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1. Introduction

Let p be a prime number and k a number field of finite degree over Q, the rational number
field. Let Zp be the additive group of p-adic integers, and K/k a Zp-extension over k. For an
integer n ≥ 0, we denote by kn the n-th layer of the extension K/k, namely kn is the unique
intermediate field of K/k such that [kn : k] = pn. Recently, Ozaki studied the maximal

unramified pro-p extensions L̃ of K and L̃n of kn as in what follows. Let G̃ = Gal(L̃/K)

and G̃n = Gal(L̃n/kn) for all non-negative n. We define the subgroups Ci(G̃) of G̃ by the
descending central series

G̃ = C1(G̃) ⊇ C2(G̃) ⊇ · · · ⊇ Ci(G̃) ⊇ · · · , Ci+1(G̃) = [Ci(G̃), G̃] .
Then we consider the modules X(i) = Ci(G̃)/Ci+1(G̃), and call X(i) the i-th Iwasawa mod-

ule. We define the subgroups Ci(G̃n) ⊆ G̃n and the modules X
(i)
n similar to Ci(G̃) and

X(i), respectively. Note that X
(1)
n is isomorphic to the Sylow p-subgroup of the ideal class

group Akn of kn and that X(1) is the Iwasawa module XK of K/k which is defined as the
projective limit lim←−Akn with respect to the norm maps. By definition, the complete group ring

ΛK/k = Zp[[Gal(K/k)]] acts on X(i) in the natural way, namely Gal(K/k) acts via the inner
automorphism. For i = 1, Iwasawa studied the ΛK/k-module structure of XK and deduced
the following celebrated formula:

THEOREM A. There exist non-negative integers λ(K/k), µ(K/k) and an integer
ν(K/k) such that

#Akn = pλ(K/k)n+µ(K/k)pn+ν(K/k)

for all sufficiently large n.
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These integers λ(K/k), µ(K/k) and ν(K/k) are called the Iwasawa invariants of
K/k. We remark that λ(K/k) and µ(K/k) are the invariants of the ΛK/k-module XK . If

µ(K/k) = 0, then XK is a finitely generated Zp-module with rankZpXK = λ(K/k), and X(i)

is also a finitely generated Zp-module. When µ(K/k) = 0, we define the i-th λ-invariant of

K/k by λ(i)(K/k) = rankZpX(i). Now we raise the following question on the higher Iwasawa

modules X(i):

QUESTION. Suppose µ(K/k) = 0. Then, for each i ≥ 2, does there exist an integer

ν(i)(K/k) such that #X
(i)
n = pλ(i)(K/k)n+ν(i)(K/k) for all sufficiently large n ?

Ozaki found infinitely many fields where the above question is affirmatively answered
for i = 2, 3.

THEOREM B. Let p be an odd prime number and K/k the cyclotomic Zp-extension

over a CM-field k with the maximal real subfield k+. Assume that the following conditions
are satisfied:

(1) the Iwasawa µ-invariant of K/k is 0,
(2) the class number of k+ is prime to p,
(3) there is a unique prime of k+ lying over p.

Then there is an integer ν(i)(K/k)(i = 2, 3) such that #X
(i)
n = pλ(i)(K/k)n+ν(i)(K/k) for all

sufficiently large n.

For example, all imaginary quadratic fields satisfy the assumptions of Theorem B. In this

paper, we will prove an asymptotic formula of #X
(2)
n in terms of pλ(2)(K/k)n, namely;

THEOREM. Suppose that µ(K/k) = 0 and p does not split in K/Q. Then #X
(2)
n =

pλ(2)(K/k)n+O(1).

2. Lemmas

To prove this Theorem, we use the following lemmas. For a number field F , let EF

be the unit group of F . Denote by AF the Sylow p-subgroup of the ideal class group of F .
Let L be a finite Galois extension of F and Gal(L/F) its Galois group. Then we denote by
Hi(L/F,M) the i-th homology group of a Gal(L/F)-module M for a non-negative integer
i. We regard the additive group of p-adic integers Zp as a Gal(L/F)-module with trivial

action. We denote by MGal(L/F ) and MGal(L/F ) the Gal(L/F)-invariant submodule and the
Gal(L/F)-co-invariant module of M , respectively. For a Zp-module N , let TorZpN be the
maximal Zp-torsion submodule of N and put N[p] = {x ∈ N |px = 0}.

