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Abstract. We study a Kähler submanifold M of a quaternionic Kähler manifold M̃. For such submanifold M

we construct a totally real and minimal submanifold Z in the twistor space Z̃ of M̃ .

1. Introduction

Let (M̃4n, g̃, Q̃) be a quaternionic Kähler manifold with the quaternionic Kähler struc-

ture (g̃, Q̃), that is, g̃ is the Riemannian metric on M̃ and Q̃ is a rank 3 subbundle of End T M̃

which satisfies the following conditions:

(a) For each p ∈ M̃ , there is a neighborhood U of p over which there exists a local

frame field {Ĩ , J̃ , K̃} of Q̃ satisfying

Ĩ 2 = J̃ 2 = K̃2 = −id , Ĩ J̃ = −J̃ Ĩ = K̃ ,

J̃ K̃ = −K̃J̃ = Ĩ , K̃ Ĩ = −Ĩ K̃ = J̃ .

(b) For any element L ∈ Q̃p, g̃p is invariant by L, i.e., g̃p(Lu, v) + g̃p(u,Lv) = 0 for

u, v ∈ TpM̃, p ∈ M̃ .

(c) The vector bundle Q̃ is parallel in End T M̃ with respect to the Riemannian con-

nection ∇̃ associated with g̃ .

We call {Ĩ , J̃ , K̃} in (a) a local canonical basis of Q̃. In this paper we assume that

the dimension of M̃4n is not less than 8 and that M̃4n has nonvanishing scalar curvature. A

submanifold M2m of M̃ is said to be almost Hermitian if there exists a section Ĩ of the bundle
Q̃|M such that (1) Ĩ 2 = −id, (2) Ĩ T M = T M (cf. D. V. Alekseevsky and S. Marchiafava

[1]). We denote by I the almost complex structure on M induced from Ĩ . Evidently (M, I)

with the induced metric g is an almost Hermitian manifold. If (M, g, I ) is Kähler, we call it a
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Kähler submanifold of a quaternionic Kähler manifold M̃ . An almost Hermitian submanifold

M together with a section Ĩ of Q̃|M is said to be totally complex if at each point p ∈ M

we have LTpM ⊥ TpM , for each L ∈ Q̃p with g̃(L, Ĩp) = 0 (cf. S. Funabashi [4]).

Alekseevsky and Marchiafava [1] proved that in a quaternionic Kähler manifold (M̃4n, g̃, Q̃)

with nonvanishing scalar curvature, a 2m(m ≥ 2)-dimensional almost Hermitian submanifold
is Kähler if and only if it is totally complex.

We recall the theory of twistor spaces of quaternionic Kähler manifolds, which is an

important ingredient for the study of quaternionic Kähler manifolds. The twistor space Z̃
of a quaternionic Kähler manifold (M̃4n, g̃, Q̃) is defined by Z̃ = {Ĩ ∈ Q̃|Ĩ 2 = −id}.
Then the natural projection π̃ : Z̃ → M̃ is an S2-bundle over M̃ . The twistor space Z̃ has
a natural complex structure and a holomorphic contact structure H defined by S. Salamon

[7]. Moreover Z̃ of a quaternionic Kähler manifold M̃ of positive scalar curvature admits a

Kähler-Einstein metric. Let M2m be an almost Hermitian submanifold of M̃ together with a

section Ĩ of Q̃|M . Then the map M � p �→ Ĩp ∈ Z̃p is a section of the bundle Z̃|M over

M . The submanifold Ĩ (M) of Z̃ is called the natural lift of an almost Hermitian submanifold
(D. V. Alekseevsky and S. Marchiafava [2]). Alekseevsky and Marchiafava have shown that a
2m(m ≥ 2)-dimensional almost Hermitian submanifold M is Kähler if and only if its natural

lift Ĩ (M) is a complex submanifold of Z̃ which is an integral submanifold of the holomorphic

contact structure H. In particular the natural lift Ĩ (M2n) of a half dimensional Kähler sub-

manifold M2n of M̃4n is a Legendrian submanifold of the twistor space Z̃ . Conversely, any

