
TOKYO J. MATH.
VOL. 26, NO. 2, 2003

Some Remarks on the Coarse Index Theorem
for Complete Riemannian Manifolds

Shingo KAMIMURA

Keio University

(Communicated by Y. Maeda)

Abstract. In this paper, we state two results on the coarse index for simple models of the coarse geometry.
The first one is a coarse index theorem on trivial bundles over even dimensional closed Riemannian manifolds. It
comes from the Poincaré duals for these base manifold in the trivial bundles. We next show some correspondence
between the generator of the coarse cohomology of Rn and the Riesz transformation on Rn.

1. Introduction

In [7] J. Roe has extended the Atiyah-Singer index theorem for closed Riemannian man-
ifolds to bounded geometry, and afterward it has been extended to arbitrary complete Rie-
mannian manifolds in [9], where J. Roe has proposed a new category, called coarse category,
whose objects consist of metric spaces. In this category any compact metric spaces are iden-
tified with the space which consists of a point. So the coarse category can be said to give a
method to classify noncompact spaces.

The coarse index theorem states that the coarse indecies of the Dirac operators on com-
plete Riemannian manifolds are invariant on the coarse category. The new category plays role
of parameter space in the coarse index theorem as if the topological or homotopical category
plays role in the Atiyah-Singer index theorem.

Once we get the coarse index theorem, we may have some questions, for example, when
the coarse indecies are computable for given complete noncompact Riemannian manifolds.
The purpose of this paper is to attempt the computation of index in the following two cases:
Dirac operators on trivial bundles over even dimensional closed Riemannian manifolds, and
for Euclidean spaces. These spaces can be regarded as toy models of the coarse geometry, and
especially for trivial bundles, various applications are expected from now on. For example,
family index theorem,G-equivariant index theorem and the gauge theory.

Let (M, g) be a complete Riemannian manifold. The basic idea to construct invariants
on the coarse category is to bound the support of functions on or kernel functions on M
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by using the Riemannian metric g . On this idea, we can obtain the two invariants in this
category. The first one arising from the functions is the coarse cohomology of M , denoted
by HX∗(M). Roughly speaking, it is a delocalized version of the Alexander-Spanier co-

homology H̄X∗(M). Recall that ([11]) the Alexander-Spanier cochains are functions ϕ :
Mq+1−→R with support in a bounded neighborhood of the multi-diagonal set diag(Mq+1).

On the other hand, the coarse cochains have supports bounded in the direction of diag(Mq+1).

So they can extend in the transeversal direction of diag(Mq+1). It is easy to find thatHX∗(M)
has various information of the infinity of M . In fact, for example, the 0-th dimensional co-
homology group detects compactness ofM and the 1-dimensional cohomology group detects
the number of ends of M . In addition to the above property, the coarse cohomology has some

interesting singularity. For example, the generator ofHX1(R), denoted by ϕg , is the cobound-
ary of Heaviside function. Strictly speaking, because Heaviside function is not a 0-th coarse
cochain , so we should say that Heaviside function is a vartual potential of ϕg . Similarly, the
generator ofHXn(Rn) is given as the n-times cup product of ϕg itself and it is deeply related
to the Riesz transformation on Rn.

From the way of its construction, we can define a canonical map from the q-dimensional
coarse cohomology group HXq(M) to the q-dimensional compactly supported Alexander-

Spanier cohomology H̄ q
c (M) by restricting the support of the coarse cochain to a bounded

neighborhood of diag(Mq+1). Composing to the isomorphism between H̄ q
c (M) andHq

dR,c(M)

the q-dimensional compactly supported de Rham cohomology, we can get the topological

character χt : HXq(M)−→H
q
dR,c(M), which contributes to the right-hand side of coarse

index theorem, i.e. the geometric part of the index thoerem.
The second one, which arises from the kernel functions, is the Roe algebra, denoted by

C∗(M), which consists of bounded integral smoothing operators A, whose support supp(kA)
are localized around diag(M×M) (we call this condition bounded propagation property of
A). Strictly speaking, it is not C∗(M) itself but the K∗-group of C∗(M), K∗(C∗(M)), that
would be the invariant in the coarse category. In the case of arbitrary closed Riemannian

manifold M and a Dirac bundle S on M , C∗(M) is nothing but K(L2(S)), all of compact

operators on L2(S). Recall that the graded Dirac heat operator εe−tD2
on even dimensional

closed Riemannian manifolds is a compact operator; in paticular it is a trace-class operator. So

