Токуо J. Матн. Vol. 27, No. 2, 2004

On the Unobstructedness of the Deformation Problems of Residual Modular Representations

Atsushi YAMAGAMI

Kyoto University

(Communicated by Y. Ohnita)

Abstract. Let f be a primitive form whose weight is greater than 2. Weston [23, Theorem 1] showed that the mod p representation $\bar{\rho}$ associated to f is irreducible and the deformation problem for $\bar{\rho}$ is unobstructed for almost all p. The aim of this article is to give a simpler proof of his result in some cases.

0. Introduction

Let N be a positive integer, $k \ge 2$ an integer and f a primitive form of level N, weight k and character ε . Here we mean by "a primitive form" that f is a normalized newform. Let

$$f(q) = \sum_{n \ge 1} a_n(f)q^n$$

be the *q*-expansion of *f*. We denote by $\mathbf{Q}(f)$ the finite extension of \mathbf{Q} generated by $\{a_n(f)\}_{n\geq 1}$. We fix a prime number *p* and a prime ideal \mathfrak{p} above *p* of $\mathbf{Q}(f)$. Then we denote by \mathcal{O} the ring of integers of the completion $\mathbf{Q}(f)_{\mathfrak{p}}$ of $\mathbf{Q}(f)$ with respect to \mathfrak{p} and by *k* the residue field of \mathcal{O} . We assume that *p* is prime to 2N. Let $G_{\mathbf{Q}}$ be the absolute Galois group of \mathbf{Q} . It is known that there exists a Galois representation

$$\rho: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathcal{O})$$

associated to f satisfying the following conditions:

- (i) ρ is unramified outside $S := \{$ the prime divisors of $Np \} \cup \{\infty\};$
- (ii) for each prime number $l \notin S$,

$$\operatorname{Trace}(\rho(\operatorname{Frob}_l)) = a_l(f), \quad \det(\rho(\operatorname{Frob}_l)) = \varepsilon(l)l^{k-1},$$

where Frob_l is a Frobenius element at l.

By the condition (i), we know that ρ factors through the Galois group G_S of the maximal Galois extension of **Q** unramified outside *S*. Then we put

 $\bar{\rho} := \rho \pmod{\mathfrak{p}} : G_S \to \operatorname{GL}_2(k) \,.$

Received April 22, 2003; revised May 6, 2004

The author is a JSPS Postdoctoral Fellow in Department of Mathematics, Kyoto University.

We say that the deformation problem for $\bar{\rho}$ is *unobstructed* if we have

$$H^2(G_S, \operatorname{Ad}(\bar{\rho})) = 0$$
,

where $Ad(\bar{\rho})$ is the adjoint representation associated to $\bar{\rho}$, i.e., the matrix ring $M_2(k)$ of degree 2 over k on which G_s -action is given by

$$\sigma \cdot M := \bar{\rho}(\sigma) M \bar{\rho}(\sigma)^{-1} \quad (\sigma \in G_S, \ M \in M_2(\mathbf{k})).$$

Weston [23, Theorem 1] showed that if k > 2, then $\bar{\rho}$ is absolutely irreducible and the deformation problem for $\bar{\rho}$ is unobstructed for almost all ρ by means of the theory of irreducible admissible automorphic representations and the theory of Dieudonné modules. The aim of this paper is to give a simpler proof than his method in some cases using elementary calculations of representation matrices of Ad($\bar{\rho}$). Namely, in this article, we shall give another proof of the following

MAIN THEOREM. Let f be a primitive form of level N, weight k > 2 and character ε . We assume that there are only finitely many prime ideals \mathfrak{p} of $\mathbf{Q}(f)$ for which the restriction of $\bar{\rho}$ to the inertia group at each prime number $q \in S \setminus \{p, \infty\}$ is irreducible. Then for almost all prime ideals \mathfrak{p} of $\mathbf{Q}(f)$, $\bar{\rho}$ is absolutely irreducible and the deformation problem for $\bar{\rho}$ is unobstructed.

We put $S^{\text{fin}} := S \setminus \{\infty\}$. We denote by D_q (resp. I_q) the decomposition (resp. inertia) group at q in G_S . In Section 1, we define the *Selmer groups* $\text{Sel}(\bar{M})$ for $k[G_S]$ -modules \bar{M} and obtain the following exact sequence of the Galois cohomology groups:

$$\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1))^{\vee} \to H^{2}(G_{S}, \operatorname{Ad}(\bar{\rho}))$$
$$\to \bigoplus_{q \in S^{\operatorname{fin}}} H^{0}(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1))^{\vee},$$

where $\operatorname{Ad}(\bar{\rho})(1)$ is the Tate twist of $\operatorname{Ad}(\bar{\rho})$ by the mod p cyclotomic character \bar{x} and the symbol \vee stands for the dual space of k-vector spaces (cf. Proposition 1.2). Then we apply a result of Diamond, Flach and Guo [4, Theorems 7.15 and 8.2] on the vanishing of the Selmer groups, which is based on the method of Wiles [24] completed with Taylor [21], and get a condition for Sel(Ad($\bar{\rho}$)(1)) = 0 (Theorem 1.4). In Section 2, we give some conditions for $H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1)) = 0$ at q = p and each $q \in S^{\operatorname{fin}} \setminus \{p\}$ for which $\bar{\rho}|_{I_q}$ is reducible. In this situation, twisting $\bar{\rho}|_{D_q}$ by a suitable local character ψ_q at q enables us to obtain some conditions for $H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1)) = 0$ by means of representation matrices of $\operatorname{Ad}(\bar{\rho})(1)$. Putting these conditions together, we obtain the Main Theorem.

