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Abstract. In this paper we compute the stable rank and connected stable rank of some C∗-algebras regarded as
noncommutative manifolds. Mainly, we consider the noncommutative spaces studied by Matsumoto and Tomiyama,
their higher dimensional versions and the C∗-algebras of continuous fields of these noncommutative manifolds.

Introduction

The stable rank for C∗-algebras was introduced by M. A. Rieffel [Rf1], and the real rank
was done by L. G. Brown and G. K. Pedersen [BP]. These ranks for commutative C∗-algebras
correspond to the complex and real dimensions of topological spaces respectively. Also, the
connected stable rank for C∗-algebras was introduced in [Rf1], and this rank for commutative
C∗-algebras is related with vanishing of cohomotopy groups of spaces [Sh]. Moreover, the
stable ranks are very important notions in the (non-stable) K-theory of C∗-algebras (cf. [Bl],
[Rf1], [Rf2]). See References for some works about these ranks.

On the other hand, we have recently investigated the stable rank and connected stable
rank of C∗-algebras of continuous fields [Sd]. In particular, we computed the stable ranks
of the group C∗-algebras of the discrete Heisenberg groups regarded as the C∗-algebras of
continuous fields of rotation algebras (cf. [AP]). In this paper, using the results of [Sd] ((F4)
below) mainly we estimate the stable ranks of the noncommutative spaces studied by K. Mat-
sumoto and J. Tomiyama ([Mt], [MT]), their higher dimensional versions and the C∗-algebras
of continuous fields of these noncommutative manifolds. Also, our methods for calculating
the stable ranks would be applicable to more other noncommutative manifolds.

Notation and facts. We first set up some notations and review some results of the
stable ranks in the following.

Let A be a C∗-algebra. We denote by sr(A), csr(A) the stable rank, connected stable rank
respectively ([Rf1]). By definition, we have sr(A), csr(A) ∈ {1, 2, · · · ,∞}. If A is nonunital,
we define its ranks by those of the unitization A+.
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(F1): For an exact sequence of C∗-algebras: 0 → I → A → A/I → 0, we have

sr(I) ∨ sr(A/I) ≤ sr(A) ≤ sr(I) ∨ sr(A/I) ∨ csr(A/I) ,

csr(A) ≤ csr(I) ∨ csr(A/I) ,

where ∨ is the maximum ([Rf1, Theorems 4.3, 4.4 and 4.11] and [Sh, Theorem 3.9]).
(F2): We denote by C0(X) the C∗-algebra of all continuous functions vanishing at

infinity on a locally compact Hausdorff space X. If X is compact, set C0(X) = C(X). By
[Rf1, Proposition 1.7] and [Ns],

sr(C(X)) = [dim X/2] + 1 , csr(C(X)) ≤ [(dim X + 1)/2] + 1 ,

where dim X is the covering dimension of X, and [x] means the maximal integer ≤ x. Set
dimC X = [dim X/2] + 1. Note that C0(X)+ ∼= C(X+) where X+ means the one-point

compactification of X. Let βX be the Stone-Čech compactification of X (cf. [Ng]).
(F3): For the n × n matrix algebra Mn(A) over a C∗-algebra A,

sr(Mn(A)) = {(sr(A) − 1)/n} + 1 , csr(Mn(A)) ≤ {(csr(A) − 1)/n} + 1 ,

where {x} means the least integer ≥ x ([Rf1, Theorem 6.1], [Rf2, Theorem 4.7]).
Let X be a locally compact Hausdorff space and {At }t∈X a family of C∗-algebras At

indexed by t ∈ X. We denote by Γ0(X, {At }t∈X,F) the C∗-algebra of a continuous field on X

with respect to a certain family F of continuous operator fields vanishing at infinity on X with
some properties (cf. [F], [Dx], [Wl, Section 2]). If X is compact, set Γ0(X, {At }t∈X,F) =
Γ (X, {At }t∈X,F). If At = A for all t ∈ X, we put Γ0(X,A,F) = Γ0(X, {At }t∈X,F). We
omit F in some cases in what follows. By [Sd], if X is a locally compact, paracompact (or
σ -compact or second countable) Hausdorff space, then