Legendrian submanifold N of Z̃ defines a half dimensional Kähler submanifold M = π̃(N)

of M̃ .
We consider another natural lift. Let M be an almost Hermitian submanifold of M̃

together with a section Ĩ of Q̃|M . Then the bundle Q̃|M has the following decomposition:

Q̃|M = RĨ + Q′ ,

where Q′ is defined by Q′
p = {L ∈ Q̃p|g̃(L, Ĩp) = 0} at each point p ∈ M . We put

Z = Q′ ∩ Z̃|M . Then the natural projection π : Z → M is an S1-bundle over M . It may be

viewed as a kind of tube along the natural lift Ĩ (M) . Our observation is the following.

THEOREM 1.1. Let M2m be a 2m(m ≥ 2)-dimensional Kähler submanifold of a

quaternionic Kähler manifold M̃ of positive scalar curvature. Then Z is a totally real and

minimal submanifold of the twistor space Z̃ . In particular the space Z of a half dimensional

Kähler submanifold M2n of M̃4n is a minimal Lagrangian submanifold of Z̃ .

2. Proof of Theorem

First we recall a complex structure J and a Kähler metric k̃ on the twistor space Z̃ of a
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quaternioninc Kähler manifold (M̃4n, g̃, Q̃) defined by Salamon [7] (see also Besse Chapter

14 [3]). We normalize the fibre metric 〈, 〉 of the bundle Q̃ such that a local canonical basis

{Ĩ , J̃ , K̃} is an orthonormal basis, putting 〈, 〉 = 1
4n

g̃ . Then the fibre Z̃p of Z̃ at p ∈ M̃ is
given by

Z̃p = {Ĩ ∈ Q̃p|Ĩ 2 = −id} = {Ĩ ∈ Q̃p|〈Ĩ , Ĩ 〉 = 1} .

Since Z̃ is a parallel fibre subbundle in Q̃ with respect to the Riemannian connection ∇̃, the

tangent bundle T Z̃ is decomposed to the direct sum

(2.1) T Z̃ = V + H ,

where V is the vertical distribution tangent to the fibres of π̃ and H is the supplementary

horizontal distribution defined by the Riemannian connection. For each z ∈ Z̃ we define a

natural complex structure J on TzZ̃ = Vz + Hz as follows:
(i) J leaves Vz and Hz invariant;

(ii) J = (π̃∗|Hz
)−1 ◦ z ◦ π̃∗|Hz

on Hz;
(iii) J on Vz is induced by the canonical complex structure on S2, under the identifica-

tion of Vz with Tz(Z̃π̃(z)) = TzS
2.

In (ii) we note that π̃∗|Hz
: Hz → Tπ̃(z)M̃ is a linear isomorphism and that z ∈ Z̃π̃(z) ⊂ Q̃π̃(z)

is a complex structure on Tπ̃(z)M̃ . Next we explain (iii) more explicitly. Since the fibre Z̃π̃(z)

is a unit sphere in Q̃π̃(z), the tangent space Tz(Z̃π̃ (z)) at z is identified with the orthogonal

complement z⊥ = {L ∈ Q̃π̃(z)|〈z, L〉 = 0}. Under this identification, the complex structure

J on Vz is given by JL = zL for L ∈ Vz
∼= z⊥, where zL means the composition in

End Tπ̃(z)M̃ . It is known that the almost complex structure J on Z̃ thus defined is integrable
and that H is a holomorphic contact structure.

From now on we assume that the scalar curvature τ̃ of (M̃, g̃) is positive. (M̃, g̃) is
Einstein so, up to a homothety, we may choose Ric = (n + 2)g̃ . We define a Hermitian

metric k̃ on (Z̃, J ) as follows:

(i) k̃(Vz,Hz) = {0};
(ii) k̃(X, Y ) = g̃(π̃∗X, π̃∗Y ) for X,Y ∈ Hz;

(iii) k̃ on Vz is induced by the inner product 〈, 〉 in Q̃π̃(z) under the identification Vz =
Tz(Z̃π̃(z)).