REMARK 0.1. As to the case where $q \neq p$ and $\bar{\rho}|_{I_q}$ is irreducible, we can see calculations of Weston on the vanishing of $H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1))$ with supercuspidal automorphic representations in the proof of [23, Proposition 3.2]. Also, in [23, Section 5.4], we can see examples of the unobstructedness of deformation problems for $\bar{\rho}$ associated to the primitive forms of level 1 and weight 12, 16, 18, 20, 22 and 26.

REMARK 0.2. As to the case of weight 2, by a result of Flach [8, Theorem 2] on the unobstructedness of residual representations associated to elliptic curves, Mazur [16, Corollary 2] showed that if f is a newform having Fourier coefficients in **Q** of weight 2 with trivial character and not of CM-type, then the set of prime numbers p for which $\bar{\rho}$ is absolutely irreducible and the deformation problem for $\bar{\rho}$ is unobstructed is of Dirichlet density 1. This result has been generalized by Weston [23, Theorem 1] to the case of any type.

REMARK 0.3. For a newform f and an odd prime number p, Gouvêa [10, Question III.5] conjectured that if the mod p representation $\bar{\rho}$ associated to f is absolutely irreducible, any deformation of $\bar{\rho}$ to a complete Noetherian local ring with residue field k is associated to a Katz's p-adic eigenform. (For the details of deformation theory of residual representations, see [15], and for Gouvêa's conjecture, see [10, Chapter III].) The author [25, Main Theorem] proved that if the deformation problem for $\bar{\rho}$ is unobstructed, then Gouvêa's conjecture is true. (The proof of this theorem is based on the method of Gouvêa and Mazur [12]. See also Böckle's article [2].) Therefore, by his work combined with [23, Theorem 1], we see that Gouvêa's conjecture is true for almost all p when the weight of f is greater than 2.

We denote by \mathbf{Q} , \mathbf{Q}_p , \mathbf{R} and \mathbf{C} the fields of rational numbers, *p*-adic numbers, real numbers and complex numbers, respectively and by \mathbf{Z} and \mathbf{Z}_p the rings of integers and *p*-adic integers, respectively. We denote by \mathbf{F}_q the finite field consisting of *q* elements. We fix once and for all an embedding $\mathbf{\bar{Q}} \hookrightarrow \mathbf{\bar{Q}}_v$ for each rational place *v*.

Acknowledgement. The author is grateful to Doctor T. Ochiai for worthy advice about the result of Diamond, Flach and Guo [4] on the vanishing of the Selmer groups, and to Doctor M. Kisin for worthy advice about a relation between level and character. He also thanks the referees for giving him many comments on the manuscript.

1. The Galois cohomology groups and the Selmer groups

Let *p* be an odd prime number, *S* a finite set of rational places containing *p* and ∞ and *G_S* the Galois group of the maximal Galois extension of **Q** unramified outside *S*. Let *F* be a finite extension of **Q**_{*p*}, \mathcal{O} the ring of integers of *F* with a prime element π and *k* the residue field of *F*. Let *M* be a finite flat \mathcal{O} -module with *G_S*-action. Then we put

$$V := M \otimes_{\mathcal{O}} F, \quad W := M \otimes_{\mathcal{O}} F/\mathcal{O}, \quad \overline{M} := M \otimes_{\mathcal{O}} k.$$

We consider the Galois cohomology groups $H^i(G_S, A)$ for i = 0, 1 and 2 with A = M, V, W or \overline{M} (for the definition of the Galois cohomology groups, see [22, Section 1]). For each $v \in S$, we regard the absolute Galois group $G_{\mathbf{Q}_v}$ of \mathbf{Q}_v as a decomposition group at v in G_S . We denote by $H^i(\mathbf{Q}_v, A)$ the local Galois cohomology group $H^i(G_{\mathbf{Q}_v}, A)$ and by

$$\operatorname{res}_{v}: H^{l}(G_{S}, A) \to H^{l}(\mathbf{Q}_{v}, A)$$

the natural restriction map.

For each $v \in S$, we define the subgroup $H_f^1(\mathbf{Q}_v, A)$ of $H^1(\mathbf{Q}_v, A)$ as follows: First following Bloch and Kato [1, Section 3], we define

$$H^1_f(\mathbf{Q}_v, V) := \begin{cases} \operatorname{Ker}(H^1(\mathbf{Q}_v, V) \xrightarrow{\operatorname{res}} H^1(I_v, V)), & \text{if } v \neq p, \\ \operatorname{Ker}(H^1(\mathbf{Q}_p, V) \to H^1(\mathbf{Q}_p, V \otimes B_{\operatorname{crys}})), & \text{if } v = p, \end{cases}$$

where I_v is the inertia group at v in $G_{\mathbf{Q}_v}$ and B_{crys} is the ring defined by Fontaine (see [9, Section I.2.1]). From the short exact sequence

$$0 \to M \to V \to W \to 0,$$

we have an exact sequence of the Galois cohomology groups

$$H^1(\mathbf{Q}_v, M) \to H^1(\mathbf{Q}_v, V) \to H^1(\mathbf{Q}_v, W)$$
.