εe−tD2
can be a representative of an element of K0(K(L2(S)), the K0-functor of C∗-algebra

K(L2(S)). Well known as the McKean-Singer formula ([6]), tr(εe−tD2
), the trace of εe−tD2

coinsides with the Fredholm index of D, ind(D).
But on arbitrary even dimensional complete Riemannian manifoldM ,D is not Fredholm

and εe−tD2
is not compact, in generally, of course not trace-class. Nevertheless we can show

that εe−tD2
is still an element of C∗(M) using finite propagation property of the wave Dirac

operator eitD on M ([3]). Moreover it holds the condition of a representative of an element

of K0(C
∗(M)). From the above argument, the correspondence of D with εe−tD2

could be
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thought as a canonical renormalization of D associated to εe−tx2
. In fact, εe−tx2

is a repre-
sentative of the generator of K0(C0(R)×Z2) and J. Roe has shown that such correspondence
is nothing but a functional calculus map ρ : C0(R)×Z2 → C∗(M) ([9]). Here, C0(R) is
all of continuous functions on R vanishing at infinity and Z2 is the cyclic group of degree 2
including ε as the nontrivial elememt and × means the C∗-crossed product. Similarly, we can
define c-ind(D) for odd dimensional complete Riemannian manifolds by plugging D in the
generator of K1(C0(R)). Then c-ind(D) can be obtained as a representative of an element
K1(C

∗(M)).
In formulating the coarse index theorem, it is a serious problem for us how to get the an-

alytic index from ρ(D), because ρ(D) is no longer a trace-class operator. For such difficulty,
the Connes’ cyclic theory would give a strong prescription to us ([4]). He has proposed the
cyclic cocycle as a generalization of the ordinary trace for operators. His basic idea is that
we should regard the trace of operators simply as a multi-linear functional with some cyclic
condition.

On complete noncompact Riemannian manifolds, c-ind(D) can be thought to have some
information of infinity of M . So we must take the cyclic cocycle associated to the coarse
cochains ofM . In fact, we will define the cyclic character χc fromHXq(M) toHCq(C∗(M))
the q-dimensional cyclic cohomology of C∗(M). And then, for arbitrary q-dimensional
coarse cochain ϕ ∈ HXq(M) we define the analytic index of D associated to ϕ putting c-
indϕ(D) := 〈c-ind(D), χc(ϕ)〉, where 〈, 〉 means Connes’ pairing.

The coarse index seems a natural generalization of the usual index, in the sense that these
coinside for the case of closed Riemannian manifolds.

This paper is organized as follows. In the section 1, we describe the main results by
giving some comments. The section 2 is devoted to the brief introduction to the coarse ge-
ometry. In the section 3, We give the proof of the index theorem for the trivial bundles over
even dimensional compact manifolds. In the section 4, we compute the coarse index for the
Euclidean spaces using a correspondence between the generator of HXn(Rn) and the Riesz
transformation on Rn through a Fredholm module on C∗(Rn).

1.1. Statement of results

THEOREM 1.1.1 (coarse index theorem for trivial bundles). Let N be an even dimen-
sional closed Riemannian manifold, M = N × Rr be a trivial bundle over N, DM and DN
be Dirac operators onM and N respectively. Then we have

c-indϕpd(N) (DM) = cr ind(DN) ,

where ϕpd(N) is the r-dimensional coarse cohomology class ofM determined by the Poincaré
dual pd(N) of N in M . The right-hand side of the above equation is the ordinary Fredholm
index of DN and cr is the constant depending only on r given as follows:
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cr =


(r/2)!

r!(2πi)r/2 , for even-dimensional M ,

{(r + 1)/2}!
r!(2πi)(r+1)/2

, for odd-dimensional M .

Theorem 1.1.1 states that by measuring c-ind(DM) by the cyclic cocycle arising from the
Poincaré dual of N in M , we can take the ordinary Fredholm index of DN out of c-ind(DM).
By looking into the contribution of the rank of the trivial bundle to the constant in the above
theorem, we have got a little more interesting result as follows.

THEOREM 1.1.2 (coarse index for Rn). Put F := ∑
cjRj , where Rj are the Riesz

transformations on L2(Rn) and cj the canonical Clifford actions on Rn and let ϕg be the
generator of HXn(Rn), then

c-indϕg (DRn) = 〈τσ(F ), ρ(DRn )〉 = Cn

where τσ(F ) is a canonical cyclic cocycle for Fredholm module (C∗(Rn), F,L2(Rn)) and Cn
is the constant appeared in the previous theorem.