(F4):
{

sr(Γ0(X, {At}t∈X,F)) ≤ supt∈X sr(C0(X,At )) ,

csr(Γ0(X, {At }t∈X,F)) ≤ supt∈X(csr(C0(X,At )) ∨ sr(C0(X,At )))

where C0(X,At ) is the C∗-algebra of all At -valued continuous functions on X vanishing at
infinity, which is isomorphic to the C∗-tensor product C0(X)⊗At (cf. [Mp, Theorem 6.4.17]).
Note that the assumption on X is satisfied automatically in the cases below. On the other hand,
by using [Rf1, Theorem 4.3] we have

(F5): sup
t∈X

sr(At ) ≤ sr(Γ0(X, {At}t∈X,F)) .

Let Γ b(X, {At}t∈X,F) be the C∗-algebra of a bounded continuous field on X with respect
to a family F of bounded continuous operator fields on X, and Cb(X) the C∗-algebra of all
bounded continuous functions on X. The formulas (F4), (F5) hold when replacing Γ0(·),
C0(X,At ) with Γ b(·), Cb(X) ⊗ At respectively if X is σ -compact and F contains the unit
field when all At are unital.

Denote by M(I) the multiplier of a C∗-algebra I (cf. [APT], [Wo]).
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1. Noncommutative manifolds

1.1. Noncommutative tori. Let T2
θ be the rotation algebra by the angle 2πθ defined

by the C∗-crossed product C(T)�θ Z with the action of Z on the torus T by the multiplication

e2πiθnz for n ∈ Z, z ∈ T and θ ∈ [0, 1]. Then it is known that

(F6):
{

sr(T2
θ ) = 1 , csr(T2

θ ) = 2 , if θ is irrational ,

sr(T2
θ ) = 2 , csr(T2

θ ) = 2 , if θ is zero or rational

(cf. [AP], [EE], [DNNP], [Sh, p. 381], [Eh, Theorem 2.2], [Rf1, Corollary 4.10], [Sd]).
A noncommutative n-torus is the C∗-algebra of generated by n-unitaries Uj with the

commutation relation UjUk = e2πiθj,kUkUj with θj,k ∈ R for 1 ≤ j, k ≤ n. In particular, T2
θ

is a noncommutative 2-torus. The structure of some (simple) noncommutative tori are studied
by [EL1,2], [Ln] to get their inductive limit decompositions as AT-algebras, i.e. inductive
limits of matrix algebras over C(T), which are useful to calculate their ranks. On the other

hand, by [BKR] simple noncommutative tori have the same ranks with T2
θ for θ irrational.

1.2. Noncommutative solid torus. The noncommutative solid torus defined by Mat-

sumoto [Mt] means the crossed product (D2 ×T)θ = C(D2)�θ Z with the action of Z on the

2-dimensional unit closed disk D2 by the rotation by the angle 2πθ with 0 < θ < 1. Then by

[MT, Proposition 6.4], (D2 × T)θ is regarded as the C∗-algebra of a continuous field on the
interval [0, 1] with fibers At for t ∈ [0, 1] given by

A0 = C(T) , At = T2
θ for t 
= 0 .

Then by (F4), we obtain sr((D2 × T)θ ) ≤ sr(C([0, 1] × T)) ∨ sr(C([0, 1], T2
θ )) and

csr((D2 ×T)θ ) ≤ csr(C([0, 1]×T)) ∨ csr(C([0, 1] , T2
θ )) ∨ sr(C([0, 1]×T)) ∨ sr(C([0, 1] ,

T2
θ )) . By the same way as (F6) (cf. [Sd]) and using [Rf1, Theorem 5.1], (F3), [NOP, Propo-

sition 5.2] and [Eh, Corollary 2.12], we obtain

sr(C([0, 1] , T2
θ )) = 2 , csr(C([0, 1] , T2

θ )) = 2

for any nonzero θ . Note that T2
θ for θ irrational is an AT-algebra and T2

θ for θ rational is

homogeneous, and the K1-group of C([0, 1], T2
θ ) is nontrivial. Hence sr((D2 × T)θ ) ≤ 2 and

csr((D2 × T)θ ) ≤ 2. On the other hand, we have the following exact sequence:

0 → I → (D2 × T)θ → C(T) → 0

where I = C0((0, 1], T2
θ ). Then by (F5) and [Eh, Theorem 2.2] we have

sr((D2 × T)θ ) ≥ sr(I) = 2 , csr((D2 × T)θ ) ≥ 2 .