Then we define the subgroup $H_f^1(\mathbf{Q}_v, M)$ of $H^1(\mathbf{Q}_v, M)$ (resp. $H_f^1(\mathbf{Q}_v, W)$ of $H^1(\mathbf{Q}_v, W)$) as the inverse image (resp. the image) of $H_f^1(\mathbf{Q}_v, V)$ in the exact sequence above. Moreover, by the inclusion

$$\bar{M} = \operatorname{Ker}(W \xrightarrow{1 \otimes \pi} W) \hookrightarrow W,$$

we obtain a natural homomorphism

$$H^1(\mathbf{Q}_v, \bar{M}) \to H^1(\mathbf{Q}_v, W)$$
.

Then we define the subgroup $H_f^1(\mathbf{Q}_v, \overline{M})$ of $H^1(\mathbf{Q}_v, \overline{M})$ as the inverse image of $H_f^1(\mathbf{Q}_v, W)$ under the homomorphism above.

DEFINITION 1.1 (the Selmer groups). We define for A = M, V, W or \overline{M}

$$\operatorname{Sel}(A) := \operatorname{Ker}\left(\bigoplus_{v \in S} \operatorname{res}_{v} : H^{1}(G_{S}, A) \to \bigoplus_{v \in S} \frac{H^{1}(\mathbf{Q}_{v}, A)}{H^{1}_{f}(\mathbf{Q}_{v}, A)}\right).$$

REMARK 1.1. Note that we have

$$H^{1}(\mathbf{R}, \bar{M}) = 0$$
 and $H^{2}(\mathbf{R}, \bar{M}) = 0$.

Because for i = 1 and 2,

$$0 = \sharp \operatorname{Gal}(\mathbf{C}/\mathbf{R}) \cdot \operatorname{Ker}(H^{i}(\mathbf{R}, \bar{M}) \xrightarrow{\operatorname{res}} H^{i}(\{1\}, \bar{M}))$$
$$= 2 \cdot \operatorname{Ker}(H^{i}(\mathbf{R}, \bar{M}) \to 0)$$
$$= 2 \cdot H^{i}(\mathbf{R}, \bar{M})$$

by [19, Chapter I, Proposition 9] and the assumption that p is odd.

ON THE UNOBSTRUCTEDNESS OF THE DEFORMATION PROBLEMS

DEFINITION 1.2 (the Tate-Shafarevich groups). We put $S^{fin} := S \setminus \{\infty\}$ and define

$$\begin{split} & \operatorname{III}^{1}(\bar{M}) := \operatorname{Ker}\left(\bigoplus_{q \in S^{\operatorname{fin}}} \operatorname{res}_{q} : H^{1}(G_{S}, \bar{M}) \to \bigoplus_{q \in S^{\operatorname{fin}}} H^{1}(\mathbf{Q}_{q}, \bar{M})\right), \\ & \operatorname{III}^{2}(\bar{M}) := \operatorname{Ker}\left(\bigoplus_{q \in S^{\operatorname{fin}}} \operatorname{res}_{q} : H^{2}(G_{S}, \bar{M}) \to \bigoplus_{q \in S^{\operatorname{fin}}} H^{2}(\mathbf{Q}_{q}, \bar{M})\right). \end{split}$$

Note that

$$\mathrm{III}^1(\bar{M}) \subset \mathrm{Sel}(\bar{M}) \,.$$

We now recall duality theorems of the Galois cohomology groups without their proofs:

THEOREM 1.1. (1) (Global Tate Duality. cf. [13, Theorem 4.50(1)]) There exists a non-degenerate pairing

$$\mathrm{III}^1(\bar{M}) \times \mathrm{III}^2(\bar{M}^{\vee}(1)) \to \mathbf{k}$$

where \overline{M}^{\vee} is the dual space Hom_k(\overline{M} , k) of \overline{M} with G_S -action defined by

$$(\sigma \cdot \varphi)(m) := \varphi(\sigma^{-1}m) \quad (\sigma \in G_S, \ \varphi \in \overline{M}^{\vee}, \ m \in \overline{M}),$$

and $\overline{M}^{\vee}(1)$ is the Tate twist of \overline{M}^{\vee} by the mod p cyclotomic character \overline{x} .

(2) (Local Tate Duality. cf. [17, Theorem 1.4.1]) For each $q \in S^{fin}$, there exists a non-degenerate pairing

$$H^2(\mathbf{Q}_q, \bar{M}) \times H^0(\mathbf{Q}_q, \bar{M}^{\vee}(1)) \to \mathbf{k}.$$

By these duality theorems, we have an important exact sequence of the Galois cohomology groups:

PROPOSITION 1.2. We have an exact sequence

$$\operatorname{Sel}(\bar{M}^{\vee}(1))^{\vee} \to H^2(G_S, \bar{M}) \to \bigoplus_{q \in S^{\operatorname{fin}}} H^0(\mathbb{Q}_q, \bar{M}^{\vee}(1))^{\vee}.$$

Démonstration. By the inclusion $\operatorname{III}^1(\overline{M}^{\vee}(1)) \hookrightarrow \operatorname{Sel}(\overline{M}^{\vee}(1))$ and Theorem 1.1(1), we have an exact sequence