This theorem indicates that there is a natural correspondence between the generator of

HXn(Rn) and the total Riesz transformation on L2(Rn).

2. Coarse geometry

In this section, we give a brief review of the coarse geometry given by J. Roe [9, 10].
We, however, give a slightly different definition of coarse index from Roe’s one, though they
are equivarent. We first introduce coarse category, in which the most remarkable fact is that
every compact space has the same coarse type to a point, in other words, any compact spaces
are trivial, and noncompact complete Riemannian manifolds have a nontrivial coarse struc-
ture in general. We next give two invariants on coarse spaces. The first is an algebra on
complete Riemannian manifolds, called coarse C∗-algebra, consist of all bounded integral
operators with finite propagation speed (strictly speaking, we must take the C∗-crosure of the
above algebra and farthermore take the K-groups of it.), and the second is a cohomology on
complete Riemannian manifolds, called coarse cohomology. Roughly speaking, it consists
of Alexander-Spanier cochains which become non-acyclic because of the metric structure of
complete Riemannian manifolds and we can calcurate it taking coarser cover of complete

Riemannian manifolds as its Čech homology. The last subsection, we discribe a index the-
orem on complete Riemannian manifolds, called coarse index theorem, which is a natural
generalization of the Atiyah-Singer index theorem for compact Riemannian manifolds.
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2.1. Coarse structure

DEFINITION 2.1.1 (coarse map). Let (X, dX) and (Y, dY ) be metric spaces. A map
f : X → Y , not necessarily continuous, will be called a coarse map if
(a) (Uniform expansiveness) For every r > 0, there exists s > 0 such that

∀x, x ′ ∈ X, dX(x, x ′) < r ⇒ dY (f (x), f (x
′)) < s .

(b) (Metric properness) For each bounded setB ⊆ Y , the inverse image f−1(B) is bounded
in X.

REMARK 2.1.2. For any continuous maps between proper metric spaces, where any
bounded closed subsets are compact, metric properness is equivalent to ordinary properness.
In paticuler, any complete Riemannian manifolds are proper metric spaces.

DEFINITION 2.1.3 (coarse equivalence). Two coarse maps f0, f1 : X → Y are coarsely
equivalent (f0 ∼ f1), if there exists a constantK such that

d(f0(x), f1(x)) ≤ K

for all x ∈ X.

DEFINITION 2.1.4 (coarse type). Two metric spaces have the same coarse type (X ∼=
Y ), if there exist coarse maps f : X → Y, g : Y → X such that

g ◦ f ∼ idX and f ◦ g ∼ idY .

EXAMPLE 2.1.5. Every compact metric spaces has the same coarse type to a point.

2.2. Roe algebra and functional calculus map. To define the index of Dirac oper-
ators on any complete Riemannian manifolds, which are not Fredholm in general, we first
introduce the Roe algebra as a reciever of the index of Dirac operators, whose K∗-groups are
invariant on coarse category.

DEFINITION 2.2.1 (Roe algebra). Let M be a complete Riemannian manifold, S be a

Hermitian vector bundle over M, and L2(M, S) be all of L2-sections of S. We define the
Roe algebra of M , denoted by C∗(M), as follows: C∗(M) is the C∗-closure of Cont(M),
which consists of all bounded integral operators A on L2(M, S) whose kernel is smooth
and the support of whose kernel is within a R-neighborhood of the diagonal set of M × M ,

NR(diag(M2)). We call such operators A a controlled operator.

REMARK 2.2.2 (compact case). If M is a compact Riemannian manifold, C∗(M) is
nothing but K(L2(M, S)), the C∗-algebra consisting of all compact operators on L2(M, S).

To define some functional calculus map, we use the following fact, which is well-known
as finite propagation speed of the wave operator on complete Riemannian manifolds:

LEMMA 2.2.3 (finite propagation speed [3]). Let M be a complete Riemannian mani-
fold, S be a Dirac bundle over M , and D be a Dirac operator on S. Then there exists a
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constant c such that for all s ∈ C∞
c (S),

supp(eitDs) ⊂ Nc|t |(supp(s)) ,

where C∞
c (S) is all of compactly supported sections in S and supp(s) is the support of s.