LEMMA 2.1. Let F be a number field of finite degree and L/F an unramified fi-
nite p-extension of finite degree such that L contains the Hilbert p-class field of F and
let G = Gal(L/F) (p-extension means a Galois extension with p-power degree). Put
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HL/F = EF/EF ∩NL/F L×. Then we have the exact sequence

0 −→ HL/F −→ H2(L/F, Zp) −→ (AL)G −→ 0 .

Furthermore, for any subfield k of F such that L/k and F/k are Galois extensions, the above
sequence is exact as Gal(F/k)-modules.

PROOF. This lemma is well known as the central class field theory. For example, see
Fröhlich [1]. �

Let Ln = L
(1)
n = L̃

C2(G̃n)
n and L

(2)
n = L̃

C3(G̃n)
n . Then Ln is the Hilbert p-class field of kn

and L
(2)
n is the central p-class field of Ln/kn, respectively. It follows from the definition of

X
(2)
n that X

(2)
n = Gal(L(2)

n /Ln) � (ALn)Gal(Ln/kn). Since Ln/kn is an abelian extension, we
have H2(Ln/kn, Zp) � Akn ∧ Akn , where ∧ means the exterior product. For m ≥ n ≥ 0, let
N ′m,n : Akm ∧ Akm → Akn ∧ Akn be the homomorphisms induced by the norm maps. Note
that the diagram

H2(Lm/km, Zp)
∼−−−−→ Akm ∧ Akm

dm,n

� N ′m,n

�
H2(Ln/kn, Zp)

∼−−−−→ Akn ∧ Akn

is commutative for m ≥ n ≥ 0. Here, we denote by dm,n the map induced by the restriction
map Gal(Lm/km)→ Gal(Ln/kn) (σ �→ σ |Ln). By Lemma 2.1, we have the following:

LEMMA 2.2. The following diagram is exact and commutative as Γ -modules for m ≥
n ≥ 0 :

0 −−−−→ HLm/km −−−−→ Akm ∧Akm −−−−→ X
(2)
m −−−−→ 0

norm
� �N ′m,n

�restriction

0 −−−−→ HLn/kn −−−−→ Akn ∧Akn −−−−→ X
(2)
n −−−−→ 0 .

The action of σ ∈ Γ on Akn ∧Akn is given by σ(x ∧ y) = (σx) ∧ (σy) for x, y ∈ Akn .

The next lemma tells us that the knowledge of Akn∧Akn gives information about HLn/kn

and X
(2)
n .

LEMMA 2.3. Let {An} and {Bn} (n ≥ 0) denote projective systems of finite abelian
p-groups with the following exact commutative diagram:

0 −−−−→ An+1 −−−−→ Bn+1

surjective

�
�surjective

0 −−−−→ An −−−−→ Bn ,

and let A = lim←−An, B = lim←−Bn.
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(1) Suppose that B is a finitely generated Zp-module. Then B = TorZpB is isomorphic
to a subgroup of Bn for all sufficiently large n.

(2) Suppose that B is a finitely generated Zp-module and

Ker(Bn+1/B→ Bn/B) = (Bn+1/B)[p]
for all sufficiently large n. Then there exist integers a and b such that

#An = pλ(A)n+a ,

#Bn = pλ(B)n+b

for all sufficiently large n. Here we denote by λ(M) the Zp-rank of a finitely generated Zp-
module M .

PROOF. (1) Let bn = Ker(B → Bn). Then {bn} is a system of fundamental neigh-
borhoods of B. Since B is finite, there is n0 such that bn ∩B = 0 for n ≥ n0. It follows from
the finiteness of Bn that bn is a free Zp-module of rank λ(B) for all sufficiently large n. From
the freeness of bn, we see that B maps to Bn injectively and Bn is a product of the image of
B and some subgroup of Bn.