(i)
$$\operatorname{Sel}(\bar{M}^{\vee}(1))^{\vee} \to \operatorname{III}^2(\bar{M}) \to 0$$

because taking dual spaces is an exact contravariant functor and

$$(\overline{M}^{\vee}(1))^{\vee}(1) \cong \overline{M}$$

as G_S -modules. On the other hand, by the definition of $\text{III}^2(\overline{M})$ and Theorem 1.1(2), we have an exact sequence

(ii)
$$0 \to \operatorname{III}^2(\bar{M}) \to H^2(G_S, \bar{M}) \to \bigoplus_{q \in S^{\mathrm{fin}}} H^0(\mathbf{Q}_q, \bar{M}^{\vee}(1))^{\vee}.$$

Then by the exact sequences (i) and (ii), we obtain

$$\operatorname{Sel}(\bar{M}^{\vee}(1))^{\vee} \to H^2(G_S, \bar{M}) \to \bigoplus_{q \in S^{\operatorname{fin}}} H^0(\mathbf{Q}_q, \bar{M}^{\vee}(1))^{\vee}.$$

In the following, we use the same notation as in the Introduction. We put $M := \operatorname{End}_{\mathcal{O}}(\mathcal{O} \times \mathcal{O})$ on which G_S acts via $\operatorname{Ad}(\rho)$. Since the adjoint representation $\operatorname{Ad}(\bar{\rho})$ associated to $\bar{\rho}$ is nothing but $\bar{M} = M \otimes k$ and $\operatorname{Ad}(\bar{\rho})^{\vee} \cong \operatorname{Ad}(\bar{\rho})$ as G_S -modules, we have an exact sequence

(*)
$$\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1))^{\vee} \to H^{2}(G_{S}, \operatorname{Ad}(\bar{\rho}))$$
$$\to \bigoplus_{q \in S^{\operatorname{fin}}} H^{0}(\mathbf{Q}_{q}, \operatorname{Ad}(\bar{\rho})(1))^{\vee}$$

by Proposition 1.2.

By the natural identification $\left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} | a \in k \right\} = k$, we have the decomposition

$$\operatorname{Ad}(\bar{\rho}) = \operatorname{Ad}^0(\bar{\rho}) \oplus \boldsymbol{k}$$

as G_S -modules, where $\operatorname{Ad}^0(\bar{\rho})$ is the subrepresentation of $\operatorname{Ad}(\bar{\rho})$ consisting of all elements having trace 0 in $\operatorname{Ad}(\bar{\rho})$. Note that G_S acts trivially on k. Then we obtain

$$\operatorname{Ad}(\bar{\rho})(1) = \operatorname{Ad}^{0}(\bar{\rho})(1) \oplus \boldsymbol{k}(1),$$

and

$$\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1)) = \operatorname{Sel}(\operatorname{Ad}^{0}(\bar{\rho})(1)) \oplus \operatorname{Sel}(\boldsymbol{k}(1)).$$

PROPOSITION 1.3. We have

$$\operatorname{Sel}(\boldsymbol{k}(1)) = 0$$
 and $\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})(1)) = \operatorname{Sel}(\operatorname{Ad}^{0}(\bar{\rho})(1))$.

Démonstration. Since $\mathbf{k}(1) = \mathbf{F}_p(1) \otimes_{\mathbf{F}_p} \mathbf{k}$, we have

$$\operatorname{Sel}(\boldsymbol{k}(1)) = \operatorname{Sel}(\mathbf{F}_p(1)) \otimes_{\mathbf{F}_p} \boldsymbol{k}.$$

So it suffices to show that $Sel(\mathbf{F}_p(1)) = 0$. By Kummer Theory, we see that

$$\begin{aligned} \operatorname{Sel}(\mathbf{F}_{p}(1)) &= \operatorname{Sel}(\mathbf{Z}/p\mathbf{Z}(1)) \\ &= \operatorname{Ker}\left(\bigoplus_{q \in S^{\operatorname{fin}}} \operatorname{res}_{q} : H^{1}(G_{S}, \mathbf{Z}/p\mathbf{Z}(1)) \to \bigoplus_{q \in S^{\operatorname{fin}}} \frac{H^{1}(\mathbf{Q}_{q}, \mathbf{Z}/p\mathbf{Z}(1))}{H^{1}_{f}(\mathbf{Q}_{q}, \mathbf{Z}/p\mathbf{Z}(1))}\right) \\ &= \operatorname{Ker}\left(\bigoplus_{q: \operatorname{all primes}} \operatorname{ord}_{q}(\cdot) \pmod{p} : \mathbf{Q}^{\times}/(\mathbf{Q}^{\times})^{p} \to \bigoplus_{q: \operatorname{all primes}} \mathbf{Z}/p\mathbf{Z}\right) \\ &= 0. \end{aligned}$$

Here ord_q is the q-adic valuation normalized by $\operatorname{ord}_q(q) = 1$.

Applying the results of Diamond, Flach and Guo [4] on the vanishing of the Selmer groups, we have the following

THEOREM 1.4. If a prime ideal \mathfrak{p} of $\mathbf{Q}(f)$ satisfies the condition

(C1)
$$\bar{\rho} \text{ is irreducible}, \quad \mathfrak{p} \nmid \eta_f^{\Sigma} \text{ and } p \nmid N(2k-1)(2k-3)k!,$$

then we have

$$Sel(Ad^{0}(\bar{\rho})(1)) = 0$$
.

where η_f^{Σ} is the congruence ideal defined in [4, Section 6.4]. Especially, for almost all \mathfrak{p} , the Selmer group Sel(Ad⁰($\bar{\rho}$)(1)) vanishes.