Using Lemma 2.2.3 , we can get the following functional calculus map.

PROPOSITION 2.2.4 (odd case ([9])). There exists a unique C∗-homomorphism ρodd,

ρodd : C0(R) → C∗(M)

such that for all f ∈ S(R),

ρodd(f ) := f (D) =
∫

R
f̂ (t)eitDdt ,

where C0(R) is all of continuous functions on R vanishing at infinity and S(R) is functions
of Schwartz class. We also denote the lift of the above C∗-homomorphism to its K-theory by
ρodd .

OBSERVATION 2.2.5. If the dimension ofM is even, there naturaly exists a Z2-grading

operator ε on L2(M, S) such thatDε+εD = 0. On the other hand, we can consider that the
cyclic group Z2 = {e, ε} of order 2 acts on R such that for all x ∈ R, αe(x) = x, αε(x) = −x.
Moreover, this action naturaly lift up toC0(R),which is a function algebra on R. So replacing
C0(R) to C∗- crossed product C0(R) ×α Z2, we define the coarse index homomorphism in
even case as follows, which is slightly different from the original one [10, 11].

PROPOSITION 2.2.6 (even case ([7])). There exists a unique C∗-homomorphism ρeven,

ρeven : C0(R)×α Z2 → C∗(M)

such that for all fe, fε ∈ S(R),
ρeven(feUe + fεUε) := fe(D)ρeven(Ue)+ fε(D)ρeven(Uε)

= fe(D)e + fε(D)ε ,

where e =
(

1 0
0 1

)
, ε =

(
1 0
0 −1

)
andUe andUε are corresponding unitary operators

for e and ε, respectively.

Using the above functional calculus map, we now define the coarse index ofD.

DEFINITION 2.2.7 (coarse index). Let Pg be a generator of K0(C0(R)×α Z2) and Ug

be a generator of K1(C0(R)). Then we define the coarse index ofD as follows.

c-ind(D) :=
{
ρeven(Pg ) ∈ K0(C

∗(M))
ρodd(Ug) ∈ K1(C

∗(M)) .
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REMARK 2.2.8 (generator). The above generators, for example, can be concretely de-

scribed as follows: For a projection 1
1+x2

(
1 x

x x2

)
−
(

0 0
0 1

)
in C0(R)×α Z2,

Pg :=
[

1

1 + x2

(
1 x

x x2

)
−
(

0 0
0 1

)]
∈ K0(C0(R)×α Z2) ,

and for a unitary x+i
x−i − 1 in C0(R),

Ug :=
[
x + i

x − i
− 1

]
∈ K1(C0(R)) .

Geometrically, if we regard x as a linear map on R, 1
1+x2

(
1 x

x x2

)
is just the graph pro-

jection of x on R × R. And x+i
x−i is just the Cayley map from R to C, whose mapping degree

is +1.

2.3. Coarse cohomology and character map

DEFINITION 2.3.1 (coarse cohomology). Let M be a metric spaces. The coarse com-
plex (CXq(M), δ) is defined as follows: CXq(M) is the space of locally bounded functions

ϕ : Mq+1 → R which satisfy the following support conditions: for each R > 0, the set

supp(ϕ) ∩NR(diag(Mq+1))

is relatively compact in Mq+1. And δ is defined as the usual coboundary map of Alexander-
Spanier cohomology [11], that is

(δϕ)(x0, · · · , xq+1) =
q+1∑
j=0

(−1)jϕ(x0, · · · , x̂j , · · · , xq+1) .

Then we define the coarse cohomologyHX∗(M) to be the cohomology of the above complex.

REMARK 2.3.2. It is known that the coarse complex is replaced by the subcomplex
consisting of all continuous functions, or all of smooth functions, if M is a smooth manifold.
We can see in [5, 9] that these replacements dose not change the cohomology with coefficients
in the constant sheaf R.

DEFINITION 2.3.3 (cup product [9]). For any ϕ ∈ CXp(M) and ψ ∈ CXq(N), we
define a cup product of them ϕ ∪ ψ ∈ CXp+q (M × N) as follows:

(ϕ ∪ ψ)((x0, y0), · · · , (xp+q, yp+q)) := ϕ(x0, · · · , xp)ψ(xp, · · · , xp+q) .