(2) Let B ′ = B/B. By (1), we have

0 −→ bn −→ B ′ −→ Bn/B −→ 0 (exact) ,

and dimFp (Bn/B)/p(Bn/B) = λ(B) for all sufficiently large n, where Fp is the finite field
of p elements. By the commutative diagram

0 −−−−→ bn+1 −−−−→ B ′ −−−−→ Bn+1/B −−−−→ 0�
∥∥∥

�
0 −−−−→ bn −−−−→ B ′ −−−−→ Bn/B −−−−→ 0 ,

and the snake lemma, we have Ker(Bn+1/B → Bn/B) = (Bn+1/B)[p] � bn/bn+1. It

follows from (Bn+1/B)[p] � (Bn+1/B)/p(Bn+1/B) � F
⊕λ(B)
p that bn+1 = pbn.

Fix an integer n0 ≥ 0 such that bn ∩ B = 0 and bn+1 = pbn for all n ≥ n0.

Let #(Bn0/B) = pλ(B)n0+b′ for an integer b′. Since #Ker(Bn+1/B → Bn/B) =
#(Bn+1/B)[p] = pλ(B), we have #(Bn/B) = pλ(B)n+b′ if n ≥ n0. Then #Bn =
#(Bn/B)#B = pλ(B)n+b′#B. Let pb = pb′#B. Then #Bn = pλ(B)n+b for all sufficiently
large n.

Let an = Ker(A→ An) and A = TorZp
A. Since A ⊆ B we have A = A∩B. It follows

from the exact commutative diagram

0 −−−−→ An+1/A −−−−→ Bn+1/B�
�

0 −−−−→ An/A −−−−→ Bn/B
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that Ker(An+1/A → An/A) = (An+1/A)[p]. Then an+1 = pan for all sufficiently large n.
The remaining part is proved as in the case of Bn. �

LEMMA 2.4. Let K/k be a Zp-extension with a number field k. Assume that the Iwa-
sawa µ-invariant of K/k is 0. Then we have the following commutative diagram for all
sufficiently large n:

Akn+1

∼−−−−→
(⊕λ(K/k)

i=1 Z/pai+n+1Z
)
⊕ TorZpXK

norm
� �natural surjection

Akn

∼−−−−→
(⊕λ(K/k)

i=1 Z/pai+nZ
)
⊕ TorZpXK ,

where a1, · · · , aλ(K/k) are integers independent of n and satisfy the inequalities a1 ≤ a2 ≤
· · · ≤ aλ(K/k).

PROOF. For the proof of this lemma, see Grandet–Jaulent [2]. �

The following is keystone of the proof of main theorem.

LEMMA 2.5. Let K/k be a Zp-extension, and let Γn = Gal(K/kn). For m ≥ n ≥ 0,

let B
(n)
m = {c ∈ Akm |∃a ∈ c s.t. σa = a for all σ ∈ Γn} ⊆ A

Γn

km
. If p is not decomposed in

K/Q, then A
Γn

km
/B

(n)
m � Ĥ 0(km/kn,Ekm).

PROOF. For the proof of this lemma, see Theorem 1 of Greenberg [3]. �

Here, we give a sketch of the proof of Theorem B for the case i = 2. By Lemma 2.4, we
have

Akn ∧ Akn �
( ⊕

1≤i≤λ(K/k)

(Z/pai+nZ)⊕(λ(K/k)−i)

)
⊕D

for some finite abelian p-group D independent of n. Now we prove the surjectivity of the

norm map Nm,n : Ekm → Ekn , which is equivalent to Ĥ 0(km/kn,Ekm) = Ekn/Nm,nEm = 0.
Since k is a CM-field and K/k is the cyclotomic Zp-extension, kn is also a CM-field with the

maximal real subfield k+n . Because the unit index of kn/k+n is 1 or 2 and p is odd, we have

Ĥ 0(km/kn,Ekm) = Ĥ 0(k+m/k+n ,Ek+m ). By the assumptions (2), (3) and Iwasawa’s theorem