Démonstration. Let V be the G_S -module consisting of the trace 0 endomorphisms on the representation space of ρ over $\mathbf{Q}(f)_{\mathfrak{p}}$ and M its \mathcal{O} -lattice with G_S -action via $\mathrm{Ad}(\rho)$. Note that we have $\overline{M}(1) = \mathrm{Ad}^0(\overline{\rho})(1)$.

By the exact sequence

$$0 \to \overline{M}(1) \to W(1) \to W(1) \to 0$$

of G_S -modules, we have the exact sequence

$$H^0(G_S, W(1)) \to H^1(G_S, \bar{M}(1)) \to H^1(G_S, W(1))$$

of the Galois cohomology groups. Since $\bar{\rho}$ is irreducible, we have $H^0(G_S, W(1)) = 0$. Then we obtain an inclusion

$$\operatorname{Sel}(\overline{M}(1)) \hookrightarrow \operatorname{Sel}(W(1))$$

So in order to prove the theorem, it suffices to show that Sel(W(1)) = 0 under the condition (C1).

By the exact sequence

$$0 \to M(1) \to V(1) \to W(1) \to 0$$

of G_S -modules, we have the exact sequence

$$H^1(G_S, V(1)) \xrightarrow{\phi} H^1(G_S, W(1)) \xrightarrow{\psi} H^2(G_S, M(1))$$

of the Galois cohomology groups. Then we obtain the exact sequence

$$0 \rightarrow \phi(\operatorname{Sel}(V(1))) \rightarrow \operatorname{Sel}(W(1)) \rightarrow \psi(\operatorname{Sel}(W(1))) \rightarrow 0$$

By [4, Theorem 8.2], we know that $\phi(\text{Sel}(V(1))) = 0$ under the condition (C1). On the other hand, we also obtain another exact sequence

$$0 \to \phi'(\operatorname{Sel}(V)) \to \operatorname{Sel}(W) \to \psi'(\operatorname{Sel}(W)) \to 0$$

of the Selmer groups from the exact sequence

$$0 \to M \to V \to W \to 0$$

of G_S -modules with suitable homomorphisms ϕ' and ψ' . We note that the Selmer group Sel(W) is included in the \mathcal{O} -module $H^1_{\Sigma}(G_{\mathbb{Q}}, W)$ defined in [4, Section 7.1], which vanishes under the condition (C1) by [4, Theorem 7.15]. Then we have

$$\phi'(\operatorname{Sel}(V)) = 0.$$

Since *M* is \mathcal{O} -free, we see that the Pontryagin dual of *W* is isomorphic to W(1) as G_S -modules. By [7, Theorem 1], we then have

$$\operatorname{Sel}(W(1)) = 0$$

as desired. By [4, Lemma 7.13], we know that $\bar{\rho}$ is irreducible for almost all prime ideals p. So the last assertion is verified.

2. The vanishing of $H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1))$

In this section, we shall give some conditions for

$$H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1)) = 0$$

for each $q \in S^{\text{fin}}$ and prove the Main Theorem. We denote by D_q (resp. I_q) the decomposition (resp. inertia) group at q in G_S . First we consider the case where q = p. We denote by V the representation space of $\bar{\rho}$. Then we have

$$\operatorname{Ad}(\bar{\rho})(1) \cong (V \otimes V) \otimes (\det \bar{\rho})^{-1}(1)$$
$$\cong (V \otimes V)(2-k) \otimes \bar{\varepsilon}^{-1}$$

as G_S -modules, where $(V \otimes V)(2-k)$ is the Tate twist of $(V \otimes V)$ by $\bar{\chi}^{2-k}$ and $\bar{\varepsilon}$ is the mod p reduction of ε . We recall some results on mod p modular representations restricted to D_p or I_p :

THEOREM 2.1 ([5, Theorems 2.5 and 2.6]). We assume that $2 \leq k \leq p+1$ and $p \nmid N$. (1) If $a_p(f) \neq 0 \pmod{p}$, then we have

$$\bar{\rho}|_{D_p} \sim \begin{pmatrix} \bar{\chi}^{k-1}\eta(\bar{\varepsilon}(p)a_p(f)^{-1}) & \xi' \\ 0 & \eta(a_p(f)) \end{pmatrix}$$

with a function $\xi' : D_q \to \overline{\mathbf{F}}_p$.

(2) If $a_p(f) \equiv 0 \pmod{p}$, then we have

$$ar{
ho}|_{I_p}\sim egin{pmatrix} \psi^{k-1} & 0 \ 0 & \psi'^{k-1} \end{pmatrix} \,.$$

and $\bar{\rho}|_{D_p}$ is irreducible. Here ψ and ψ' are the fundamental characters of level 2.