Then the projection π̃ : (Z̃, k̃) → (M̃, g̃) is a Riemannian submersion with totally geodesic

fibres. It is known that k̃ is a Kähler-Einstein metric (cf. [7]).
For later convenience, we describe the integrability tensor A of the Riemannian sub-

mersion π̃ : (Z̃, k̃) → (M̃, g̃) introduced by O’Neill [6]. We denote by ∇̄ the Riemannian

connection of (Z̃, k̃). For horizontal vector fields X,Y ∈ Γ (H) and a vertical vector field U ,
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we define AXY and AXU by

AXY = V(∇̄XY ) = 1

2
V([X,Y ]) ,

AXU = H(∇̄XU) ,

where V(∗) and H(∗) denote the vertical component and horizontal component of ∗ with

respect to the decomposition (2.1), respectively. Then at z = S ∈ Z̃ we have

(2.2) (AXY )z = −1

2
R̃(π̃∗X, π̃∗Y ) · S for X,Y ∈ H .

Here we identify Vz
∼= z⊥ = S⊥ ⊂ Q̃π̃(z) and denote by R̃ the curvature tensor of the base

manifold M̃ .
We recall the formula of the curvature tensor R̃ for a local canonical basis {Ĩ , J̃ , K̃}

(S. Ishihara [5]):

(2.3) R̃(X, Y ) · Ĩ = G(X, Y )J̃ − F(X, Y )K̃ ,

(2.4) R̃(X, Y ) · J̃ = −G(X, Y )Ĩ + E(X, Y )K̃ ,

(2.5) R̃(X, Y ) · K̃ = F(X, Y )Ĩ − E(X, Y )J̃ ,

where these forms E, F , and G are given as follows;

E(X, Y ) = − τ̃

4n(n + 2)
g̃(ĨX, Y ) ,

F (X, Y ) = − τ̃

4n(n + 2)
g̃(J̃X, Y ) ,

G(X, Y ) = − τ̃

4n(n + 2)
g̃(K̃X, Y ) .

For z ∈ Z̃ , we choose a local canonical basis {Ĩ , J̃ , K̃} around π̃(z) such that Ĩπ̃ (z) = z. Then

the vertical subspace Vz is spanned by J̃π̃(z) and K̃π̃(z). Applying (2.2) and (2.3), we have for
X,Y ∈ Hz

(AXY )z = τ̃

8n(n + 2)
{g̃(K̃π̃∗X, π̃∗Y )J̃π̃(z) − g̃(J̃ π̃∗X, π̃∗Y )K̃π̃(z)} .

By this we obtain

(AXJ̃π̃(z))z = − τ̃

8n(n + 2)
(π̃∗|H)−1(K̃π̃∗X) ,

(AXK̃π̃(z))z = τ̃

8n(n + 2)
(π̃∗|H)−1(J̃ π̃∗X) .
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Now we will prove our Theorem. Let M2m be a 2m(m ≥ 2)-dimensional Kähler sub-

manifold of M̃ together with a section Ĩ of Q̃|M . Then by Theorem 1.12 in [1] M is totally

complex. The bundle Q̃|M has the orthogonal decomposition Q̃|M = RĨ + Q′. We put

Z = Q′ ∩ Z̃|M . The natural projection π : Z → M is an S1-bundle over M . Let f̂ : Z → Z̃
and f : M → M̃ be inclusion maps.

LEMMA 2.1. We have a commutative diagram:

(Z, k)
f̂−−−−→ (Z̃, k̃)

π



�



�π̃

(M, g)
f−−−−→ (M̃, g̃)

.