(Iwasawa [4]), the class number of k+n is prime to p for n ≥ 0. Therefore, Ĥ 0(k+m/k+n ,Ek+m ) =
0 for m ≥ n ≥ 0 by Lemma 2.5. Applying Lemma 2.3 to HLn/kn and Akn ∧Akn , we see that

there is an integer ν(2)(K/k) such that #X
(2)
n = pλ(2)(K/k)n+ν(2)(K/k) for all sufficiently large

n. The proof of the case i = 3 is much more difficult.
Let Dn be the subgroup of Akn generated by the classes each of which contains a prime

above p. We put A′kn = Akn/Dn and define A′kn → A′km as the homomorphism induced by
the natural inclusion kn → km.



60 SATOSHI FUJII

LEMMA 2.6. The order of the kernel of the homomorphism A′kn → A′km is bounded
for m ≥ n ≥ 0.

PROOF. For the proof of this lemma, see Iwasawa [5]. �

3. Proof of Theorem

Let H = lim←−HLn/kn , where the projective limit is taken with respect to the norm maps,

and In = Im(H→ HLn/kn) the image of the projection map. Applying Lemma 2.3 to In and

Akn ∧ Akn , we see that there exist integers a and b such that #Akn ∧ Akn = pλ(XK∧XK)n+a

and #In = pλ(H)n+b for all sufficiently large n. By Lemma 2.2, we have

#X(2)
n = #Akn ∧Akn/#HLn/kn

= pλ(2)(K/k)n+(a−b)/[HLn/kn : In] .
Hence, we have to prove that [HLn/kn : In] is bounded for n ≥ 0. We can easily see that

In =⋂
m≥n Nkm/knHLm/km . Therefore, if #Ĥ 0(km/kn,Ekm) is bounded for m ≥ n ≥ 0, then

[HLn/kn : In] is bounded for n according to the following commutative diagram:

Ekm −−−−→ HLm/km

norm
�

�norm

Ekn −−−−→ HLn/kn .

Therefore, we have only to prove that #Ĥ 0(km/kn,Ekm) is bounded for m ≥ n ≥ 0. Let
n0 ≥ 0 be the integer such that kn0 is the maximal unramified subextension of K/k. We deal
with two cases separately.

Case 1. n < n0 ≤ m.
By our assumption that p is not decomposed in K/Q and Lemma 2.5, we have

#Ĥ 0(km/kn,Ekm) = #A
Γn

km
/#B(n)

m

≤ #A
Γn

km

≤ #A
Γn0
km

= #Akn0
.

Hence the boundedness holds.
Case 2. n0 ≤ n.

Let pn be the unique prime of kn above p. Since pn is Γ -invariant and #AΓ
kn
≤ #A

Γn0
kn
=

#Akn0
, we see that Dn ⊆ AΓ

kn
and the order of Dn is bounded. Then there is a constant C1 > 0

such that #Akn/#A′kn = #Dn ≤ C1 for all n ≥ 0. Now we consider the homomorphism
A′kn → A′km induced by the natural inclusion kn→ km. Clearly the image of the above map
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is contained in B
(n)
m /Dm. Conversely, let c mod Dm be an element of B

(n)
m /Dm. Then there

is an ideal a ∈ c of km such that σa = a for all σ ∈ Γn. Since every Γn-invariant ideal of km

is a product of a power of the prime above p and an ideal of kn, we may assume that the class

c contains an ideal of kn. Therefore Im(A′kn → A′km) = B
(n)
m /Dm. By Lemma 2.6, there is a

constant C2 > 0 such that #A′kn#Dm/#B
(n)
m ≤ C2. Hence we have

#Ĥ 0(km/kn,Ekm) = #A
Γn

km
/#B(n)

m

≤ #AknC2

#A′kn#Dm

≤ C1C2/#Dm

≤ C1C2 ,

because n ≥ n0. This completes the proof of Theorem. �
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Note added in proof. After the author submitted, M. Ozaki showed that the Question
of this paper is affirmatively answered for each i ≥ 1. See his preprint: Non-abelian Iwasawa
Theory of Zp-extensions. His article will be to appear to a journal.
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