By means of the theorem above, we obtain the following

PROPOSITION 2.2. We assume the condition (C1) and k > 2. (1) If $a_p(f) \neq 0 \pmod{p}$ and the following condition is satisfied:

$$k \not\equiv 0 \pmod{p-1}$$
,

then we have

(C2)

$$H^0(\mathbf{Q}_p, \operatorname{Ad}(\bar{\rho})(1)) = 0$$

(2) If $a_p(f) \equiv 0 \pmod{\mathfrak{p}}$, then

$$H^0(\mathbf{Q}_p, \operatorname{Ad}(\bar{\rho})(1)) = 0$$

Démonstration. By the condition (C1), we see that $p \ge k + 1$ and $p \nmid N$. Therefore we can apply Theorem 2.1.

(1) By Theorem 2.1(1), the representation matrix of $(V \otimes V)(2-k) \otimes \bar{\varepsilon}^{-1}$ is equivalent to the matrix

$(\bar{\chi}^k)$	$\xi'\cdot ar{\chi}$	$\xi'\cdotar\chi$	$\xi^{\prime 2} \cdot \bar{\chi}^{2-k}$
0	x	0	$\xi' \cdot \bar{\chi}^{2-k}$
0	0	x	$\xi'\cdot ar{\chi}^{2-k}$
$\int 0$	0	0	$\bar{\chi}^{2-k}$

on D_p because $\bar{\varepsilon}$ and $\eta(\cdot)$ are unramified at p. By the conditions (C1) and (C2), we see that there exists an element $\sigma \in I_p$ such that

$$\bar{\chi}^k(\sigma) \neq 1$$
 or $\bar{\chi}^{2-k}(\sigma) \neq 1$

because k > 2. Therefore we have

$$H^0(\mathbf{Q}_p, \operatorname{Ad}(\bar{\rho})(1)) = 0$$

(2) By Theorem 2.1(2), the representation matrix of $(V \otimes V)(2-k) \otimes \bar{\varepsilon}^{-1}$ is equivalent to the diagonal matrix

$$\begin{pmatrix} \psi^{k-p(k-2)} & & & \\ & \bar{\chi} & & \\ & & \bar{\chi} & \\ & & & \bar{\chi} & \\ & & & \psi^{(p-1)k+2} \end{pmatrix}$$

on I_p because $\psi \psi' = \bar{\chi}$ and $\psi' = \psi^p$. Since the fundamental character ψ is a surjection to $\mathbf{F}_{p^2}^{\times}$, we see that $\psi^{k-p(k-2)}$ and $\psi^{(p-1)k+2}$ are non-trivial under the condition (C1) which implies that $p \ge 5$. Therefore we have

$$H^0(\mathbf{Q}_p, \mathrm{Ad}(\bar{\rho})(1)) = 0.$$

Next we consider the case where $q \neq p$. By the assumption of the Main Theorem, we may assume that $\bar{\rho}|_{I_q}$ is reducible for any $q \in S^{\text{fin}} \setminus \{p\}$. We can see easily that there exists a primitive (*p*-adic) character ψ (of conductor *d*) for which we have either

$$\operatorname{ord}_q(N(\bar{\rho} \otimes \psi)) = \operatorname{ord}_q(C_{\varepsilon \psi^2}) \ge 1$$

or

$$\operatorname{ord}_q(N(\bar{\rho}\otimes\psi))=1$$
 and $\operatorname{ord}_q(C_{\varepsilon\psi^2})=0$,

and the set of the prime divisors of the least common multiple N' of N, d^2 and dC_{ε} coincides with S. Here $\bar{\psi}$ is the mod p reduction of ψ and $N(\bar{\rho} \otimes \bar{\psi})$ and $C_{\varepsilon\psi^2}$ are the conductor of the residual representation $\bar{\rho} \otimes \bar{\psi}$ and the character $\varepsilon\psi^2$, respectively. (For the definition of the conductor of residual representations, see [18], [6].) By [20, Proposition 3.64], the twisted eigenform $f \otimes \psi$ to which $\bar{\rho} \otimes \bar{\psi}$ is associated is of level N' and weight k with character $\varepsilon\psi^2$. We assume that $p \ge 5$. Then by a result of Diamond [3, Corollary 1.2] on Serre's conjecture about residual modular representations combined with a result of Gouvêa [11, Lemma 7] on the level of primitive forms, we see that there exists a primitive form g of level $N(\bar{\rho} \otimes \bar{\psi})$ and weight $k(\bar{\rho} \otimes \bar{\psi}) \ge 2$ with character $\varepsilon(\bar{\rho} \otimes \bar{\psi})$ to which $\bar{\rho} \otimes \bar{\psi}$ is associated, where $k(\bar{\rho} \otimes \bar{\psi})$ and $\varepsilon(\bar{\rho} \otimes \bar{\psi})$ are the weight and the character defined by Serre in [18], respectively. Since we see that $C_{\varepsilon(\bar{\rho} \otimes \bar{\psi})} = C_{\varepsilon\psi^2}$ and $Ad(\bar{\rho}) = Ad(\bar{\rho} \otimes \bar{\psi})$ as G_S -modules, it suffices to investigate the vanishing of $H^0(\mathbf{Q}_q, Ad(\bar{\rho})(1))$ with the primitive form g having the following properties:

$$\operatorname{ord}_q(N(\bar{\rho}\otimes\psi)) = \operatorname{ord}_q(C_{\varepsilon(\bar{\rho}\otimes\bar{\psi})}) \ge 1$$

or

$$\operatorname{ord}_q(N(\bar{\rho}\otimes \bar{\psi})) = 1$$
 and $\operatorname{ord}_q(C_{\varepsilon(\bar{\rho}\otimes \bar{\psi})}) = 0$.

