On the Unobstructedness of the Deformation Problems of Residual Modular Representations

Atsushi YAMAGAMI

Kyoto University

(Communicated by Y. Ohnita)

Abstract. Let f be a primitive form whose weight is greater than 2 . Weston [23, Theorem 1] showed that the $\bmod p$ representation $\bar{\rho}$ associated to f is irreducible and the deformation problem for $\bar{\rho}$ is unobstructed for almost all p. The aim of this article is to give a simpler proof of his result in some cases.

0. Introduction

Let N be a positive integer, $k \geq 2$ an integer and f a primitive form of level N, weight k and character ε. Here we mean by "a primitive form" that f is a normalized newform. Let

$$
f(q)=\sum_{n \geq 1} a_{n}(f) q^{n}
$$

be the q-expansion of f. We denote by $\mathbf{Q}(f)$ the finite extension of \mathbf{Q} generated by $\left\{a_{n}(f)\right\}_{n \geq 1}$. We fix a prime number p and a prime ideal \mathfrak{p} above p of $\mathbf{Q}(f)$. Then we denote by \mathcal{O} the ring of integers of the completion $\mathbf{Q}(f)_{\mathfrak{p}}$ of $\mathbf{Q}(f)$ with respect to \mathfrak{p} and by \boldsymbol{k} the residue field of \mathcal{O}. We assume that p is prime to $2 N$. Let $G_{\mathbf{Q}}$ be the absolute Galois group of \mathbf{Q}. It is known that there exists a Galois representation

$$
\rho: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}(\mathcal{O})
$$

associated to f satisfying the following conditions:
(i) ρ is unramified outside $S:=\{$ the prime divisors of $N p\} \cup\{\infty\}$;
(ii) for each prime number $l \notin S$,

$$
\operatorname{Trace}\left(\rho\left(\operatorname{Frob}_{l}\right)\right)=a_{l}(f), \quad \operatorname{det}\left(\rho\left(\operatorname{Frob}_{l}\right)\right)=\varepsilon(l) l^{k-1}
$$

where Frob_{l} is a Frobenius element at l.
By the condition (i), we know that ρ factors through the Galois group G_{S} of the maximal Galois extension of \mathbf{Q} unramified outside S. Then we put

$$
\bar{\rho}:=\rho(\bmod \mathfrak{p}): G_{S} \rightarrow \mathrm{GL}_{2}(\boldsymbol{k})
$$

Received April 22, 2003; revised May 6, 2004
The author is a JSPS Postdoctoral Fellow in Department of Mathematics, Kyoto University.

We say that the deformation problem for $\bar{\rho}$ is unobstructed if we have

$$
H^{2}\left(G_{S}, \operatorname{Ad}(\bar{\rho})\right)=0
$$

where $\operatorname{Ad}(\bar{\rho})$ is the adjoint representation associated to $\bar{\rho}$, i.e., the matrix ring $M_{2}(\boldsymbol{k})$ of degree 2 over \boldsymbol{k} on which G_{S}-action is given by

$$
\sigma \cdot M:=\bar{\rho}(\sigma) M \bar{\rho}(\sigma)^{-1} \quad\left(\sigma \in G_{S}, M \in M_{2}(\boldsymbol{k})\right) .
$$

Weston [23, Theorem 1] showed that if $k>2$, then $\bar{\rho}$ is absolutely irreducible and the deformation problem for $\bar{\rho}$ is unobstructed for almost all ρ by means of the theory of irreducible admissible automorphic representations and the theory of Dieudonné modules. The aim of this paper is to give a simpler proof than his method in some cases using elementary calculations of representation matrices of $\operatorname{Ad}(\bar{\rho})$. Namely, in this article, we shall give another proof of the following

MAIN THEOREM. Let f be a primitive form of level N, weight $k>2$ and character ε. We assume that there are only finitely many prime ideals \mathfrak{p} of $\mathbf{Q}(f)$ for which the restriction of $\bar{\rho}$ to the inertia group at each prime number $q \in S \backslash\{p, \infty\}$ is irreducible. Then for almost all prime ideals \mathfrak{p} of $\mathbf{Q}(f), \bar{\rho}$ is absolutely irreducible and the deformation problem for $\bar{\rho}$ is unobstructed.

We put $S^{\text {fin }}:=S \backslash\{\infty\}$. We denote by D_{q} (resp. I_{q}) the decomposition (resp. inertia) group at q in G_{S}. In Section 1, we define the Selmer groups $\operatorname{Sel}(\bar{M})$ for $\boldsymbol{k}\left[G_{S}\right]$-modules \bar{M} and obtain the following exact sequence of the Galois cohomology groups:

$$
\begin{aligned}
\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1))^{\vee} & \rightarrow H^{2}\left(G_{S}, \operatorname{Ad}(\bar{\rho})\right) \\
& \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)^{\vee},
\end{aligned}
$$

where $\operatorname{Ad}(\bar{\rho})(1)$ is the Tate twist of $\operatorname{Ad}(\bar{\rho})$ by the $\bmod p$ cyclotomic character \bar{x} and the symbol \vee stands for the dual space of \boldsymbol{k}-vector spaces (cf. Proposition 1.2). Then we apply a result of Diamond, Flach and Guo [4, Theorems 7.15 and 8.2] on the vanishing of the Selmer groups, which is based on the method of Wiles [24] completed with Taylor [21], and get a condition for $\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1))=0$ (Theorem 1.4). In Section 2, we give some conditions for $H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)=0$ at $q=p$ and each $q \in S^{\text {fin }} \backslash\{p\}$ for which $\left.\bar{\rho}\right|_{I_{q}}$ is reducible. In this situaion, twisting $\left.\bar{\rho}\right|_{D_{q}}$ by a suitable local character ψ_{q} at q enables us to obtain some conditions for $H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)=0$ by means of representation matrices of $\operatorname{Ad}(\bar{\rho})(1)$. Putting these conditions together, we obtain the Main Theorem.