This definition is indused from a natural cup product of Alexander-Spanier cochains ([11])
and it passes to a product on cohomology.
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It is a well-known fact [11] in algebraic topology that the compactly supported de Rham
cohomology group H ∗

dR,c(M) is naturally isomorphic to the compactly supported Alexander-

Spanier cohomology group H̄ ∗
c (M). Using this fact, we can transrate the delocalized infor-

mation HX∗(M) into the local one H ∗
dR,c(M) as follows:

DEFINITION 2.3.4 (topological character). We define the homomorphism χt ,

χt : HXq(M) −→H
q
dR,c(M) ,

by sending

ϕ∈CXq(M) �−→χt (ϕ) := ϕ|NR(diag(Mq+1)) ∈ C̄qc (M) ,
where R > 0 is an arbitrary real number and C̄qc (M) is compactly supported Alexander-
Spanier cochain group. We call χt the topological character.

Now we define the character valued in the cyclic cohomology (see [4]) of the coarse
C∗-algebra HC∗(C∗(M)). Using this character, we can measure the coarse index.

DEFINITION 2.3.5 (cyclic character). We define the homomorphism χc,

χc : HXq(M) −→HCq(C∗(M)) ,

by sending

ϕ∈CXq(M) �−→χc(ϕ)∈CCq(C∗(M))

such that

χc(ϕ)(A0, · · · , Aq) :=
∫
Mq+1

kA0(x0, x1) · · · kAq (xq, x0)ϕ(x0, · · ·, xq)dx0 · · · dxq ,

where CCq(C∗(M)) is the cyclic cochain group. We call χc cyclic character. Considering
the support conditions of kAj and ϕ, we can easily understand the well-defindness of the above
integration.

REMARK 2.3.6 (ϕ-coarse index). Evaluating c − ind(D) with χc(ϕ), we can get the
coarse index of Dirac operators on complete Riemannian manifolds associated ϕ, i.e. as [4]
we define the pairing

c-indϕ(D) := 〈c-ind(D), χc(ϕ)〉.

2.4. Coarse index theorem. Now we discribe the coarse index theorem by J. Roe.
The key of this theorem is the localization of index theorem by Connes and Moscovici [5]:

THEOREM 2.4.1 (coarse index theorem). Let M be a complete Riemannian manifold,
D a Dirac operator on M and ϕ be a q-th coarse cohomology class of M . Then,

c-indϕ(D) = cq〈χt (ϕ) ∪ ch(σ(D)) ∪ td(M), [M]〉 ,
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where ch(σ(D)) is the Chern character of the principal symbol ofD, td(M) and [M] are the
Todd class and the fundamental homology class of M, respectively. Here, cq is the constant
depending only on q giving as follows,

cq =


(q/2)!

q!(2πi)q/2 , for dim M even ,

{(q + 1)/2}!
q!(2πi)(q+1)/2

, for dim M odd .

3. Coarse index theorem for trivial bundles

In this section, we prove the coarse index theorem for trivial bundles over even dimen-
sional closed Riemannian manifolds. The result can be seen very natural as follows.

3.1. Coarse cocycle determined by Poincaré dual. In Theorem 1.1.1, ϕpd(N) is the
r-dimensional coarse cohomology class inHXr(M) determined by the Poincaré dual ofN in
M . In this subsection, we see how ϕpd(N) is determined by pd(N) by showing the following
lemma.

LEMMA 3.1.1. Let M be a complete Riemannian manifold as in Theorem 1.1.1. Then
the topological character,

χt : HXr(M)−→Hr
dR,c(M)

is an isomorphism. In particular, χt (ϕpd(N)) = pd(N).

PROOF. Computation forHXr(M): By Example 2.1.5,

N ∼= {pt} .
So,

HXr(M) = HXr(N × Rr )
∼= HXr({pt} × Rr )
∼= HXr(Rr )

= R .

The last equation can be refered to [9].
Computaion for Hr

dR,c(M): By Poincaré lemma for trivial bundles (for example, see [2]),

H
q
dR,c(N × Rr ) ∼= H

q−r
dR,c(N) .

Using this fact,

Hr
dR,c(M) = Hr

dR,c(N × Rr )
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∼= H 0
dR,c(N)

= R .

Thus

dim(HXr(M)) = dim(H r
dR,c(M)) .

On the other hand, χt is clearly surjective by the definition. So the result follows.