REMARK 2.1. We will see later that the conditions for the vanishing of $H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1))$ for all $q \neq p$ are independent of the weight of eigenforms to which $\bar{\rho}$ is associated. This fact guarantees that the above argument works well in the proof of the Main Theorem, although the weight $k(\bar{\rho} \otimes \bar{\psi})$ can be equal to 2.

Now we recall some results on *p*-adic modular Galois representations ρ associated to a primitive form *g* of level *N*, weight $k \ge 2$ and character ε :

THEOREM 2.3 (Langlands [14], see [13, Theorem 3.26(3)]). Let q be a prime divisor of N. We assume that $q \neq p$. Let χ be the p-adic cyclotomic character and $\eta(x)$ the unramified character on D_q such that $\eta(x)(\operatorname{Frob}_q) = x$.

(1) If $\operatorname{ord}_q(N) = \operatorname{ord}_q(C_{\varepsilon}) \ge 1$, then we have

$$\rho|_{D_q} \sim \begin{pmatrix} \varepsilon \chi^{k-1} \eta(a_q(g))^{-1} & 0\\ 0 & \eta(a_q(g)) \end{pmatrix}.$$

(2) If $\operatorname{ord}_q(N) = 1$ and $\operatorname{ord}_q(C_{\varepsilon}) = 0$, then we have

$$\rho|_{D_q} \sim \begin{pmatrix} \eta(a_q(g))\chi & * \\ 0 & \eta(a_q(g)) \end{pmatrix},$$

and $\rho|_{D_q}$ is ramified.

We put $\bar{\rho}' := \bar{\rho} \otimes \bar{\psi}$, $k' := k(\bar{\rho}')$ and $\varepsilon' := \varepsilon(\bar{\rho}')$. We denote the representation space of $\bar{\rho}'$ by V'. Then we have

$$\operatorname{Ad}(\bar{\rho})(1) \cong (V' \otimes V')(2 - k') \otimes \bar{\varepsilon}'^{-1}$$

as G_S -modules, where $\bar{\varepsilon}'$ is the mod p reduction of ε' . We are going to give some conditions for $p \ge 5$ under which $(V' \otimes V')(2 - k') \otimes \bar{\varepsilon}'^{-1}$ has no $G_{\mathbf{Q}_q}$ -invariant element by showing the following

PROPOSITION 2.4. (1) In the case where $\operatorname{ord}_q(N(\bar{\rho}')) = \operatorname{ord}_q(C_{\varepsilon'})$, we have

 $H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1)) = 0.$

(2) In the case where $\operatorname{ord}_q(N(\bar{\rho}')) = 1$ and $\operatorname{ord}_q(C_{\varepsilon'}) = 0$, we assume the following condition:

(C3) $q \not\equiv 1 \pmod{p}$,

then we have

$$H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1)) = 0.$$

Démonstration. (1) By Theorem 2.3(1), the representation matrix of $(V' \otimes V')(2 - k') \otimes \bar{\varepsilon}'^{-1}$ is equivalent to the diagonal matrix

$$\begin{pmatrix} \bar{\varepsilon}' \bar{\chi}^{k'} \eta(a_q(g))^{-2} & & \\ & \bar{\chi} & & \\ & & \bar{\chi} & \\ & & & \bar{\varepsilon}'^{-1} \bar{\chi}^{2-k'} \eta(a_q(g))^2 \end{pmatrix}$$

on D_q . Since $\bar{\chi}$ is non-trivial and unramified by the condition (C3), $\bar{\varepsilon}'$ is ramified and $\eta(a_q(g))$ is unramified at q, we see that all diagonal components are non-trivial characters. We then have

$$H^0(\mathbf{Q}_a, \mathrm{Ad}(\bar{\rho})(1)) = 0.$$

(2) We note that $\bar{\rho}'$ is ramified at q. By Theorem 2.3(2), we have

$$\bar{\rho}'|_{D_q} \sim \begin{pmatrix} \eta(a_q(g))\bar{\chi} & \xi\\ 0 & \eta(a_q(g)) \end{pmatrix}$$

with a function $\xi : D_q \to \bar{\mathbf{F}}_p$. Then we see that the representation matrix of $(V' \otimes V')(2 - k') \otimes \bar{\varepsilon}'^{-1}$ is equivalent to the matrix

$$\begin{pmatrix} \bar{\chi}^2 & \eta' \bar{\chi} & \eta' \bar{\chi} & {\eta'}^2 \\ 0 & \bar{\chi} & 0 & \eta' \\ 0 & 0 & \bar{\chi} & \eta' \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

on D_q , where $\eta' := \xi \cdot \eta(a_q(g))^{-1}$. If there exist elements $a, b, c, d \in \overline{\mathbf{F}}_p$ such that

$$\begin{pmatrix} \bar{\chi}^2(\sigma) & \eta'\bar{\chi}(\sigma) & \eta'\bar{\chi}(\sigma) & \eta'^2(\sigma) \\ 0 & \bar{\chi}(\sigma) & 0 & \eta'(\sigma) \\ 0 & 0 & \bar{\chi}(\sigma) & \eta'(\sigma) \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad (\sigma \in D_q),$$

then we see that

(1)
$$\bar{\chi}^2(\sigma)a + \eta'\bar{\chi}(\sigma)b + \eta'\bar{\chi}(\sigma)c + {\eta'}^2(\sigma)d = a,$$