REMARK 0.1. As to the case where $q \neq p$ and $\left.\bar{\rho}\right|_{I_{q}}$ is irreducible, we can see calculations of Weston on the vanishing of $H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)$ with supercuspidal automorphic representations in the proof of [23, Proposition 3.2]. Also, in [23, Section 5.4], we can see examples of the unobstructedness of deformation problems for $\bar{\rho}$ associated to the primitive forms of level 1 and weight $12,16,18,20,22$ and 26.

REmark 0.2 . As to the case of weight 2, by a result of Flach [8, Theorem 2] on the unobstructedness of residual representations associated to elliptic curves, Mazur [16, Corollary 2] showed that if f is a newform having Fourier coefficients in \mathbf{Q} of weight 2 with trivial character and not of CM-type, then the set of prime numbers p for which $\bar{\rho}$ is absolutely irreducible and the deformation problem for $\bar{\rho}$ is unobstructed is of Dirichlet density 1 . This result has been generalized by Weston [23, Theorem 1] to the case of any type.

REMARK 0.3. For a newform f and an odd prime number p, Gouvêa [10, Question III.5] conjectured that if the $\bmod p$ representation $\bar{\rho}$ associated to f is absolutely irreducible, any deformation of $\bar{\rho}$ to a complete Noetherian local ring with residue field \boldsymbol{k} is associated to a Katz's p-adic eigenform. (For the details of deformation theory of residual representations, see [15], and for Gouvêa's conjecture, see [10, Chapter III].) The author [25, Main Theorem] proved that if the deformation problem for $\bar{\rho}$ is unobstructed, then Gouvêa's conjecture is true. (The proof of this theorem is based on the method of Gouvêa and Mazur [12]. See also Böckle's article [2].) Therefore, by his work combined with [23, Theorem 1], we see that Gouvêa's conjecture is true for almost all p when the weight of f is greater than 2 .

We denote by $\mathbf{Q}, \mathbf{Q}_{p}, \mathbf{R}$ and \mathbf{C} the fields of rational numbers, p-adic numbers, real numbers and complex numbers, respectively and by \mathbf{Z} and \mathbf{Z}_{p} the rings of integers and p-adic integers, respectively. We denote by \mathbf{F}_{q} the finite field consisting of q elements. We fix once and for all an embedding $\overline{\mathbf{Q}} \hookrightarrow \overline{\mathbf{Q}}_{v}$ for each rational place v.

Acknowledgement. The author is grateful to Doctor T. Ochiai for worthy advice about the result of Diamond, Flach and Guo [4] on the vanishing of the Selmer groups, and to Doctor M. Kisin for worthy advice about a relation between level and character. He also thanks the referees for giving him many comments on the manuscript.

1. The Galois cohomology groups and the Selmer groups

Let p be an odd prime number, S a finite set of rational places containing p and ∞ and G_{S} the Galois group of the maximal Galois extension of \mathbf{Q} unramified outside S. Let F be a finite extension of $\mathbf{Q}_{p}, \mathcal{O}$ the ring of integers of F with a prime element π and \boldsymbol{k} the residue field of F. Let M be a finite flat \mathcal{O}-module with G_{S}-action. Then we put

$$
V:=M \otimes_{\mathcal{O}} F, \quad W:=M \otimes_{\mathcal{O}} F / \mathcal{O}, \quad \bar{M}:=M \otimes_{\mathcal{O}} k
$$

We consider the Galois cohomology groups $H^{i}\left(G_{S}, A\right)$ for $i=0,1$ and 2 with $A=$ M, V, W or \bar{M} (for the definition of the Galois cohomology groups, see [22, Section 1]). For each $v \in S$, we regard the absolute Galois group $G_{\mathbf{Q}_{v}}$ of \mathbf{Q}_{v} as a decomposition group at v in G_{S}. We denote by $H^{i}\left(\mathbf{Q}_{v}, A\right)$ the local Galois cohomology group $H^{i}\left(G_{\mathbf{Q}_{v}}, A\right)$ and by

$$
\operatorname{res}_{v}: H^{i}\left(G_{S}, A\right) \rightarrow H^{i}\left(\mathbf{Q}_{v}, A\right)
$$

the natural restriction map.

For each $v \in S$, we define the subgroup $H_{f}^{1}\left(\mathbf{Q}_{v}, A\right)$ of $H^{1}\left(\mathbf{Q}_{v}, A\right)$ as follows: First following Bloch and Kato [1, Section 3], we define

$$
H_{f}^{1}\left(\mathbf{Q}_{v}, V\right):= \begin{cases}\operatorname{Ker}\left(H^{1}\left(\mathbf{Q}_{v}, V\right) \xrightarrow{\text { res }} H^{1}\left(I_{v}, V\right)\right), & \text { if } \quad v \neq p \\ \operatorname{Ker}\left(H^{1}\left(\mathbf{Q}_{p}, V\right) \rightarrow H^{1}\left(\mathbf{Q}_{p}, V \otimes B_{\text {crys }}\right)\right), & \text { if } \quad v=p\end{cases}
$$

where I_{v} is the inertia group at v in $G_{\mathbf{Q}_{v}}$ and $B_{\text {crys }}$ is the ring defined by Fontaine (see [9, Section I.2.1]). From the short exact sequence

$$
0 \rightarrow M \rightarrow V \rightarrow W \rightarrow 0
$$

we have an exact sequence of the Galois cohomology groups

$$
H^{1}\left(\mathbf{Q}_{v}, M\right) \rightarrow H^{1}\left(\mathbf{Q}_{v}, V\right) \rightarrow H^{1}\left(\mathbf{Q}_{v}, W\right)
$$