3.2. Proof of Theorem 1.1.1. By Theorem 2.4.1 and Lemma 3.1.1

c-indϕpd(N) (DM) :=
〈ρ(DM), χc(ϕpd(N))〉 = cq〈χt (ϕpd(N)) ∪ ch(σ(DM)) ∪ td(M), [M]〉

= cq〈pd(N) ∪ ch(σ(DM)) ∪ td(M), [M]〉
Using the fact ϕpd(N) is Poincaré dual to N ,

cq〈χt (ϕpd(N)) ∪ ch(σ(DM)) ∪ td(M), [M]〉 = cq〈ch(σ(DM)) ∪ td(M), [N]〉 .
However, the restriction of ch(σ(DM)) ∪ td(M) to N is just ch(σ(DN)) ∪ td(N), because
of the fact that the normal bundle to N in M is trivial, so that td(M)|N is the same as td(N).
Thus,

cq〈ch(σ(DM)) ∪ td(M), [N]〉 = cq〈ch(DN) ∪ td(N), [N]〉
= cq ind(DN) .

This completes the proof of lemma.

COROLLARY 3.2.1 (index theorem for splitting manifolds). In Theorem 1.1.1, if we put
r = 1, then we can get the index theorem for splitting manifolds by J. Roe [8]. So, we can see
that Theorem 1.1.1 gives a generalization of the case of splitting manifolds.

4. Coarse indices for Rn

Let ϕg be a generator of coarse cohomology group of R. In this section we show that

χc(ϕg ) gives a self-adjoint involution on L2(R), therefor, gives a one-summable Fredholm
module of Cont(R). Farthermore the self-adjoint involution determined by ϕg is nothing but
the Hilbert transformation with the canonical Clifford action on R. So we can consider that
the generator of coarse cohomology group of R properly correspond to a operator on L2(R).

The methods used to prove the theorem for the case of Rn are almost same as the 1-
dimensional case. So, we will give a detail proof for the case of R.
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4.1. Generator of HX1(R) and Hilbert transformation

LEMMA 4.1.1 (generator of HX1(Rn)). A generator of HX1(Rn) can be written as
follows.

ϕg(x0, x1) =


0, for x0geq0, x1geq0
1, for x0 < 0, x1 > 0
0, for x0 ≤ 0, x1 ≤ 0

−1, for x0 > 0, x1 < 0 .

PROOF. We first calcurate BX1(R), the 1-st coarse coboundary group for R. Let ϕ ∈
CX0(R) = C∞

c (R) (the forward equation follows from Definition 2.3.1, Remark 2.3.2), then

(δϕ)(x0, x1) = ϕ(x1)− ϕ(x0) .

Thus ∂ϕ ∈ BX1(R) is a anti-symmetric function. We next calcurate ZX1(R), the 1-st coarse
cocycle group. For φ ∈ ZX1(R),

(∂φ)(x0, x1, x2) = φ(x1, x2)− φ(x0, x2)+ φ(x0, x1)

= 0 ,

(δφ)(x1, x0, x2) = φ(x0, x2)− φ(x1, x2)+ φ(x1, x0)

= 0 .

By adding above two equation, we obtain

φ(x0, x1)+ φ(x1, x0) = 0 .

So, φ is also a anti-symmetric function, i.e.

HX1(R) := ZX1(R)/BX1(R)

= R .

So the result follows.

REMARK 4.1.2 (virtual potential). Let h(x) be the Heaviside function. Then we can

describe ϕg , a generator of HX1(R) as follows, although h(x) itself is not a 0-th coarse
cochain.

ϕg (x0, x1) = (δh)(x0, x1) .

Let H be the Hilbert transformation on R, namely, for f (x)∈L2(R),

(Hf )(x) := lim
ε↓0

1√−1π

∫
|x−y|>ε

f (y)

x − y
dy ,

H is a self-adjoint involutive bounded linear operator on L2(R) and its symbol σ(H) is
sgn(ξ) = ξ/|ξ | ([12]). If we put F := sgn(DR) using the spectral theorem for self-adjoint
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operators, we can consider a one-summable Fredholm module (Cont (R), L2(R), σ (F )) by

following [4]. And its associated cyclic cocycle τσ(F ) ∈ HC1(Cont (R)) is given by

τσ(F )(A0, A1) := 1

4
Tr(σ (F )[σ(F ),A0][σ(F ),A1]) ,

where A0, A1 ∈ Cont(R).
LEMMA 4.1.3. Let χc(ϕg) be the cyclic character of ϕg , a generator of HX1(R) and

τσ(F ) as above. Then,

χc(ϕg) = τσ(F ) .