The natural projection π : (Z, k) → (M, g) is a Riemannian submersion with totally geo-
desic fibres with respect to the induced metrics k and g .

PROOF OF LEMMA 2.1. Since M is totally complex, by Lemma 2.10 in [9] the section

Ĩ of Q̃|M and the vector subbundle Q′ are parallel with respect to the induced connection ∇̃
on Q̃|M . Therefore Z is a parallel fibre subbundle in Q̃|M with respect to ∇̃. Then the tangent
bundle TZ is decomposed to the direct sum

(2.6) TZ = V ′ + H′ ,

where V ′ is the vertical distribution tangent to the fibres of π and H′ is the supplementary
horizontal distribution defined by the induced connection. From this, it follows that H′

z is a
subspace of Hz at each point z ∈ Z . This is a crucial fact for our argument. We denote by k

the induced metric on Z from k̃. Since V ′
z ⊂ Vz and H′

z ⊂ Hz, we have k(V ′
z,H′

z) = {0} and
a commutative diagram:

(2.7)

H′
z

f̂∗−−−−→ Hz

π∗


�



�π̃∗

Tπ(z)M
f∗−−−−→ Tπ̃(z)M̃

.

Therefore π∗|H′
z
: (H′

z, kz) → (Tπ(z)M, gπ(z)) is a linear isometry. Consequently we see that

π : (Z, k) → (M, g) is a Riemannian submersion. For each point p ∈ M , the fibre Zp is a

geodesic circle in the unit sphere Z̃p . Since Z̃p is totally geodesic in Z̃ , Zp is a geodesic in

Z̃ . From this it follows that each fibre Zp is totally geodesic in Z �

LEMMA 2.2. Z is a totally real submanifold of Z̃.

PROOF OF LEMMA 2.2. For an arbitrary point z ∈ Z , we will prove that J (TzZ) is

orthogonal to TzZ , where J is the complex structure on TzZ̃ . For z ∈ Z we choose a local
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section J̃ of Z defined on a neighborhood of π(z) such that J̃π(z) = z. We put K̃ = Ĩ J̃ . Then

{Ĩ , J̃ , K̃} is a local canonical basis of Q̃|M and {J̃ , K̃} is a local basis of Q′. We recall the

following orthogonal decompositions of TzZ and TzZ̃ : TzZ = V ′
z + H′

z, TzZ̃ = Vz + Hz,

V ′
z ⊂ Vz, H′

z ⊂ Hz. The vertical subspace V ′
z = Tz(Zπ(z)) is spanned by K̃π(z) and Vz =

Tz(Z̃π(z)) is spanned by Ĩπ(z) and K̃π(z). Since J K̃π(z) = zK̃π(z) = J̃π(z)K̃π(z) = Ĩπ(z), JV ′
z

is orthogonal to TzZ . By (2.7), we have H′
z = (π̃∗|Hz

)−1Tπ(z)M . For any X ∈ H′
z we have

JX = (π̃∗|Hz
)−1z(π̃∗X) = (π̃∗|Hz

)−1J̃π(z)(π̃∗X) .

Since M is totally complex, J̃π(z)(π̃∗X) is orthogonal to Tπ(z)M and hence JX is orthogonal
to H′

z. Therefore JX is orthogonal to TzZ . �

We denote by σ and σ̂ the second fundamental forms of the submanifolds M in M̃ and

Z in Z̃ , respectively. Then the following holds.

LEMMA 2.3. For each z ∈ Z , the image of σ̂ is contained in the horizontal subspace
Hz. Moreover we have

π̃∗σ̂ (X, Y ) = σ(π∗X,π∗Y ) for X,Y ∈ TzZ .