Summing up we obtain

THEOREM 1.1. Let (D2 × T)θ be the noncommutative solid torus. Then we have

sr((D2 × T)θ ) = 2 , csr((D2 × T)θ ) = 2 .
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REMARK. If θ = 0, then (D2 × T)0 ∼= C(D2 × T). By (F2), [Ns, Corollary 2.9] and

[Sh, p. 381], we have sr((D2 × T)0) = 2 and csr((D2 × T)0) = csr(C(T)) = 2.

1.3. Higher dimensional case of (D2 × T)θ . Let (�nD2 × T)Θ = C(�nD2) �Θ Z
be the higher dimensional, noncommutative solid torus with the action of Z on the n-direct

product �nD2 of D2 by the multi-rotation by (e2πiθj t )nj=1 with t ∈ Z, Θ = (θj )
n
j=1, 0 <

θj < 1. Then (�nD2 ×T)θ is regarded as the C∗-algebra of a continuous field on [0, 1]n with
fibers At for t ∈ [0, 1]n given by

At =




C(T) t = 0n = (0, · · · , 0) ,

Tk+1
Θ(j1,···,jk)

t = (t1, · · · , tn) , tjs 
= 0 (1 ≤ s ≤ k) ,

Tn+1
Θ t = (t1, · · · , tn) , tj 
= 0 (1 ≤ j ≤ n)

where Tk+1
Θ(j1,···,jk)

= C(Tk)�Θ(j1,···,jk) Z and Tn+1
Θ = C(Tn)�Θ Z are noncommutative tori,

and Θ(j1, · · · , jk) = (θjs )
k
s=1. Then by (F4), we obtain

sr((�nD2 × T)Θ) ≤ sr(C([0, 1]n × T)) ∨ max
1≤k≤n

sr(C([0, 1]n, Tk+1
Θ(j1,···,jk)

)) ,

csr((�nD2 × T)Θ) ≤ csr(C([0, 1]n × T)) ∨ max
1≤k≤n

csr(C([0, 1]n, Tk+1
Θ(j1,···,jk)

))

∨ sr(C([0, 1]n × T)) ∨ max
1≤k≤n

sr(C([0, 1]n, Tk+1
Θ(j1,···,jk)

)) .

By the same way as the case n = 1 (cf. [Sd]), if all θj are irrational, or if some of θj are
rational and their periods are large enough, then we obtain{

sr(C([0, 1]n, Tk+1
Θ(j1,···,jk)

)) = 2 ,

csr(C([0, 1]n, Tk+1
Θ(j1,···,jk)

)) = csr(Tk+1
Θ(j1,···,jk)

) = 2

for any 1 ≤ k ≤ n (cf. [Eh, Corollary 2.12]). However, in general we have{
sr(C([0, 1]n, Tk+1

Θ(j1,···,jk)
)) ≤ {[(n + k)/2]/q} + 1 ,

csr(C([0, 1]n, Tk+1
Θ(j1,···,jk)

)) = csr(Tk+1
Θ(j1,···,jk)

) ≤ {[(k + 1)/2]/q} + 1

where q is the period of orbits by the action on Tk by Θ(j1, · · · , jk) rational. Note that

Tk+1
Θ(j1,···,jk)

is homogeneous when all θjs (1 ≤ s ≤ k) are rational and use (F2) and (F3) for

its rank estimates. On the other hand, we have the following exact sequence:

0 → I → (�nD2 × T)Θ → C(T) → 0

where I = Γ0(X, {At}t∈X) with X = [0, 1]n \ {0n}. Then we have

sr((�nD2 × T)Θ) ≥ sr((D2 × T)θj ) = 2 , csr((�2D2 × T)Θ) ≥ 2



STABLE RANK OF SOME NONCOMMUTATIVE MANIFOLDS 279

where the first inequality follows from that (D2 × T)θj is a quotient of (�nD2 × T)Θ , and
the second one is obtained by [Eh, Theorem 2.2]. By (F1) and (F4), we also get

csr((�nD2 × T)Θ) ≤ csr(I) ∨ csr(C(T))

≤ sup
t∈X

(csr(C0(X,At )) ∨ sr(C0(X,At ))) ∨ 2 .