PROOF. We may calcurate the integration of kσ(F )[σ(F ),A0][σ(F ),A1] on diag(R×R) in-
stead of Tr(σ (F )[σ(F ),A0][σ(F ),A1]).

kσ(F )[σ(F ),A0](x0, x1) = σ(F )(x0){σ(F )(x0)kA0(x0, x1)− kA0(x0, x1)σ (F )(x1)}
= kA0(x0, x1)− σ(F )(x0)kA0(x0, x1)σ (F )(x1)

k[σ(F ),A1](x1, x2) = σ(F )(x1)kA1(x1, x2)− kA1(x1, x2)σ (F )(x2) .

Now, the composite kernel of the above two integral kernels is given as follows:

kσ(F )[σ(F ),A0][σ(F ),A1](x0, x2) =
∫
kσ(F )[σ(F ),A0](x0, x1)k[σ(F ),A1](x1, x2)dx1 .

But what we need is the integration on the diagonal set. Putting x2 = x0. Namely,

kσ(F )[σ(F ),A0][σ(F ),A1](x0, x0) =
∫

{kA0(x0, x1)

−σ(F )(x0)kA0(x0, x1)σ (F )(x1)}
×{σ(F )(x1)kA1(x1, x0)

−kA1(x1, x0)σ (F )(x0)}dx1

=
∫
kA0(x0, x1)kA1(x1, x0) · 2{σ(F )(x1)

−σ(F )(x0)}dx1

=
∫
kA0(x0, x1)kA1(x1, x0) · 2 · 2ϕg(x0, x1)dx1

= 4
∫
kA0(x0, x1)kA1(x1, x0)ϕg(x0, x1)dx1 .

Thus,

Tr(σ (F )[σ(F ),A0][σ(F ),A1]) =
∫
kσ(F )[σ(F ),A0][σ(F ),A1](x0, x0)dx0

= 4
∫
kA0(x0, x1)kA1(x1, x0)ϕg(x0, x1)dx0dx1 .
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Finally

τσ(F )(A0, A1) = 1

4
Tr(σ (F )[σ(F ),A0][σ(F ),A1])

=
∫
kA0(x0, x1)kA1(x1, x0)ϕg(x0, x1)dx0dx1

= χc(ϕg)(A0, A1) .

4.2. Proof of Theorem 1.1.2

〈c-ind(DR), χ
c(ϕg)〉 = 〈c-ind(DR), τσ(F )〉

([4.1.3])

= 〈(c-ind(DR))
∧, (τσ(F ))∧〉

(taking Fourier transform)

= 1

4
Tr

(
F

[
F,
ξ − i

ξ + i
− 1

][
F,
ξ + 1

ξ − 1
− 1

])
([4])

= 1

4
Tr

(
F

[
F,

−2i

ξ + i

] [
F,

2i

ξ − i

])

We think 2i/(ξ− i) and −2i/(ξ+ i)multiplication operatorsM andM−1, respectively. Since

k[F,M−1](ξ, η) = 2

π

1

(ξ + i)(η + i)

k[F,M](η, ζ ) = −2

π

1

(η − i)(ζ − i)
,

k[F,M−1][F,M](ξ, ζ ) =
∫
k[F,M−1](ξ, η)k[F,M](η, ζ )dη

= − 4

π2

1

(ξ + i)(ζ − i)

∫
1

η2 + 1
dη

= − 4

π2

1

(ξ + 1)(ζ − 1)
· π

= − 4

π

1

(ξ + 1)(ζ − 1)
.

So

kF [F,M−1][F,M](ω, ζ ) =
∫
kF (ω, ξ)k[F,M−1][F,M](ξ, ζ )dξ
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= − 4i

π2

1

ζ − i

∫
1

(ω − ξ)

1

(ξ + i)
dξ

= − 4i

π2

1

ζ − i

πi

ω + i

(Cauchy’s p.v.)

= 4

π

1

ω + 1

1

ζ − i
.

Finally,

1

4
Tr(F [F,M−1][F,M]) = 1

4

∫
kF [F,M−1][F,M](ζ, ζ )dζ

= 1

π

∫
1

ζ 2 + 1
dζ

= 1

π
· π

= 1 .

This completes the proof.