Then we define the subgroup $H_{f}^{1}\left(\mathbf{Q}_{v}, M\right)$ of $H^{1}\left(\mathbf{Q}_{v}, M\right)$ (resp. $H_{f}^{1}\left(\mathbf{Q}_{v}, W\right)$ of $\left.H^{1}\left(\mathbf{Q}_{v}, W\right)\right)$ as the inverse image (resp. the image) of $H_{f}^{1}\left(\mathbf{Q}_{v}, V\right)$ in the exact sequence above. Moreover, by the inclusion

$$
\bar{M}=\operatorname{Ker}(W \xrightarrow{1 \otimes \pi} W) \hookrightarrow W,
$$

we obtain a natural homomorphism

$$
H^{1}\left(\mathbf{Q}_{v}, \bar{M}\right) \rightarrow H^{1}\left(\mathbf{Q}_{v}, W\right) .
$$

Then we define the subgroup $H_{f}^{1}\left(\mathbf{Q}_{v}, \bar{M}\right)$ of $H^{1}\left(\mathbf{Q}_{v}, \bar{M}\right)$ as the inverse image of $H_{f}^{1}\left(\mathbf{Q}_{v}, W\right)$ under the homomorphism above.

Definition 1.1 (the Selmer groups). We define for $A=M, V, W$ or \bar{M}

$$
\operatorname{Sel}(A):=\operatorname{Ker}\left(\bigoplus_{v \in S} \operatorname{res}_{v}: H^{1}\left(G_{S}, A\right) \rightarrow \bigoplus_{v \in S} \frac{H^{1}\left(\mathbf{Q}_{v}, A\right)}{H_{f}^{1}\left(\mathbf{Q}_{v}, A\right)}\right)
$$

REmARK 1.1. Note that we have

$$
H^{1}(\mathbf{R}, \bar{M})=0 \quad \text { and } \quad H^{2}(\mathbf{R}, \bar{M})=0
$$

Because for $i=1$ and 2,

$$
\begin{aligned}
0 & =\sharp \operatorname{Gal}(\mathbf{C} / \mathbf{R}) \cdot \operatorname{Ker}\left(H^{i}(\mathbf{R}, \bar{M}) \xrightarrow{\text { res }} H^{i}(\{1\}, \bar{M})\right) \\
& =2 \cdot \operatorname{Ker}\left(H^{i}(\mathbf{R}, \bar{M}) \rightarrow 0\right) \\
& =2 \cdot H^{i}(\mathbf{R}, \bar{M})
\end{aligned}
$$

by [19, Chapter I, Proposition 9] and the assumption that p is odd.

Definition 1.2 (the Tate-Shafarevich groups). We put $S^{\text {fin }}:=S \backslash\{\infty\}$ and define

$$
\begin{aligned}
& \Pi^{1}(\bar{M}):=\operatorname{Ker}\left(\bigoplus_{q \in S^{\mathrm{fin}}} \operatorname{res}_{q}: H^{1}\left(G_{S}, \bar{M}\right) \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} H^{1}\left(\mathbf{Q}_{q}, \bar{M}\right)\right) \\
& \amalg^{2}(\bar{M}):=\operatorname{Ker}\left(\bigoplus_{q \in S^{\mathrm{fin}}} \operatorname{res}_{q}: H^{2}\left(G_{S}, \bar{M}\right) \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} H^{2}\left(\mathbf{Q}_{q}, \bar{M}\right)\right)
\end{aligned}
$$

Note that

$$
\amalg^{1}(\bar{M}) \subset \operatorname{Sel}(\bar{M})
$$

We now recall duality theorems of the Galois cohomology groups without their proofs:
Theorem 1.1. (1) (Global Tate Duality. cf. [13, Theorem 4.50(1)]) There exists a non-degenerate pairing

$$
\amalg^{1}(\bar{M}) \times Ш^{2}\left(\bar{M}^{\vee}(1)\right) \rightarrow \boldsymbol{k},
$$

where \bar{M}^{\vee} is the dual space $\operatorname{Hom}_{\boldsymbol{k}}(\bar{M}, \boldsymbol{k})$ of \bar{M} with G_{S}-action defined by

$$
(\sigma \cdot \varphi)(m):=\varphi\left(\sigma^{-1} m\right) \quad\left(\sigma \in G_{S}, \varphi \in \bar{M}^{\vee}, m \in \bar{M}\right)
$$

and $\bar{M}^{\vee}(1)$ is the Tate twist of \bar{M}^{\vee} by the $\bmod p$ cyclotomic character \bar{x}.
(2) (Local Tate Duality. cf. [17, Theorem 1.4.1]) For each $q \in S^{\text {fin }}$, there exists a non-degenerate pairing

$$
H^{2}\left(\mathbf{Q}_{q}, \bar{M}\right) \times H^{0}\left(\mathbf{Q}_{q}, \bar{M}^{\vee}(1)\right) \rightarrow \boldsymbol{k}
$$

By these duality theorems, we have an important exact sequence of the Galois cohomology groups:

Proposition 1.2. We have an exact sequence

$$
\operatorname{Sel}\left(\bar{M}^{\vee}(1)\right)^{\vee} \rightarrow H^{2}\left(G_{S}, \bar{M}\right) \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} H^{0}\left(\mathbf{Q}_{q}, \bar{M}^{\vee}(1)\right)^{\vee}
$$

Démonstration. By the inclusion $\Pi^{1}\left(\bar{M}^{\vee}(1)\right) \hookrightarrow \operatorname{Sel}\left(\bar{M}^{\vee}(1)\right)$ and Theorem 1.1(1), we have an exact sequence

$$
\begin{equation*}
\operatorname{Sel}\left(\bar{M}^{\vee}(1)\right)^{\vee} \rightarrow \amalg^{2}(\bar{M}) \rightarrow 0 \tag{i}
\end{equation*}
$$

because taking dual spaces is an exact contravariant functor and

$$
\left(\bar{M}^{\vee}(1)\right)^{\vee}(1) \cong \bar{M}
$$

as G_{S}-modules. On the other hand, by the definition of $\amalg^{2}(\bar{M})$ and Theorem 1.1(2), we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \amalg^{2}(\bar{M}) \rightarrow H^{2}\left(G_{S}, \bar{M}\right) \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} H^{0}\left(\mathbf{Q}_{q}, \bar{M}^{\vee}(1)\right)^{\vee} \tag{ii}
\end{equation*}
$$

Then by the exact sequences (i) and (ii), we obtain

$$
\operatorname{Sel}\left(\bar{M}^{\vee}(1)\right)^{\vee} \rightarrow H^{2}\left(G_{S}, \bar{M}\right) \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} H^{0}\left(\mathbf{Q}_{q}, \bar{M}^{\vee}(1)\right)^{\vee}
$$

In the following, we use the same notation as in the Introduction. We put $M:=\operatorname{End}_{\mathcal{O}}(\mathcal{O} \times \mathcal{O})$ on which G_{S} acts via $\operatorname{Ad}(\rho)$. Since the adjoint representation $\operatorname{Ad}(\bar{\rho})$ associated to $\bar{\rho}$ is nothing but $\bar{M}=M \otimes \boldsymbol{k}$ and $\operatorname{Ad}(\bar{\rho})^{\vee} \cong \operatorname{Ad}(\bar{\rho})$ as G_{S}-modules, we have an exact sequence

$$
\begin{align*}
\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1))^{\vee} & \rightarrow H^{2}\left(G_{S}, \operatorname{Ad}(\bar{\rho})\right) \\
& \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)^{\vee}
\end{align*}
$$

by Proposition 1.2.
By the natural identification $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a \in \boldsymbol{k}\right\}=\boldsymbol{k}$, we have the decomposition

$$
\operatorname{Ad}(\bar{\rho})=\operatorname{Ad}^{0}(\bar{\rho}) \oplus \boldsymbol{k}
$$

as G_{S}-modules, where $\operatorname{Ad}^{0}(\bar{\rho})$ is the subrepresentation of $\operatorname{Ad}(\bar{\rho})$ consisting of all elements having trace 0 in $\operatorname{Ad}(\bar{\rho})$. Note that G_{S} acts trivially on \boldsymbol{k}. Then we obtain

$$
\operatorname{Ad}(\bar{\rho})(1)=\operatorname{Ad}^{0}(\bar{\rho})(1) \oplus \boldsymbol{k}(1)
$$

and

$$
\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1))=\operatorname{Sel}\left(\operatorname{Ad}^{0}(\bar{\rho})(1)\right) \oplus \operatorname{Sel}(\boldsymbol{k}(1))
$$

Proposition 1.3. We have

$$
\operatorname{Sel}(\boldsymbol{k}(1))=0 \quad \text { and } \quad \operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1))=\operatorname{Sel}\left(\operatorname{Ad}^{0}(\bar{\rho})(1)\right)
$$

Démonstration. Since $\boldsymbol{k}(1)=\mathbf{F}_{p}(1) \otimes \mathbf{F}_{p} \boldsymbol{k}$, we have

$$
\operatorname{Sel}(\boldsymbol{k}(1))=\operatorname{Sel}\left(\mathbf{F}_{p}(1)\right) \otimes_{\mathbf{F}_{p}} \boldsymbol{k}
$$

So it suffices to show that $\operatorname{Sel}\left(\mathbf{F}_{p}(1)\right)=0$. By Kummer Theory, we see that

$$
\begin{aligned}
\operatorname{Sel}\left(\mathbf{F}_{p}(1)\right) & =\operatorname{Sel}(\mathbf{Z} / p \mathbf{Z}(1)) \\
& =\operatorname{Ker}\left(\bigoplus_{q \in S^{\mathrm{fin}}} \operatorname{res}_{q}: H^{1}\left(G_{S}, \mathbf{Z} / p \mathbf{Z}(1)\right) \rightarrow \bigoplus_{q \in S^{\mathrm{fin}}} \frac{H^{1}\left(\mathbf{Q}_{q}, \mathbf{Z} / p \mathbf{Z}(1)\right)}{H_{f}^{1}\left(\mathbf{Q}_{q}, \mathbf{Z} / p \mathbf{Z}(1)\right)}\right) \\
& =\operatorname{Ker}\left(\bigoplus_{q: \text { all primes }} \operatorname{ord}_{q}(\cdot)(\bmod p): \mathbf{Q}^{\times} /\left(\mathbf{Q}^{\times}\right)^{p} \rightarrow \bigoplus_{q: \text { all primes }} \mathbf{Z} / p \mathbf{Z}\right) \\
& =0 .
\end{aligned}
$$

Here ord_{q} is the q-adic valuation normalized by $\operatorname{ord}_{q}(q)=1$.

Applying the results of Diamond, Flach and Guo [4] on the vanishing of the Selmer groups, we have the following

THEOREM 1.4. If a prime ideal \mathfrak{p} of $\mathbf{Q}(f)$ satisfies the condition
(C1) $\bar{\rho}$ is irreducible, $\mathfrak{p} \nmid \eta_{f}^{\Sigma}$ and $p \nmid N(2 k-1)(2 k-3) k!$,
then we have

$$
\operatorname{Sel}\left(\operatorname{Ad}^{0}(\bar{\rho})(1)\right)=0
$$

where η_{f}^{Σ} is the congruence ideal defined in [4, Section 6.4]. Especially, for almost all \mathfrak{p}, the Selmer group $\operatorname{Sel}\left(\operatorname{Ad}^{0}(\bar{\rho})(1)\right)$ vanishes.

Démonstration. Let V be the G_{S}-module consisting of the trace 0 endomorphisms on the representation space of ρ over $\mathbf{Q}(f)_{\mathfrak{p}}$ and M its \mathcal{O}-lattice with G_{S}-action via $\operatorname{Ad}(\rho)$. Note that we have $\bar{M}(1)=\operatorname{Ad}^{0}(\bar{\rho})(1)$.

By the exact sequence

$$
0 \rightarrow \bar{M}(1) \rightarrow W(1) \rightarrow W(1) \rightarrow 0
$$

of G_{S}-modules, we have the exact sequence

$$
H^{0}\left(G_{S}, W(1)\right) \rightarrow H^{1}\left(G_{S}, \bar{M}(1)\right) \rightarrow H^{1}\left(G_{S}, W(1)\right)
$$

of the Galois cohomology groups. Since $\bar{\rho}$ is irreducible, we have $H^{0}\left(G_{S}, W(1)\right)=0$. Then we obtain an inclusion

$$
\operatorname{Sel}(\bar{M}(1)) \hookrightarrow \operatorname{Sel}(W(1))
$$

So in order to prove the theorem, it suffices to show that $\operatorname{Sel}(W(1))=0$ under the condition (C1).

By the exact sequence

$$
0 \rightarrow M(1) \rightarrow V(1) \rightarrow W(1) \rightarrow 0
$$

of G_{S}-modules, we have the exact sequence

$$
H^{1}\left(G_{S}, V(1)\right) \xrightarrow{\phi} H^{1}\left(G_{S}, W(1)\right) \xrightarrow{\psi} H^{2}\left(G_{S}, M(1)\right)
$$

of the Galois cohomology groups. Then we obtain the exact sequence

$$
0 \rightarrow \phi(\operatorname{Sel}(V(1))) \rightarrow \operatorname{Sel}(W(1)) \rightarrow \psi(\operatorname{Sel}(W(1))) \rightarrow 0 .
$$

By [4, Theorem 8.2], we know that $\phi(\operatorname{Sel}(V(1)))=0$ under the condition (C1). On the other hand, we also obtain another exact sequence

$$
0 \rightarrow \phi^{\prime}(\operatorname{Sel}(V)) \rightarrow \operatorname{Sel}(W) \rightarrow \psi^{\prime}(\operatorname{Sel}(W)) \rightarrow 0
$$

of the Selmer groups from the exact sequence

$$
0 \rightarrow M \rightarrow V \rightarrow W \rightarrow 0
$$

of G_{S}-modules with suitable homomorphisms ϕ^{\prime} and ψ^{\prime}. We note that the Selmer group $\operatorname{Sel}(W)$ is included in the \mathcal{O}-module $H_{\Sigma}^{1}\left(G_{\mathbf{Q}}, W\right)$ defined in [4, Section 7.1], which vanishes under the condition (C1) by [4, Theorem 7.15]. Then we have

$$
\phi^{\prime}(\operatorname{Sel}(V))=0 .
$$

Since M is \mathcal{O}-free, we see that the Pontryagin dual of W is isomorphic to $W(1)$ as $G_{S^{-}}$ modules. By [7, Theorem 1], we then have

$$
\operatorname{Sel}(W(1))=0
$$

as desired. By [4, Lemma 7.13], we know that $\bar{\rho}$ is irreducible for almost all prime ideals \mathfrak{p}. So the last assertion is verified.

2. The vanishing of $H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)$

In this section, we shall give some conditions for

$$
H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

for each $q \in S^{\text {fin }}$ and prove the Main Theorem. We denote by D_{q} (resp. I_{q}) the decomposition (resp. inertia) group at q in G_{S}. First we consider the case where $q=p$. We denote by V the representation space of $\bar{\rho}$. Then we have

$$
\begin{aligned}
\operatorname{Ad}(\bar{\rho})(1) & \cong(V \otimes V) \otimes(\operatorname{det} \bar{\rho})^{-1}(1) \\
& \cong(V \otimes V)(2-k) \otimes \bar{\varepsilon}^{-1}
\end{aligned}
$$

as G_{S}-modules, where $(V \otimes V)(2-k)$ is the Tate twist of $(V \otimes V)$ by $\bar{\chi}^{2-k}$ and $\bar{\varepsilon}$ is the \bmod p reduction of ε. We recall some results on mod p modular representations restricted to D_{p} or I_{p} :

THEOREM 2.1 ([5, Theorems 2.5 and 2.6]). We assume that $2 \leqq k \leqq p+1$ and $p \nmid N$.
(1) If $a_{p}(f) \not \equiv 0(\bmod \mathfrak{p})$, then we have

$$
\left.\bar{\rho}\right|_{D_{p}} \sim\left(\begin{array}{cc}
\bar{\chi}^{k-1} \eta\left(\bar{\varepsilon}(p) a_{p}(f)^{-1}\right) & \xi^{\prime} \\
0 & \eta\left(a_{p}(f)\right)
\end{array}\right)
$$

with a function $\xi^{\prime}: D_{q} \rightarrow \overline{\mathbf{F}}_{p}$.
(2) If $a_{p}(f) \equiv 0(\bmod \mathfrak{p})$, then we have

$$
\left.\bar{\rho}\right|_{I_{p}} \sim\left(\begin{array}{cc}
\psi^{k-1} & 0 \\
0 & \psi^{\prime k-1}
\end{array}\right)
$$

and $\left.\bar{\rho}\right|_{D_{p}}$ is irreducible. Here ψ and ψ^{\prime} are the fundamental characters of level 2.
By means of the theorem above, we obtain the following

PROPOSITION 2.2. We assume the condition (C1) and $k>2$.
(1) If $a_{p}(f) \not \equiv 0(\bmod \mathfrak{p})$ and the following condition is satisfied:

$$
\begin{equation*}
k \not \equiv 0(\bmod p-1), \tag{C2}
\end{equation*}
$$

then we have

$$
H^{0}\left(\mathbf{Q}_{p}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

(2) If $a_{p}(f) \equiv 0(\bmod \mathfrak{p})$, then

$$
H^{0}\left(\mathbf{Q}_{p}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

Démonstration. By the condition (C1), we see that $p \geq k+1$ and $p \nmid N$. Therefore we can apply Theorem 2.1.
(1) By Theorem 2.1(1), the representation matrix of $(V \otimes V)(2-k) \otimes \bar{\varepsilon}^{-1}$ is equivalent to the matrix

$$
\left(\begin{array}{cccc}
\bar{\chi}^{k} & \xi^{\prime} \cdot \bar{\chi} & \xi^{\prime} \cdot \bar{\chi} & \xi^{\prime 2} \cdot \bar{\chi}^{2-k} \\
0 & \bar{\chi} & 0 & \xi^{\prime} \cdot \bar{\chi}^{2-k} \\
0 & 0 & \bar{\chi} & \xi^{\prime} \cdot \bar{\chi}^{2-k} \\
0 & 0 & 0 & \bar{\chi}^{2-k}
\end{array}\right)
$$

on D_{p} because $\bar{\varepsilon}$ and $\eta(\cdot)$ are unramified at p. By the conditions (C1) and (C2), we see that there exists an element $\sigma \in I_{p}$ such that

$$
\bar{\chi}^{k}(\sigma) \neq 1 \quad \text { or } \quad \bar{\chi}^{2-k}(\sigma) \neq 1
$$

because $k>2$. Therefore we have

$$
H^{0}\left(\mathbf{Q}_{p}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

(2) By Theorem 2.1(2), the representation matrix of $(V \otimes V)(2-k) \otimes \bar{\varepsilon}^{-1}$ is equivalent to the diagonal matrix

$$
\left(\begin{array}{cccc}
\psi^{k-p(k-2)} & & & \\
& \bar{\chi} & & \\
& & \bar{\chi} & \\
& & & \psi^{(p-1) k+2}
\end{array}\right)
$$

on I_{p} because $\psi \psi^{\prime}=\bar{\chi}$ and $\psi^{\prime}=\psi^{p}$. Since the fundamental character ψ is a surjection to $\mathbf{F}_{p^{2}}^{\times}$, we see that $\psi^{k-p(k-2)}$ and $\psi^{(p-1) k+2}$ are non-trivial under the condition (C 1$)$ which implies that $p \geq 5$. Therefore we have

$$
H^{0}\left(\mathbf{Q}_{p}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

Next we consider the case where $q \neq p$. By the assumption of the Main Theorem, we may assume that $\left.\bar{\rho}\right|_{I_{q}}$ is reducible for any $q \in S^{\text {fin }} \backslash\{p\}$. We can see easily that there exists a primitive (p-adic) character ψ (of conductor d) for which we have either

$$
\operatorname{ord}_{q}(N(\bar{\rho} \otimes \bar{\psi}))=\operatorname{ord}_{q}\left(C_{\varepsilon \psi^{2}}\right) \geq 1
$$

or

$$
\operatorname{ord}_{q}(N(\bar{\rho} \otimes \bar{\psi}))=1 \quad \text { and } \quad \operatorname{ord}_{q}\left(C_{\varepsilon \psi^{2}}\right)=0
$$

and the set of the prime divisors of the least common multiple N^{\prime} of N, d^{2} and $d C_{\varepsilon}$ coincides with S. Here $\bar{\psi}$ is the $\bmod p$ reduction of ψ and $N(\bar{\rho} \otimes \bar{\psi})$ and $C_{\varepsilon \psi^{2}}$ are the conductor of the residual representation $\bar{\rho} \otimes \bar{\psi}$ and the character $\varepsilon \psi^{2}$, respectively. (For the definition of the conductor of residual representations, see [18], [6].) By [20, Proposition 3.64], the twisted eigenform $f \otimes \psi$ to which $\bar{\rho} \otimes \bar{\psi}$ is associated is of level N^{\prime} and weight k with character $\varepsilon \psi^{2}$. We assume that $p \geq 5$. Then by a result of Diamond [3, Corollary 1.2] on Serre's conjecture about residual modular representations combined with a result of Gouvêa [11, Lemma 7] on the level of primitive forms, we see that there exists a primitive form g of level $N(\bar{\rho} \otimes \bar{\psi})$ and weight $k(\bar{\rho} \otimes \bar{\psi}) \geq 2$ with character $\varepsilon(\bar{\rho} \otimes \bar{\psi})$ to which $\bar{\rho} \otimes \bar{\psi}$ is associated, where $k(\bar{\rho} \otimes \bar{\psi})$ and $\varepsilon(\bar{\rho} \otimes \bar{\psi})$ are the weight and the character defined by Serre in [18], respectively. Since we see that $C_{\varepsilon(\bar{\rho} \otimes \bar{\psi})}=C_{\varepsilon \psi^{2}}$ and $\operatorname{Ad}(\bar{\rho})=\operatorname{Ad}(\bar{\rho} \otimes \bar{\psi})$ as G_{S}-modules, it suffices to investigate the vanishing of $H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)$ with the primitive form g having the following properties:

$$
\operatorname{ord}_{q}(N(\bar{\rho} \otimes \bar{\psi}))=\operatorname{ord}_{q}\left(C_{\varepsilon(\bar{\rho} \otimes \bar{\psi})}\right) \geq 1
$$

or

$$
\operatorname{ord}_{q}(N(\bar{\rho} \otimes \bar{\psi}))=1 \quad \text { and } \quad \operatorname{ord}_{q}\left(C_{\varepsilon(\bar{\rho} \otimes \bar{\psi})}\right)=0
$$

REmARK 2.1. We will see later that the conditions for the vanishing of $H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)$ for all $q \neq p$ are independent of the weight of eigenforms to which $\bar{\rho}$ is associated. This fact guarantees that the above argument works well in the proof of the Main Theorem, although the weight $k(\bar{\rho} \otimes \bar{\psi})$ can be equal to 2 .

Now we recall some results on p-adic modular Galois representations ρ associated to a primitive form g of level N, weight $k \geq 2$ and character ε :

THEOREM 2.3 (Langlands [14], see [13, Theorem 3.26(3)]). Let q be a prime divisor of N. We assume that $q \neq p$. Let χ be the p-adic cyclotomic character and $\eta(x)$ the unramified character on D_{q} such that $\eta(x)\left(\operatorname{Frob}_{q}\right)=x$.
(1) If $\operatorname{ord}_{q}(N)=\operatorname{ord}_{q}\left(C_{\varepsilon}\right) \geq 1$, then we have

$$
\left.\rho\right|_{D_{q}} \sim\left(\begin{array}{cc}
\varepsilon \chi^{k-1} \eta\left(a_{q}(g)\right)^{-1} & 0 \\
0 & \eta\left(a_{q}(g)\right)
\end{array}\right) .
$$

(2) If $\operatorname{ord}_{q}(N)=1$ and $\operatorname{ord}_{q}\left(C_{\varepsilon}\right)=0$, then we have

$$
\left.\rho\right|_{D_{q}} \sim\left(\begin{array}{cc}
\eta\left(a_{q}(g)\right) \chi & * \\
0 & \eta\left(a_{q}(g)\right)
\end{array}\right)
$$

and $\left.\rho\right|_{D_{q}}$ is ramified.
We put $\bar{\rho}^{\prime}:=\bar{\rho} \otimes \bar{\psi}, k^{\prime}:=k\left(\bar{\rho}^{\prime}\right)$ and $\varepsilon^{\prime}:=\varepsilon\left(\bar{\rho}^{\prime}\right)$. We denote the representation space of $\bar{\rho}^{\prime}$ by V^{\prime}. Then we have

$$
\operatorname{Ad}(\bar{\rho})(1) \cong\left(V^{\prime} \otimes V^{\prime}\right)\left(2-k^{\prime}\right) \otimes \bar{\varepsilon}^{\prime-1}
$$

as G_{S}-modules, where $\bar{\varepsilon}^{\prime}$ is the $\bmod p$ reduction of ε^{\prime}. We are going to give some conditions for $p \geq 5$ under which $\left(V^{\prime} \otimes V^{\prime}\right)\left(2-k^{\prime}\right) \otimes \bar{\varepsilon}^{\prime-1}$ has no $G_{\mathbf{Q}_{q}}$-invariant element by showing the following

Proposition 2.4. (1) In the case where $\operatorname{ord}_{q}\left(N\left(\bar{\rho}^{\prime}\right)\right)=\operatorname{ord}_{q}\left(C_{\varepsilon^{\prime}}\right)$, we have

$$
H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

(2) In the case where $\operatorname{ord}_{q}\left(N\left(\bar{\rho}^{\prime}\right)\right)=1$ and $\operatorname{ord}_{q}\left(C_{\varepsilon^{\prime}}\right)=0$, we assume the following condition:

$$
\begin{equation*}
q \not \equiv 1(\bmod p) \tag{C3}
\end{equation*}
$$

then we have

$$
H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

Démonstration. (1) By Theorem 2.3(1), the representation matrix of $\left(V^{\prime} \otimes V^{\prime}\right)(2-$ $\left.k^{\prime}\right) \otimes \bar{\varepsilon}^{\prime-1}$ is equivalent to the diagonal matrix

$$
\left(\begin{array}{cccc}
\bar{\varepsilon}^{\prime} \bar{\chi}^{k^{\prime}} \eta\left(a_{q}(g)\right)^{-2} & & & \\
& \bar{\chi} & & \\
& & \bar{\chi} & \\
& & & \bar{\varepsilon}^{\prime-1} \bar{\chi}^{2-k^{\prime}} \eta\left(a_{q}(g)\right)^{2}
\end{array}\right)
$$

on D_{q}. Since $\bar{\chi}$ is non-trivial and unramified by the condition (C3), $\bar{\varepsilon}^{\prime}$ is ramified and $\eta\left(a_{q}(g)\right)$ is unramified at q, we see that all diagonal components are non-trivial characters. We then have

$$
H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

(2) We note that $\bar{\rho}^{\prime}$ is ramified at q. By Theorem 2.3(2), we have

$$
\left.\bar{\rho}^{\prime}\right|_{D_{q}} \sim\left(\begin{array}{cc}
\eta\left(a_{q}(g)\right) \bar{\chi} & \xi \\
0 & \eta\left(a_{q}(g)\right)
\end{array}\right)
$$

with a function $\xi: D_{q} \rightarrow \overline{\mathbf{F}}_{p}$. Then we see that the representation matrix of $\left(V^{\prime} \otimes V^{\prime}\right)(2-$ $\left.k^{\prime}\right) \otimes \bar{\varepsilon}^{\prime-1}$ is equivalent to the matrix

$$
\left(\begin{array}{cccc}
\bar{\chi}^{2} & \eta^{\prime} \bar{\chi} & \eta^{\prime} \bar{\chi} & \eta^{\prime 2} \\
0 & \bar{\chi} & 0 & \eta^{\prime} \\
0 & 0 & \bar{\chi} & \eta^{\prime} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

on D_{q}, where $\eta^{\prime}:=\xi \cdot \eta\left(a_{q}(g)\right)^{-1}$. If there exist elements $a, b, c, d \in \overline{\mathbf{F}}_{p}$ such that

$$
\left(\begin{array}{cccc}
\bar{\chi}^{2}(\sigma) & \eta^{\prime} \bar{\chi}(\sigma) & \eta^{\prime} \bar{\chi}(\sigma) & \eta^{\prime 2}(\sigma) \\
0 & \bar{\chi}(\sigma) & 0 & \eta^{\prime}(\sigma) \\
0 & 0 & \bar{\chi}(\sigma) & \eta^{\prime}(\sigma) \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \quad\left(\sigma \in D_{q}\right)
$$

then we see that

$$
\begin{equation*}
\bar{\chi}^{2}(\sigma) a+\eta^{\prime} \bar{\chi}(\sigma) b+\eta^{\prime} \bar{\chi}(\sigma) c+\eta^{\prime 2}(\sigma) d=a \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(\bar{\chi}(\sigma)-1)(b-c)=0, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
(\bar{\chi}(\sigma)-1) b+\eta^{\prime}(\sigma) d=0, \tag{3}
\end{equation*}
$$

for any $\sigma \in D_{q}$. By the condition $(\mathrm{C} 3)$, we see that $\bar{\chi}\left(\operatorname{Frob}_{q}\right)=q(\bmod p) \neq 1$ in \mathbf{F}_{p}^{\times}. Then $b=c$ by the equation (2). Since $\bar{\rho}$ is ramified at q, there exists an element $\sigma_{0} \in I_{q}$ such that $\eta^{\prime}\left(\sigma_{0}\right) \neq 0$. Taking σ_{0} as σ in the equation (3), we have $d=0$. Then, taking Frob_{q} as σ in the equation (3), we have $b=c=0$. This implies $a=0$ by the equation (1). Therefore we have

$$
H^{0}\left(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1)\right)=0
$$

Note that in the case where \mathfrak{p} does not divide $2, \bar{\rho}$ is absolutely irreducible if and only if it is irreducible, because the residual modular representation $\bar{\rho}$ is odd, i.e., the image of complex conjugation under $\bar{\rho}$ has determinant -1 . Then by putting Theorem 1.4, Propositions 1.3, 2.2 and 2.4 together, the Main Theorem is proven because of the exact sequence (\star) in Section 1.

Références

[1] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. 1 (Eds. P. CARTIER, et al.), Prog. in Math. 86, (1990), Birkhäuser, 333-400.
[2] G. BöCKLE, On the density of modular points in universal deformation spaces, Amer. J. of Math. 123 (2001), 985-1007.
[3] F. Diamond, The refined conjecture of Serre, 22-37, Elliptic Curves, Modular Forms and Fermat's Last Theorem, (Hong Kong, 1993), Ser. Number Theory, I (1995), Internat. Press.
[4] F. Diamond, M. Flach and L. Guo, Adjoint motives of modular forms and the Tamagawa number conjecture, preprint (2001).
[5] B. Edixhoven, The weight in Serre's conjectures on modular forms, Invent. Math. 109 (1992), 563-594.
[6] B. Edixhoven, Serre's conjecture, Modular Forms and Fermat's Last Theorem (Eds. G. Cornell, J. H. Silverman and G. Stevens), (1997), Springer, 209-242.
[7] M. Flach, A generalisation of the Cassels-Tate pairing, J. reine angew. Math. 412 (1990), 113-127.
[8] M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), 307-327.
[9] J.-M. Fontaine and B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, Motives, Proc. Symp. in Pure Math. 55, Part 1, (1994), 599-706.
[10] F. Q. GouvÊA, Arithmetic of p-adic Modular Forms, Lecture Notes in Math., 1304 (1988), Springer.
[11] F. Q. GouvêA, Deforming Galois representations: controlling the conductor, J. Number Theory 34 (1990), 95-113.
[12] F. Q. Gouvêa and B. MAZUR, On the density of modular representations, Computational perspectives on number theory, AMS/IP Studies in Advanced Mathematics, 7, (1998), Amer. Math. Soc. and International Press, 127-142.
[13] H. Hida, Modular Forms and Galois Cohomology, Cambridge studies in advanced mathematics 69 (2000), Cambridge University Press.
[14] R. P. Langlands, Modular forms and l-adic representations, Modular Functions of One Variable II, Lecture Notes in Math. 349 (1973), Springer, 362-499.
[15] B. Mazur, Deforming Galois representations, Galois Groups over \mathbf{Q} (Eds. Y. Ihara, K. Ribet and J.-P. Serre), (1989), Springer, 385-437.
[16] B. MAZUR, An "infinite fern" in the universal deformation space of Galois representations, Collect. Math. 48 (1997), 155-193.
[17] K. Rubin, Euler Systems, Hermann Weyl Lectures, The Institute for Advanced Study, Annals of Mathematics Studies 147, (2000), Princeton University Press.
[18] J.-P. SERRE, Sur les représentations modulaires de degré 2 de $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, Duke Math. J. 54 (1987), 179-230.
[19] J.-P. Serre, Galois Cohomology, Springer (1991).
[20] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Princeton University Press (1971).
[21] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553-572.
[22] L. C. WAShing ton, Galois cohomology, Modular Forms and Fermat's Last Theorem (Eds. G. Cornell, J. H. Silverman and G. Stevens), Springer (1997), 101-120.
[23] T. Weston, Unobstructed modular deformation problems, to appear in Amer. J. of Math.
[24] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 141 (1995), 443-551.
[25] A. Yamagami, On Gouvêa's conjecture in the unobstructed case, J. Number Theory 99 (2003), 120-138.