Summing up we obtain

THEOREM 1.2. Let (�nD2 × T)Θ be the higher dimensional, noncommutative solid
torus. Then we have {

2 ≤ sr((�nD2 × T)Θ) ≤ {n/q} + 1 ,

2 ≤ csr((�nD2 × T)Θ) ≤ {n/q} + 1 ,

where q is the least period of orbits by the rational action by Θ non-irrational. If all θj are
irrational, or if some of θj are rational and q is large enough, then

sr((�nD2 × T)Θ) = 2 , csr((�nD2 × T)Θ) = 2 .

REMARK. If Θ = 0 = (0)nj=1, then (�nD2 × T)0 ∼= C(�nD2 × T). By (F2), [Ns,

Corollary 2.9], [Eh, Corollary 2.12] and [Sh, p. 381], we get

sr((�nD2 × T)0) = n + 1 , csr((�nD2 × T)0) = csr(C(T)) = 2 .

More generally, we can consider the following crossed products by the same way:

((�kD2 × �n−kT) × T)Θ = C(�kD2 × �n−kT) �Θ Z .

Moreover, it would be interesting to consider the crossed products C(Dn)�αZ with α suitable
actions on the n-dimensional unit disk Dn as a higher dimensional case.

1.4. Noncommutative lens spaces. The noncommutative lens spaces are defined and
studied in detail by Matsumoto and Tomiyama [MT]. For coprime integers p, q , we denote
by Lθ(p, q) the noncommutative lens space of type (p, q) defined by the pull back satisfying
the following diagram:

0 −−→ C0(D
2 \ T) �−θ Z −−→ Lθ (p, q) −−→ (D2 × T)θ −−→ 0∥∥∥ � �

0 −−→ C0(D
2 \ T) �−θ Z −−→ (D2 × T)−θ −−→ T2

θ −−→ 0

where C0(D
2 \ T) �−θ Z means the crossed product by Z by the rotation by −θ . Moreover,

by [MT, Theorem 6.8], Lθ (p, q) is regarded as the C∗-algebra of a continuous field on the
interval [−1, 1] with fibers At given by

A−1 = C∗(V qUp) , At = T2
θ for −1 < t < 1 , A1 = C∗(V )
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where C∗(V qUp), C∗(V ) are C∗-algebras generated by V qUp, V respectively, and U,V are

canonical unitary generators of T2
θ with the relation V U = e2πiθUV . By (F4),

sr(Lθ (p, q)) ≤ 2 , csr(Lθ (p, q)) ≤ 2 .

By Theorem 1.1 and (F1), we have sr(Lθ (p, q)) ≥ 2. By [Eh, Corollary 1.6], we obtain
csr(Lθ (p, q)) ≥ 2 since the K1-group of Lθ (p, q) is nontrivial [MT, Proposition 2.2]. Com-
bining [NOP, Proposition 1.6] with Theorem 1.1, we also obtain

sr(Lθ (p, q)) ≤ sr((D2 × T)θ ) ∨ sr((D2 × T)−θ ) ≤ 2 .

Consequently, we have

THEOREM 1.3. Let Lθ(p, q) be the noncommutative lens space of type (p, q). Then

sr(Lθ (p, q)) = 2 , csr(Lθ (p, q)) = 2 .

REMARK. If θ = 0, then L0(p, q) ∼= C(L(p, q)), where L(p, q) is the lens space of

type (p, q) obtained by the quotient space of the 3-dimensional sphere S3 by the action τ of

a cyclic group defined by τ (z,w) = (e2πi/pz, e2qπi/pw) for (z,w) ∈ S3 ⊂ C2. In particular,

L(1, 0) = S3. By (F2), [Sh, p. 381] and [Eh, Theorem 1.1] we have

sr(C(L(p, q))) = 2 = sr(C(S3)) ,

csr(C(L(p, q))) ≤ csr(C(S3)) ∨ sr(C(S3)) = 3 .