4.3. Generator ofHXn(Rn) and Riesz transformation. We can similarly show that
χt : HXr(Rr )→ Hr

dR,c(R
r ) gives an isomorphism as groups. Moreover, there is an isomor-

phism as rings w.r.t. the cup product in HXr(Rr ) described as in Definition 2.3.3. So, the
generator of HXr(Rr ) is given as the r-times cup product of the generator of HX1(R).

Let Rj be the Riesz transformation on L2(Rn).

(Rjf )(x) := lim
ε↓0

2√−1vol(Sn)

∫
|x−y|>ε

|xj − yj |
|x − y|n+1

f (y)dy ,

where vol(Sn) = 2π(n+1)/2/gamma((n + 1)/2). The Riesz operator satisfies the following
well-known facts (see, for example, [12]).

PROPOSITION 4.3.1 (Fourier transform). Let̂denote the Fourier transformation. Then,

R̂jf (ξ) = ξj

|ξ | f̂ (ξ)
(
σ(Rj ) = ξj

|ξ |
)
.

So, the Rj are selfadjoint operators of norm 1 that commute with translations. Moreover,

n∑
j=1

R2
j = 1 .

Using this property, we can define the symmetry of our Fredholm module.
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PROPOSITION 4.3.2 (Symmetry). Put

F := sgn(DRn ) =
n∑
j=1

gamma(n)j Rj , DRn =
n∑
j=1

gamma(n)j (−i) ∂
∂xj

on L2(Rn)⊗C[n/2]. Here [ ] means to take the integer part of real number. Then

F = F ∗, F 2 = 1

(i.e., F is a symmetry operator), where gamma(n)1 , · · ·, gamma(n)n are 2[n/2]×2[n/2]-matrices
satisfying the Clifford relations.

Put ν = 2[n/2]. To be specific we choose the following representation for the gamma-
matrices:

For n = 1, we have ν = 1 and

gamma(1)1 := 11×1 .

For all odd n we define inductively

gamma(n+2)
j :=

(
0ν×ν gamma(n)j

gamma(n)j 0ν×ν

)
for j = 1, . . ., n ,

gamma(n+2)
n+1 :=

(
0ν×ν −i1ν×ν
i1ν×ν 0ν×ν

)
, gamma(n+2)

n+2 :=
(

1ν×ν 0ν×ν
0ν×ν −1ν×ν

)
.

For all even n we choose

gamma(n)j := gamma(n+1)
j for j = 1, . . ., n+ 1 .

4.4. Proof of Theorem 1.1.2. Let B be the subalgebra of C∗(Rn) consisting of all
translation invariant smoothing operators. Since DRn is translation invariant, c-ind(DRn) can
be thought as an element of K∗(B). In other words, B = Cc(Rn; gl(2[n/2],C)), the algebra
of all compactly supported smooth functions from Rn to the Clifford algebra of Rn, which is

a dense subalgebra of C = C0(Rn; gl(2[n/2],C)). And let ψg and ωg be the generators of
HXn(Rn) and Hn

dR,c(R
n), respectively. One can see the following relation between ψg and

ωg .

ψg (x0, · · ·, xn) =
∫
∆n(x0,···,xn)

ωg ,

where∆n(x0, · · ·, xn) is the oriented simplex spanned by (x0, · · ·, xn). Then, since∫
Rn
(T−x(ωg ))dµ(x)
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is simply the volume form on Rn, where T and µ denote the translation and the Lebesgue
measure on Rn, respectively, we can obtain for f0, · · ·, fn ∈ B ([9])

τψg (f0, · · ·, fn) = c′n
∫

Rn
tr(f0df1∧ · · · ∧dfn) ,

where

c′n = (−1)[(n+1)/2]

n!(2π)n .

Next we discuss τF , the canonical cyclic cocycle on Fredholm module (C, F,H). Here

C and F are as above and H = L2(Rn) ⊗ Cν. Let

gamma(n) =
{

1ν×ν if n is odd ,

gamma(n)n+1 if n is even .

Then for all f0, f1, · · ·, fn ∈ C,

τF (f0, f1, · · ·, fn) = in

2
Tr(gamma(n)F [F, f0] · · · [F, fn])

= c′′n
∫

Rn
tr(f0df1∧ · · · ∧dfn)

with a normalization constant

c′′n = (2i)[n/2] 1

n(2π)n
vol(Sn−1) .

c-indϕg (DRn) = c′

c′′
〈τσ(F ), ρ(DRn )〉

= cn

where τσ(F ) is a canonical cyclic cocycle for Fredholm module (C, F,L2(Rn)).
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