1
6

)α (
1
6

)α (
1
6

)α (
1
6

)α


 .

In this case D(α) = 0 has the solution αD ∼ 0.97907262.
The next list shows the maximal solutions of

pα + ψN(α)+ 2qα = 1 ,

that is, the Hausdorff dimension of CN calculated by computer. For these value Φ(N; α) has
an eigenvalue 1. and the graph is the relation between p and dimH C.
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(p, q) = ( 1
3 ,

1
6 ) ( 499

1000 ,
1

1000 ) ( 26
100 ,

24
100 )

dimH CN N = 2 0.8723 0.4386 0.9221

N = 3 0.9197 0.4745 0.9592

N = 10 0.9689 0.5144 0.9944

N = 30 0.9775 0.5199 0.9989

N = 50 0.9785 0.5204 0.9993

dimH C αD 0.979073 0.5271 0.99971
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