1.5. Higher dimensional case of Lθ (p, q). We define the higher dimensional, non-
commutative lens space Ln

Θ to be the pull back satisfying the following diagram:

0 −−→ I −−→ Ln
Θ −−→ (�nD2 × T)Θ −−→ 0∥∥∥ � �

0 −−→ I −−→ (�nD2 × T)−Θ −−→ Tn+1
Θ −−→ 0

where I = C0(�
nD2 \Tn)�−Θ Z with the action by the multi-rotation by −Θ . By Theorem

1.3 and (F2), we have sr(Ln
Θ) ≥ 2. By [Eh, Corollary 1.6], we obtain csr(Ln

Θ) ≥ 2 since the
K1-group of Ln

Θ is nontrivial by the similar calculation as [MT, Proposition 2.2]. By [NOP,
Proposition 1.6] and (F1), we obtain{

sr(Ln
θ ) ≤ sr((�nD2 × T)Θ) ∨ sr((�nD2 × T)−Θ) ,

csr(Ln
θ ) ≤ csr(I) ∨ csr((�nD2 × T)Θ) .

Since I is regarded as the C∗-algebra of a continuous field on �nD2 \ Tn, the rank csr(I) is
estimated by the same way as Theorem 1.2. By Theorem 1.2, we conclude

THEOREM 1.4. Let Ln
Θ be the higher dimensional, noncommutative lens space. Then

2 ≤ sr(Ln
Θ) ≤ {n/q} + 1 , 2 ≤ csr(Ln

Θ) ≤ {n/q} + 1 ,
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where q is the least period of orbits by the rational action by Θ non-irrational. If all θj are
irrational, or if some of θj are rational and their periods are large enough, then

sr(Ln
Θ) = 2 , csr(Ln

Θ) = 2 .

REMARK. If Θ = 0, then Ln
0

∼= C(Yn) where Yn is a certain space obtained by suitably

attaching �nD2 × T with (�nD2 \ Tn) × T (on Tn+1). Hence, by (F2), [Sh, p. 381] and [Eh,
Theorem 1.1] we have

sr(C(Ln
0)) = n + 1 = sr(C(S2n+1)) , csr(C(Ln

0)) ≤ n + 2 = csr(C(S2n+1)) .

On the other hand, in definition of Ln
Θ we may take various ((�kD2 × �n−kT) × T)Θ and

((�k′
D2 × �n−k′

T) × T)−Θ as in the remark of Theorem 1.2. It would be preferable to take

two crossed products of the form C(D2n) �α Z as definition of Ln
Θ .

2. Continuous fields of noncommutative manifolds

In this section, we consider the C∗-algebras of continuous fields with fibers given by

the noncommutative manifolds in the previous section. We identify elements e2πiθ of T with
θ ∈ [0, 1] (mod 1). By the same way with Theorem 1.1 we have

THEOREM 2.1. Let T2
θ be the rotation algebra for θ ∈ [0, 1]. Then we have

{
sr(Γ (T, {⊗nT2

θ }θ∈T,F)) = n + 1 = sr(C(�nT2)) ,

csr(Γ (T, {⊗nT2
θ }θ∈T,F)) ≤ n + 1 = csr(C(�nT2)) ,

where F contains the unit field. Moreover, taking the restriction to T \ {1}, we get{
sr(Γ0(T \ {1}, {⊗nT2

θ }θ∈T\{1},F)) = 2 ,

csr(Γ0(T \ {1}, {⊗nT2
θ }θ∈T\{1},F)) = 2 .

PROOF. Note that the following diagram is commutative:

0 −−→ I −−→ Γ (T, {⊗nT2
θ }θ∈T,F) −−→ ⊗nC(T2) −−→ 0∥∥∥ � �

0 −−→ I −−→ M(I) −−→ M(I)/I −−→ 0

where I = Γ0(T \ {1}, {⊗nT2
θ }θ∈T\{1}) and M(I) ∼= Γ b(T \ {1}, {⊗nT2

θ }θ∈T\{1}) since the
unit field is continuous with respect to F ([APT, p. 286]). Use [Sh, p. 381].

REMARK. The group C∗-algebra of the discrete Heisenberg group is a special case of

Γ (T, {T2
θ }θ∈T,F) (cf. [AP], [Sd]).
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THEOREM 2.2. Let {Aθ }θ∈T = {⊗n(D2 × T)θ }θ∈T or {⊗nLθ (p, q)}θ∈T. Then we
have

sr(Γ (T, {Aθ }θ∈T,F)) = [3n/2] + 1 = sr(C(X)) = sr(C(Y )) ,

where F contains the unit field, and

csr(Γ (T, {⊗n(D2 × T)θ }θ∈T,F)) ≤ [(n + 1)/2] + 1 = csr(C(X)) ,

csr(Γ (T, {⊗nLθ (p, q)}θ }θ∈T,F)) ≤ [(3n + 1)/2] + 1

where X = �n(D2 × T) and Y = �nL(p, q). Moreover, we have

sr(Γ0(T \ {1}, {Aθ}θ∈T\{1})) = 2 , csr(Γ0(T \ {1}, {Aθ }θ∈T\{1})) = 2 .

PROOF. Note that the following diagram is commutative:

0 −−→ B −−→ Γ (T, {Aθ }θ∈T) −−→ A0 −−→ 0∥∥∥ � �
0 −−→ B −−→ M(B) −−→ M(B)/B −−→ 0

where B = Γ0(T \ {1}, {Aθ }θ∈T\{1}) and M(B) ∼= Γ b(T \ {1}, {Aθ }θ∈T\{1}). Therefore, by
[NOP, Proposition 1.6], (F1) and (F4) we get

sr(A0) ≤ sr(Γ (T, {Aθ }θ∈T)) ≤ sr(A0) ∨ sr(M(B))

≤ ([3n/2] + 1) ∨ sup
θ∈T\{1}

sr(Cb(T \ {1}) ⊗ Aθ ) ,

csr(A0) ≤ csr(Γ (T, {Aθ }θ∈T)) ≤ csr(A0) ∨ csr(B)

≤ csr(A0) ∨ sup
θ∈T\{1}

(csr(C0(T \ {1}) ⊗ Aθ ) ∨ sr(C0(T \ {1}) ⊗ Aθ )) .

Note that csr(C(�n(D2 × T))) = csr(C(Tn)) = [(n + 1)/2] + 1. On the other hand, we
have csr(C(�nL(p, q))) ≤ csr(C(�n(D2 × T))) ∨ sr(C(�n(D2 × T))) = [(3n + 1)/2] + 1
by [Eh, Theorem 1.1]. Also, note that Cb(T \ {1}) ∼= C(β(T \ {1})) and dim β(T \ {1}) =
dim T \ {1} = 1.

Now assume that Aθ = ⊗n(D2×T)θ . The case for ⊗nLθ (p, q) is treated similarly. Then
C(T) ⊗ Aθ is regarded as the C∗-algebra of a continuous field on [0, 1] with the following
fibers:

Bθ,t = C(Tn+1) at t = 0 , Bθ,t = C(T,⊗nT2
θ ) for t 
= 0 .

Note that the following diagram is commutative:

0 −−→ Iθ −−→ C(T) ⊗ Aθ −−→ C(Tn+1) −−→ 0∥∥∥ � �
0 −−→ Iθ −−→ M(Iθ ) −−→ M(Iθ )/Iθ −−→ 0
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where Iθ = C0(T × (0, 1],⊗nT2
θ ). Therefore, we obtain for θ ∈ T \ {1},

sr(C(T) ⊗ Aθ ) ≤ sr(C(Tn+1)) ∨ sr(M(Iθ ))

≤ ([(n + 1)/2] + 1) ∨ sup
t∈(0,1]

sr(Cb((0, 1]) ⊗ Bθ,t ) = [(n + 1)/2] + 1 ,

csr(C0(T \ {1}) ⊗ Aθ ) ≤ csr(C(Tn+1)) ∨ csr(Iθ )

≤ ([n/2] + 1) ∨ sup
t∈(0,1]

(csr(C0((0, 1]) ⊗ Bθ,t ) ∨ sr(C0((0, 1]) ⊗ Bθ,t )) = [n/2] + 1 .

�

REMARK. The estimate csr(Γ (T, {⊗nLθ (p, q)}θ∈T,F)) ≤ csr(C(�nL(p, q))) would
be deduced from calculation of the cohomotopy or homotopy groups of the lens spaces (cf.
[Sh]).
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