Токуо J. Матн. Vol. 28, No. 1, 2005

On a Higher Class Number Formula of Z_p-Extensions

Satoshi FUJII

Waseda University

(Communicated by Y. Yamada)

1. Introduction

Let p be a prime number and k a number field of finite degree over \mathbf{Q} , the rational number field. Let \mathbf{Z}_p be the additive group of p-adic integers, and K/k a \mathbf{Z}_p -extension over k. For an integer $n \ge 0$, we denote by k_n the n-th layer of the extension K/k, namely k_n is the unique intermediate field of K/k such that $[k_n : k] = p^n$. Recently, Ozaki studied the maximal unramified pro-p extensions \tilde{L} of K and \tilde{L}_n of k_n as in what follows. Let $\tilde{G} = \text{Gal}(\tilde{L}/K)$ and $\tilde{G}_n = \text{Gal}(\tilde{L}_n/k_n)$ for all non-negative n. We define the subgroups $C_i(\tilde{G})$ of \tilde{G} by the descending central series

$$\tilde{G} = C_1(\tilde{G}) \supseteq C_2(\tilde{G}) \supseteq \cdots \supseteq C_i(\tilde{G}) \supseteq \cdots, \ C_{i+1}(\tilde{G}) = \overline{[C_i(\tilde{G}), \tilde{G}]}.$$

Then we consider the modules $X^{(i)} = C_i(\tilde{G})/C_{i+1}(\tilde{G})$, and call $X^{(i)}$ the *i*-th Iwasawa module. We define the subgroups $C_i(\tilde{G}_n) \subseteq \tilde{G}_n$ and the modules $X_n^{(i)}$ similar to $C_i(\tilde{G})$ and $X^{(i)}$, respectively. Note that $X_n^{(1)}$ is isomorphic to the Sylow *p*-subgroup of the ideal class group A_{k_n} of k_n and that $X^{(1)}$ is the Iwasawa module X_K of K/k which is defined as the projective limit $\lim_{k \to \infty} A_{k_n}$ with respect to the norm maps. By definition, the complete group ring $\Lambda_{K/k} = \mathbb{Z}_p[[\mathrm{Gal}(K/k)]]$ acts on $X^{(i)}$ in the natural way, namely $\mathrm{Gal}(K/k)$ acts via the inner automorphism. For i = 1, Iwasawa studied the $\Lambda_{K/k}$ -module structure of X_K and deduced the following celebrated formula:

THEOREM A. There exist non-negative integers $\lambda(K/k)$, $\mu(K/k)$ and an integer $\nu(K/k)$ such that

$$#A_{k_n} = p^{\lambda(K/k)n + \mu(K/k)p^n + \nu(K/k)}$$

for all sufficiently large n.

Received September 12, 2003; revised April 28, 2004 2000 Mathematics Subject Classification. Primary 11R23, 11R29. Key words and phrases. Iwasawa's class number formula, higher Iwasawa modules.

SATOSHI FUJII

These integers $\lambda(K/k)$, $\mu(K/k)$ and $\nu(K/k)$ are called the Iwasawa invariants of K/k. We remark that $\lambda(K/k)$ and $\mu(K/k)$ are the invariants of the $\Lambda_{K/k}$ -module X_K . If $\mu(K/k) = 0$, then X_K is a finitely generated \mathbb{Z}_p -module with rank $\mathbb{Z}_p X_K = \lambda(K/k)$, and $X^{(i)}$ is also a finitely generated \mathbb{Z}_p -module. When $\mu(K/k) = 0$, we define the *i*-th λ -invariant of K/k by $\lambda^{(i)}(K/k) = \operatorname{rank}_{\mathbb{Z}_p} X^{(i)}$. Now we raise the following question on the higher Iwasawa modules $X^{(i)}$:

QUESTION. Suppose $\mu(K/k) = 0$. Then, for each $i \ge 2$, does there exist an integer $\nu^{(i)}(K/k)$ such that $\#X_n^{(i)} = p^{\lambda^{(i)}(K/k)n + \nu^{(i)}(K/k)}$ for all sufficiently large n?

Ozaki found infinitely many fields where the above question is affirmatively answered for i = 2, 3.

THEOREM B. Let p be an odd prime number and K/k the cyclotomic \mathbb{Z}_p -extension over a CM-field k with the maximal real subfield k^+ . Assume that the following conditions are satisfied:

(1) the Iwasawa μ -invariant of K/k is 0,

(2) the class number of k^+ is prime to p,

(3) there is a unique prime of k^+ lying over p.

Then there is an integer $\nu^{(i)}(K/k)(i = 2, 3)$ such that $\#X_n^{(i)} = p^{\lambda^{(i)}(K/k)n + \nu^{(i)}(K/k)}$ for all sufficiently large *n*.

For example, all imaginary quadratic fields satisfy the assumptions of Theorem B. In this paper, we will prove an asymptotic formula of $\#X_n^{(2)}$ in terms of $p^{\lambda^{(2)}(K/k)n}$, namely;

THEOREM. Suppose that $\mu(K/k) = 0$ and p does not split in K/\mathbb{Q} . Then $\#X_n^{(2)} = p^{\lambda^{(2)}(K/k)n+O(1)}$.

2. Lemmas

To prove this Theorem, we use the following lemmas. For a number field F, let E_F be the unit group of F. