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Abstract. Let f be a primitive form whose weight is greater than 2. Weston [23, Theorem 1] showed that the
mod p representation ρ̄ associated to f is irreducible and the deformation problem for ρ̄ is unobstructed for almost
all p. The aim of this article is to give a simpler proof of his result in some cases.

0. Introduction

Let N be a positive integer, k ≥ 2 an integer and f a primitive form of level N , weight
k and character ε. Here we mean by “a primitive form” that f is a normalized newform. Let

f (q) =
∑
n≥1

an(f )q
n

be the q-expansion of f . We denote by Q(f ) the finite extension of Q generated by
{an(f )}n≥1. We fix a prime number p and a prime ideal p above p of Q(f ). Then we de-
note by O the ring of integers of the completion Q(f )� of Q(f ) with respect to p and by k

the residue field of O. We assume that p is prime to 2N . LetGQ be the absolute Galois group
of Q. It is known that there exists a Galois representation

ρ : GQ → GL2(O)
associated to f satisfying the following conditions:

(i) ρ is unramified outside S := {the prime divisors of Np} ∪ {∞};
(ii) for each prime number l �∈ S,

Trace(ρ(Frobl )) = al(f ) , det(ρ(Frobl )) = ε(l)lk−1 ,

where Frobl is a Frobenius element at l.
By the condition (i), we know that ρ factors through the Galois groupGS of the maximal

Galois extension of Q unramified outside S. Then we put

ρ̄ := ρ (mod p) : GS → GL2(k) .
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We say that the deformation problem for ρ̄ is unobstructed if we have

H 2(GS,Ad(ρ̄)) = 0 ,

where Ad(ρ̄) is the adjoint representation associated to ρ̄, i.e., the matrix ringM2(k) of degree
2 over k on which GS-action is given by

σ ·M := ρ̄(σ )Mρ̄(σ )−1 (σ ∈ GS, M ∈ M2(k)) .

Weston [23, Theorem 1] showed that if k > 2, then ρ̄ is absolutely irreducible and the defor-
mation problem for ρ̄ is unobstructed for almost all ρ by means of the theory of irreducible
admissible automorphic representations and the theory of Dieudonné modules. The aim of
this paper is to give a simpler proof than his method in some cases using elementary calcula-
tions of representation matrices of Ad(ρ̄). Namely, in this article, we shall give another proof
of the following

MAIN THEOREM. Let f be a primitive form of level N , weight k > 2 and character ε.
We assume that there are only finitely many prime ideals p of Q(f ) for which the restriction
of ρ̄ to the inertia group at each prime number q ∈ S \ {p,∞} is irreducible. Then for almost
all prime ideals p of Q(f ), ρ̄ is absolutely irreducible and the deformation problem for ρ̄ is
unobstructed.

We put Sfin := S \ {∞}. We denote by Dq (resp. Iq ) the decomposition (resp. inertia)

group at q in GS . In Section 1, we define the Selmer groups Sel(M̄) for k[GS]-modules M̄
and obtain the following exact sequence of the Galois cohomology groups:

Sel(Ad(ρ̄)(1))∨ → H 2(GS,Ad(ρ̄))

→
⊕
q∈Sfin

H 0(Qq,Ad(ρ̄)(1))∨ ,

where Ad(ρ̄)(1) is the Tate twist of Ad(ρ̄) by the mod p cyclotomic character x̄ and the
symbol ∨ stands for the dual space of k-vector spaces (cf. Proposition 1.2). Then we apply a
result of Diamond, Flach and Guo [4, Theorems 7.15 and 8.2] on the vanishing of the Selmer
groups, which is based on the method of Wiles [24] completed with Taylor [21], and get a
condition for Sel(Ad(ρ̄)(1)) = 0 (Theorem 1.4). In Section 2, we give some conditions for

H 0(Qq,Ad(ρ̄)(1)) = 0 at q = p and each q ∈ Sfin \ {p} for which ρ̄|Iq is reducible. In
this situaion, twisting ρ̄|Dq by a suitable local character ψq at q enables us to obtain some

conditions for H 0(Qq,Ad(ρ̄)(1)) = 0 by means of representation matrices of Ad(ρ̄)(1).
Putting these conditions together, we obtain the Main Theorem.

REMARK 0.1. As to the case where q �= p and ρ̄|Iq is irreducible, we can see cal-

culations of Weston on the vanishing of H 0(Qq,Ad(ρ̄)(1)) with supercuspidal automorphic
representations in the proof of [23, Proposition 3.2]. Also, in [23, Section 5.4], we can see
examples of the unobstructedness of deformation problems for ρ̄ associated to the primitive
forms of level 1 and weight 12, 16, 18, 20, 22 and 26.
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REMARK 0.2. As to the case of weight 2, by a result of Flach [8, Theorem 2] on the
unobstructedness of residual representations associated to elliptic curves, Mazur [16, Corol-
lary 2] showed that if f is a newform having Fourier coefficients in Q of weight 2 with trivial
character and not of CM-type, then the set of prime numbers p for which ρ̄ is absolutely
irreducible and the deformation problem for ρ̄ is unobstructed is of Dirichlet density 1. This
result has been generalized by Weston [23, Theorem 1] to the case of any type.

REMARK 0.3. For a newform f and an odd prime number p, Gouvêa [10, Question
III.5] conjectured that if the mod p representation ρ̄ associated to f is absolutely irreducible,
any deformation of ρ̄ to a complete Noetherian local ring with residue field k is associated to
a Katz’s p-adic eigenform. (For the details of deformation theory of residual representations,
see [15], and for Gouvêa’s conjecture, see [10, Chapter III].) The author [25, Main Theorem]
proved that if the deformation problem for ρ̄ is unobstructed, then Gouvêa’s conjecture is
true. (The proof of this theorem is based on the method of Gouvêa and Mazur [12]. See also
Böckle’s article [2].) Therefore, by his work combined with [23, Theorem 1], we see that
Gouvêa’s conjecture is true for almost all p when the weight of f is greater than 2.

We denote by Q, Qp, R and C the fields of rational numbers, p-adic numbers, real
numbers and complex numbers, respectively and by Z and Zp the rings of integers and p-adic
integers, respectively. We denote by Fq the finite field consisting of q elements. We fix once

and for all an embedding Q̄ ↪→ Q̄v for each rational place v.

Acknowledgement. The author is grateful to Doctor T. Ochiai for worthy advice about
the result of Diamond, Flach and Guo [4] on the vanishing of the Selmer groups, and to Doctor
M. Kisin for worthy advice about a relation between level and character. He also thanks the
referees for giving him many comments on the manuscript.

1. The Galois cohomology groups and the Selmer groups

Let p be an odd prime number, S a finite set of rational places containing p and ∞ and
GS the Galois group of the maximal Galois extension of Q unramified outside S. Let F be a
finite extension of Qp, O the ring of integers of F with a prime element π and k the residue
field of F . Let M be a finite flat O-module with GS-action. Then we put

V := M ⊗O F , W := M ⊗O F/O , M̄ := M ⊗O k .

We consider the Galois cohomology groups Hi(GS,A) for i = 0, 1 and 2 with A =
M,V,W or M̄ (for the definition of the Galois cohomology groups, see [22, Section 1]). For
each v ∈ S, we regard the absolute Galois group GQv of Qv as a decomposition group at v in

GS . We denote by Hi(Qv, A) the local Galois cohomology group Hi(GQv , A) and by

resv : Hi(GS,A) → Hi(Qv, A)

the natural restriction map.
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For each v ∈ S, we define the subgroup H 1
f (Qv, A) of H 1(Qv, A) as follows: First

following Bloch and Kato [1, Section 3], we define

H 1
f (Qv, V ) :=

{
Ker(H 1(Qv, V )

res−→H 1(Iv, V )) , if v �= p ,

Ker(H 1(Qp, V ) → H 1(Qp, V ⊗ Bcrys)) , if v = p ,

where Iv is the inertia group at v in GQv and Bcrys is the ring defined by Fontaine (see [9,
Section I.2.1]). From the short exact sequence

0 → M → V → W → 0 ,

we have an exact sequence of the Galois cohomology groups

H 1(Qv,M) → H 1(Qv, V ) → H 1(Qv,W) .

Then we define the subgroup H 1
f (Qv,M) of H 1(Qv,M) (resp. H 1

f (Qv,W) of H 1(Qv,W))

as the inverse image (resp. the image) of H 1
f (Qv, V ) in the exact sequence above. Moreover,

by the inclusion

M̄ = Ker(W
1⊗π−→W) ↪→ W ,

we obtain a natural homomorphism

H 1(Qv, M̄) → H 1(Qv,W) .

Then we define the subgroup H 1
f (Qv, M̄) ofH 1(Qv, M̄) as the inverse image of H 1

f (Qv,W)

under the homomorphism above.

DEFINITION 1.1 (the Selmer groups). We define for A = M,V,W or M̄

Sel(A) := Ker

(⊕
v∈S

resv : H 1(GS,A) →
⊕
v∈S

H 1(Qv, A)

H 1
f (Qv, A)

)
.

REMARK 1.1. Note that we have

H 1(R, M̄) = 0 and H 2(R, M̄) = 0 .

Because for i = 1 and 2,

0 = �Gal(C/R) · Ker(H i(R, M̄)
res−→Hi({1}, M̄))

= 2 · Ker(H i(R, M̄) → 0)

= 2 ·Hi(R, M̄)

by [19, Chapter I, Proposition 9] and the assumption that p is odd.
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DEFINITION 1.2 (the Tate-Shafarevich groups). We put Sfin := S \ {∞} and define

X1(M̄) := Ker

(⊕
q∈Sfin

resq : H 1(GS, M̄) →
⊕
q∈Sfin

H 1(Qq, M̄)

)
,

X2(M̄) := Ker

(⊕
q∈Sfin

resq : H 2(GS, M̄) →
⊕
q∈Sfin

H 2(Qq, M̄)

)
.

Note that

X1(M̄) ⊂ Sel(M̄) .

We now recall duality theorems of the Galois cohomology groups without their proofs:

THEOREM 1.1. (1) (Global Tate Duality. cf. [13, Theorem 4.50(1)]) There exists
a non-degenerate pairing

X1(M̄)× X2(M̄∨(1)) → k ,

where M̄∨ is the dual space Homk(M̄, k) of M̄ with GS-action defined by

(σ · ϕ)(m) := ϕ(σ−1m) (σ ∈ GS, ϕ ∈ M̄∨, m ∈ M̄) ,
and M̄∨(1) is the Tate twist of M̄∨ by the mod p cyclotomic character x̄.

(2) (Local Tate Duality. cf. [17, Theorem 1.4.1]) For each q ∈ Sfin, there exists a
non-degenerate pairing

H 2(Qq, M̄)×H 0(Qq, M̄
∨(1)) → k .

By these duality theorems, we have an important exact sequence of the Galois cohomology
groups:

PROPOSITION 1.2. We have an exact sequence

Sel(M̄∨(1))∨ → H 2(GS, M̄) →
⊕
q∈Sfin

H 0(Qq, M̄
∨(1))∨.

Démonstration. By the inclusion X1(M̄∨(1)) ↪→ Sel(M̄∨(1)) and Theorem 1.1(1), we
have an exact sequence

(i) Sel(M̄∨(1))∨ → X2(M̄) → 0

because taking dual spaces is an exact contravariant functor and

(M̄∨(1))∨(1) ∼= M̄

asGS-modules. On the other hand, by the definition of X2(M̄) and Theorem 1.1(2), we have
an exact sequence

(ii) 0 → X2(M̄) → H 2(GS, M̄) →
⊕
q∈Sfin

H 0(Qq, M̄
∨(1))∨ .
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Then by the exact sequences (i) and (ii), we obtain

Sel(M̄∨(1))∨ → H 2(GS, M̄) →
⊕
q∈Sfin

H 0(Qq, M̄
∨(1))∨ .

�

In the following, we use the same notation as in the Introduction. We putM := EndO(O×O)
on whichGS acts via Ad(ρ). Since the adjoint representation Ad(ρ̄) associated to ρ̄ is nothing
but M̄ = M ⊗ k and Ad(ρ̄)∨ ∼= Ad(ρ̄) as GS-modules, we have an exact sequence

(	) Sel(Ad(ρ̄)(1))∨ → H 2(GS,Ad(ρ̄))

→
⊕
q∈Sfin

H 0(Qq,Ad(ρ̄)(1))∨

by Proposition 1.2.
By the natural identification

{(
a 0
0 a

)|a ∈ k
} = k, we have the decomposition

Ad(ρ̄) = Ad0(ρ̄)⊕ k

as GS-modules, where Ad0(ρ̄) is the subrepresentation of Ad(ρ̄) consisting of all elements
having trace 0 in Ad(ρ̄). Note that GS acts trivially on k. Then we obtain

Ad(ρ̄)(1) = Ad0(ρ̄)(1)⊕ k(1) ,

and

Sel(Ad(ρ̄)(1)) = Sel(Ad0(ρ̄)(1))⊕ Sel(k(1)).

PROPOSITION 1.3. We have

Sel(k(1)) = 0 and Sel(Ad(ρ̄)(1)) = Sel(Ad0(ρ̄)(1)) .

Démonstration. Since k(1) = Fp(1)⊗Fp k, we have

Sel(k(1)) = Sel(Fp(1))⊗Fp k .

So it suffices to show that Sel(Fp(1)) = 0. By Kummer Theory, we see that

Sel(Fp(1)) = Sel(Z/pZ(1))

= Ker

(⊕
q∈Sfin

resq : H 1(GS,Z/pZ(1)) →
⊕
q∈Sfin

H 1(Qq,Z/pZ(1))

H 1
f (Qq,Z/pZ(1))

)

= Ker

( ⊕
q:all primes

ordq(·) (mod p) : Q×/(Q×)p →
⊕

q:all primes

Z/pZ
)

= 0 .

Here ordq is the q-adic valuation normalized by ordq(q) = 1. �
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Applying the results of Diamond, Flach and Guo [4] on the vanishing of the Selmer
groups, we have the following

THEOREM 1.4. If a prime ideal p of Q(f ) satisfies the condition

(C1) ρ̄ is irreducible , p � ηΣf and p � N(2k − 1)(2k − 3)k! ,
then we have

Sel(Ad0(ρ̄)(1)) = 0 ,

where ηΣf is the congruence ideal defined in [4, Section 6.4]. Especially, for almost all p, the

Selmer group Sel(Ad0(ρ̄)(1)) vanishes.

Démonstration. Let V be the GS-module consisting of the trace 0 endomorphisms on
the representation space of ρ over Q(f )� andM its O-lattice withGS-action via Ad(ρ). Note

that we have M̄(1) = Ad0(ρ̄)(1).
By the exact sequence

0 → M̄(1) → W(1) → W(1) → 0

of GS-modules, we have the exact sequence

H 0(GS,W(1)) → H 1(GS, M̄(1)) → H 1(GS,W(1))

of the Galois cohomology groups. Since ρ̄ is irreducible, we have H 0(GS,W(1)) = 0. Then
we obtain an inclusion

Sel(M̄(1)) ↪→ Sel(W(1)) .

So in order to prove the theorem, it suffices to show that Sel(W(1)) = 0 under the condition
(C1).

By the exact sequence

0 → M(1) → V (1) → W(1) → 0

of GS-modules, we have the exact sequence

H 1(GS, V (1))
φ−→H 1(GS,W(1))

ψ−→H 2(GS,M(1))

of the Galois cohomology groups. Then we obtain the exact sequence

0 → φ(Sel(V (1))) → Sel(W(1)) → ψ(Sel(W(1))) → 0 .

By [4, Theorem 8.2], we know that φ(Sel(V (1))) = 0 under the condition (C1). On the other
hand, we also obtain another exact sequence

0 → φ′(Sel(V )) → Sel(W) → ψ ′(Sel(W)) → 0

of the Selmer groups from the exact sequence

0 → M → V → W → 0
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of GS-modules with suitable homomorphisms φ′ and ψ ′. We note that the Selmer group

Sel(W) is included in the O-module H 1
Σ(GQ,W) defined in [4, Section 7.1], which vanishes

under the condition (C1) by [4, Theorem 7.15]. Then we have

φ′(Sel(V )) = 0 .

Since M is O-free, we see that the Pontryagin dual of W is isomorphic to W(1) as GS-
modules. By [7, Theorem 1], we then have

Sel(W(1)) = 0

as desired. By [4, Lemma 7.13], we know that ρ̄ is irreducible for almost all prime ideals p.
So the last assertion is verified. �

2. The vanishing of H 0(Qq,Ad(ρ̄)(1))

In this section, we shall give some conditions for

H 0(Qq,Ad(ρ̄)(1)) = 0

for each q ∈ Sfin and prove the Main Theorem. We denote byDq (resp. Iq ) the decomposition
(resp. inertia) group at q in GS . First we consider the case where q = p. We denote by V the
representation space of ρ̄. Then we have

Ad(ρ̄)(1) ∼= (V ⊗ V )⊗ (det ρ̄)−1(1)

∼= (V ⊗ V )(2 − k)⊗ ε̄−1

asGS-modules, where (V ⊗V )(2 − k) is the Tate twist of (V ⊗V ) by χ̄2−k and ε̄ is the mod
p reduction of ε. We recall some results on mod p modular representations restricted to Dp
or Ip:

THEOREM 2.1 ([5, Theorems 2.5 and 2.6]). We assume that 2 � k � p+ 1 and p � N .
(1) If ap(f ) �≡ 0 (mod p), then we have

ρ̄|Dp ∼
(
χ̄ k−1η(ε̄(p)ap(f )

−1) ξ ′
0 η(ap(f ))

)

with a function ξ ′ : Dq → F̄p.
(2) If ap(f ) ≡ 0 (mod p), then we have

ρ̄|Ip ∼
(
ψk−1 0

0 ψ ′k−1

)
,

and ρ̄|Dp is irreducible. Here ψ and ψ ′ are the fundamental characters of level 2.

By means of the theorem above, we obtain the following
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PROPOSITION 2.2. We assume the condition (C1) and k > 2.
(1) If ap(f ) �≡ 0 (mod p) and the following condition is satisfied:

(C2) k �≡ 0 (mod p − 1) ,

then we have

H 0(Qp,Ad(ρ̄)(1)) = 0 .

(2) If ap(f ) ≡ 0 (mod p), then

H 0(Qp,Ad(ρ̄)(1)) = 0 .

Démonstration. By the condition (C1), we see that p ≥ k + 1 and p � N . Therefore we
can apply Theorem 2.1.

(1) By Theorem 2.1(1), the representation matrix of (V ⊗V )(2−k)⊗ ε̄−1 is equivalent
to the matrix 


χ̄ k ξ ′ · χ̄ ξ ′ · χ̄ ξ ′2 · χ̄2−k
0 χ̄ 0 ξ ′ · χ̄2−k
0 0 χ̄ ξ ′ · χ̄2−k
0 0 0 χ̄2−k




on Dp because ε̄ and η(·) are unramified at p. By the conditions (C1) and (C2), we see that
there exists an element σ ∈ Ip such that

χ̄ k(σ ) �= 1 or χ̄2−k(σ ) �= 1

because k > 2. Therefore we have

H 0(Qp,Ad(ρ̄)(1)) = 0 .

(2) By Theorem 2.1(2), the representation matrix of (V ⊗V )(2−k)⊗ ε̄−1 is equivalent
to the diagonal matrix 


ψk−p(k−2)

χ̄

χ̄

ψ(p−1)k+2




on Ip because ψψ ′ = χ̄ and ψ ′ = ψp . Since the fundamental character ψ is a surjection

to F×
p2 , we see that ψk−p(k−2) and ψ(p−1)k+2 are non-trivial under the condition (C1) which

implies that p ≥ 5. Therefore we have

H 0(Qp,Ad(ρ̄)(1)) = 0.

�
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Next we consider the case where q �= p. By the assumption of the Main Theorem, we

may assume that ρ̄|Iq is reducible for any q ∈ Sfin \ {p}. We can see easily that there exists a
primitive (p-adic) character ψ (of conductor d) for which we have either

ordq(N(ρ̄ ⊗ ψ̄)) = ordq(Cεψ2) ≥ 1

or

ordq(N(ρ̄ ⊗ ψ̄)) = 1 and ordq(Cεψ2) = 0 ,

and the set of the prime divisors of the least common multiple N ′ of N, d2 and dCε coincides
with S. Here ψ̄ is the mod p reduction of ψ and N(ρ̄ ⊗ ψ̄) and Cεψ2 are the conductor of

the residual representation ρ̄ ⊗ ψ̄ and the character εψ2, respectively. (For the definition of
the conductor of residual representations, see [18], [6].) By [20, Proposition 3.64], the twisted

eigenform f ⊗ψ to which ρ̄⊗ ψ̄ is associated is of levelN ′ and weight k with character εψ2.
We assume that p ≥ 5. Then by a result of Diamond [3, Corollary 1.2] on Serre’s conjecture
about residual modular representations combined with a result of Gouvêa [11, Lemma 7] on
the level of primitive forms, we see that there exists a primitive form g of levelN(ρ̄⊗ ψ̄) and
weight k(ρ̄⊗ ψ̄) ≥ 2 with character ε(ρ̄⊗ ψ̄) to which ρ̄⊗ ψ̄ is associated, where k(ρ̄⊗ ψ̄)

and ε(ρ̄⊗ ψ̄) are the weight and the character defined by Serre in [18], respectively. Since we
see that Cε(ρ̄⊗ψ̄) = Cεψ2 and Ad(ρ̄) = Ad(ρ̄ ⊗ ψ̄) as GS-modules, it suffices to investigate

the vanishing ofH 0(Qq,Ad(ρ̄)(1))with the primitive form g having the following properties:

ordq(N(ρ̄ ⊗ ψ̄)) = ordq(Cε(ρ̄⊗ψ̄)) ≥ 1

or

ordq(N(ρ̄ ⊗ ψ̄)) = 1 and ordq(Cε(ρ̄⊗ψ̄)) = 0 .

REMARK 2.1. We will see later that the conditions for the vanishing of

H 0(Qq,Ad(ρ̄)(1)) for all q �= p are independent of the weight of eigenforms to which ρ̄
is associated. This fact guarantees that the above argument works well in the proof of the
Main Theorem, although the weight k(ρ̄ ⊗ ψ̄) can be equal to 2.

Now we recall some results on p-adic modular Galois representations ρ associated to a
primitive form g of level N , weight k ≥ 2 and character ε:

THEOREM 2.3 (Langlands [14], see [13, Theorem 3.26(3)]). Let q be a prime divisor
of N . We assume that q �= p. Let χ be the p-adic cyclotomic character and η(x) the unrami-
fied character onDq such that η(x)(Frobq) = x.

(1) If ordq(N) = ordq(Cε) ≥ 1, then we have

ρ|Dq ∼
(
εχk−1η(aq(g))−1 0

0 η(aq(g))

)
.
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(2) If ordq (N) = 1 and ordq(Cε) = 0, then we have

ρ|Dq ∼
(
η(aq(g))χ ∗

0 η(aq(g))

)
,

and ρ|Dq is ramified.

We put ρ̄′ := ρ̄ ⊗ ψ̄, k′ := k(ρ̄′) and ε′ := ε(ρ̄′). We denote the representation space of ρ̄′
by V ′. Then we have

Ad(ρ̄)(1) ∼= (V ′ ⊗ V ′)(2 − k′)⊗ ε̄′−1

as GS-modules, where ε̄′ is the mod p reduction of ε′. We are going to give some conditions
for p ≥ 5 under which (V ′ ⊗ V ′)(2 − k′) ⊗ ε̄′−1 has no GQq -invariant element by showing
the following

PROPOSITION 2.4. (1) In the case where ordq(N(ρ̄′)) = ordq(Cε′), we have

H 0(Qq,Ad(ρ̄)(1)) = 0.

(2) In the case where ordq(N(ρ̄′)) = 1 and ordq(Cε′) = 0, we assume the following
condition:

(C3) q �≡ 1 (mod p) ,

then we have

H 0(Qq,Ad(ρ̄)(1)) = 0 .

Démonstration. (1) By Theorem 2.3(1), the representation matrix of (V ′ ⊗ V ′)(2 −
k′)⊗ ε̄′−1 is equivalent to the diagonal matrix



ε̄′χ̄ k′

η(aq(g))−2

χ̄

χ̄

ε̄′−1χ̄2−k′
η(aq(g))2




onDq . Since χ̄ is non-trivial and unramified by the condition (C3), ε̄′ is ramified and η(aq(g))
is unramified at q , we see that all diagonal components are non-trivial characters. We then
have

H 0(Qq,Ad(ρ̄)(1)) = 0 .

(2) We note that ρ̄′ is ramified at q . By Theorem 2.3(2), we have

ρ̄′|Dq ∼
(
η(aq(g))χ̄ ξ

0 η(aq(g))

)
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with a function ξ : Dq → F̄p. Then we see that the representation matrix of (V ′ ⊗ V ′)(2 −
k′)⊗ ε̄′−1 is equivalent to the matrix



χ̄2 η′χ̄ η′χ̄ η′2

0 χ̄ 0 η′
0 0 χ̄ η′
0 0 0 1




on Dq , where η′ := ξ · η(aq(g))−1. If there exist elements a, b, c, d ∈ F̄p such that



χ̄2(σ ) η′χ̄(σ ) η′χ̄(σ ) η′2(σ )

0 χ̄(σ ) 0 η′(σ )
0 0 χ̄(σ ) η′(σ )
0 0 0 1





a

b

c

d


 =



a

b

c

d


 (σ ∈ Dq) ,

then we see that

χ̄2(σ )a + η′χ̄(σ )b + η′χ̄(σ )c + η′2(σ )d = a ,(1)

(χ̄(σ )− 1)(b − c) = 0 ,(2)

(χ̄(σ )− 1)b + η′(σ )d = 0 ,(3)

for any σ ∈ Dq . By the condition (C3), we see that χ̄ (Frobq) = q (mod p) �= 1 in F×
p . Then

b = c by the equation (2). Since ρ̄ is ramified at q , there exists an element σ0 ∈ Iq such that
η′(σ0) �= 0. Taking σ0 as σ in the equation (3), we have d = 0. Then, taking Frobq as σ in the
equation (3), we have b = c = 0. This implies a = 0 by the equation (1). Therefore we have

H 0(Qq,Ad(ρ̄)(1)) = 0 .

�

Note that in the case where p does not divide 2, ρ̄ is absolutely irreducible if and only if it is
irreducible, because the residual modular representation ρ̄ is odd, i.e., the image of complex
conjugation under ρ̄ has determinant −1. Then by putting Theorem 1.4, Propositions 1.3, 2.2
and 2.4 together, the Main Theorem is proven because of the exact sequence (	) in Section 1.
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