PROOF OF LEMMA 2.3. Since the fibre Zπ(z) is a geodesic circle in the unit sphere

Z̃π(z) and Z̃π(z) is a totally geodesic sphere of Z̃ , we have σ̂ (V ′
z,V ′

z) = {0}. As in the proof

of Lemma 2.2, we choose a local basis {J̃ , K̃} of Q′ around π(z) such that J̃π(z) = z. Let

X̄ and Ȳ be basic vector fields on Z , that is, X̄ and Ȳ are horizontal vector fields which are
π-related to vector fields X and Y on M , respectively. By Lemma 1 in [6], π̃∗(H(∇̄X̄Ȳ )) =
π̃∗(∇̄X̄Ȳ ) = ∇̃XY . Futhermore the vertical component V(∇̄X̄Ȳ )z is given by

V(∇̄X̄Ȳ )z = (AX̄Ȳ )z = −1

2
R̃(X, Y ) · J̃π(z)

= τ̃

8n(n + 2)
{−g̃(K̃X, Y )Ĩπ(z) + g̃(ĨX, Y )K̃π(z)}

= τ̃

8n(n + 2)
g(IX, Y )K̃π(z) .

Here we remark that g̃(K̃X, Y ) = 0 . Since V ′
z is spanned by K̃π(z), V(∇̄X̄Ȳ )z ∈ TzZ . From

these, it follows that σ̂ (X̄, Ȳ ) ∈ Hz and that π̃∗σ̂ (X̄, Ȳ )z = σ(Xπ(z), Yπ(z)).

Let U be a vertical vector field of Z around z which satisfies Uz = K̃π(z). We will prove

that σ̂ (X̄z, Uz) = 0. We have

H(∇̄X̄U)z = (AX̄K̃π(z))z = − τ̃

8n(n + 2)
(π̃∗|Hz

)−1(Ĩπ∗X̄) .

Here Ĩ (π∗X̄) = ĨX is a tangential vector of M and hence H(∇̄X̄U)z ∈ H′
z ⊂ TzZ . Sec-

ondly we will compute the vertical component of (∇̄X̄U)z. Since ∇̄X̄U = ∇̄UX̄ + [X̄, U ],
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V(∇̄X̄U)z = V(∇̄UX̄)z + V([X̄, U ]z). Each fibre of Z̃ is a totally geodesic submani-

fold. This implies that (∇̄UX̄)z is horizontal and hence V(∇̄UX̄)z = 0. Since X̄ and
U are tangential vector fields of Z , [X̄, U ] is also a tangential vector field of Z . On the

other hand π∗[X̄, U ] = [X, 0] = 0 and hence [X̄, U ] is a vertical vector field. Therefore
V([X̄, U ]z) = [X̄, U ]z ∈ TzZ . Consequently we have V(∇̄X̄U)z ∈ TzZ . From these, it

follows that σ̂ (X̄z, Uz) = 0. Thus Lemma 2.3 has been proved. �

By Lemma 2.3 we obtain the following.

COROLLARY 2.4. If M2m is a 2m(m ≥ 2)-dimensional totally geodesic Kähler sub-

manifold of M̃ , then Z is a totally geodesic submanifold of Z̃ .

PROOF OF THEOREM. Finally we will prove that Z is a minimal submanifold of Z̃ . It

is known that a totally complex submanifold M is minimal in M̃ (cf. [4]). This, together with

Lemma 2.3, implies that Z is minimal in Z̃. �

3. Examples

We will explain examples of half dimensional totally complex submanifolds of a quater-
nionic Kähler manifold.

(1) M. Takeuchi [8] studied a complete totally complex totally geodesic submani-

fold M of a quaternionic symmetric space M̃ of compact type or non-compact type with

2 dim M = dim M̃ . He called such a pair a TCG-pair and classified TCG-pairs. He also stud-

ied the twistor space Z̃ of M̃ and constructed the diagram as in Lemma 2.1 for a TCG-pair

(M̃,M). In this case, he showed that a natural lift Z of M is given by the set of fixed points

of an anti-holomorphic involution of Z̃ .
(2) K. Tsukada [9] studied totally complex submanifolds with parallel second funda-

mental form in a quaternion projective space HPn and classified them.
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