(2)
$$(\bar{\chi}(\sigma) - 1)(b - c) = 0,$$

(3)
$$(\bar{\chi}(\sigma) - 1)b + \eta'(\sigma)d = 0,$$

for any $\sigma \in D_q$. By the condition (C3), we see that $\bar{\chi}(\operatorname{Frob}_q) = q \pmod{p} \neq 1$ in \mathbf{F}_p^{\times} . Then b = c by the equation (2). Since $\bar{\rho}$ is ramified at q, there exists an element $\sigma_0 \in I_q$ such that $\eta'(\sigma_0) \neq 0$. Taking σ_0 as σ in the equation (3), we have d = 0. Then, taking Frob_q as σ in the equation (3), we have b = c = 0. This implies a = 0 by the equation (1). Therefore we have

$$H^0(\mathbf{Q}_q, \operatorname{Ad}(\bar{\rho})(1)) = 0.$$

Note that in the case where \mathfrak{p} does not divide 2, $\bar{\rho}$ is absolutely irreducible if and only if it is irreducible, because the residual modular representation $\bar{\rho}$ is *odd*, i.e., the image of complex conjugation under $\bar{\rho}$ has determinant -1. Then by putting Theorem 1.4, Propositions 1.3, 2.2 and 2.4 together, the Main Theorem is proven because of the exact sequence (\star) in Section 1.

Références

- S. BLOCH and K. KATO, *L*-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. 1 (Eds. P. CARTIER, et al.), Prog. in Math. 86, (1990), Birkhäuser, 333–400.
- [2] G. BÖCKLE, On the density of modular points in universal deformation spaces, Amer. J. of Math. 123 (2001), 985–1007.
- [3] F. DIAMOND, The refined conjecture of Serre, 22–37, Elliptic Curves, Modular Forms and Fermat's Last Theorem, (Hong Kong, 1993), Ser. Number Theory, I (1995), Internat. Press.

ON THE UNOBSTRUCTEDNESS OF THE DEFORMATION PROBLEMS

- [4] F. DIAMOND, M. FLACH and L. GUO, Adjoint motives of modular forms and the Tamagawa number conjecture, preprint (2001).
- [5] B. EDIXHOVEN, The weight in Serre's conjectures on modular forms, Invent. Math. 109 (1992), 563–594.
- [6] B. EDIXHOVEN, Serre's conjecture, Modular Forms and Fermat's Last Theorem (Eds. G. CORNELL, J. H. SILVERMAN and G. STEVENS), (1997), Springer, 209–242.
- [7] M. FLACH, A generalisation of the Cassels-Tate pairing, J. reine angew. Math. 412 (1990), 113–127.
- [8] M. FLACH, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), 307–327.
- [9] J.-M. FONTAINE and B. PERRIN-RIOU, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, Motives, Proc. Symp. in Pure Math. 55, Part 1, (1994), 599–706.
- [10] F. Q. GOUVÊA, Arithmetic of p-adic Modular Forms, Lecture Notes in Math., 1304 (1988), Springer.
- [11] F. Q. GOUVÊA, Deforming Galois representations: controlling the conductor, J. Number Theory 34 (1990), 95–113.
- [12] F. Q. GOUVÊA and B. MAZUR, On the density of modular representations, *Computational perspectives on number theory*, AMS/IP Studies in Advanced Mathematics, 7, (1998), Amer. Math. Soc. and International Press, 127–142.
- [13] H. HIDA, Modular Forms and Galois Cohomology, Cambridge studies in advanced mathematics 69 (2000), Cambridge University Press.
- [14] R. P. LANGLANDS, Modular forms and *l*-adic representations, *Modular Functions of One Variable II*, Lecture Notes in Math. 349 (1973), Springer, 362–499.
- [15] B. MAZUR, Deforming Galois representations, *Galois Groups over* Q (Eds. Y. IHARA, K. RIBET and J.-P. SERRE), (1989), Springer, 385–437.
- [16] B. MAZUR, An "infinite fern" in the universal deformation space of Galois representations, Collect. Math. 48 (1997), 155–193.
- [17] K. RUBIN, *Euler Systems*, Hermann Weyl Lectures, The Institute for Advanced Study, Annals of Mathematics Studies 147, (2000), Princeton University Press.
- [18] J.-P. SERRE, Sur les représentations modulaires de degré 2 de Gal (\overline{Q}/Q) , Duke Math. J. 54 (1987), 179–230.
- [19] J.-P. SERRE, *Galois Cohomology*, Springer (1991).
- [20] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Princeton University Press (1971).
- [21] R. TAYLOR and A. WILES, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553–572.
- [22] L. C. WASHINGTON, Galois cohomology, Modular Forms and Fermat's Last Theorem (Eds. G. Cornell, J. H. Silverman and G. Stevens), Springer (1997), 101–120.
- [23] T. WESTON, Unobstructed modular deformation problems, to appear in Amer. J. of Math.
- [24] A. WILES, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 141 (1995), 443–551.
- [25] A. YAMAGAMI, On Gouvêa's conjecture in the unobstructed case, J. Number Theory 99 (2003), 120–138.

Present Address: DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO, 606–8502, JAPAN. *e-mail*: yamagami@math.kyoto-u.ac.jp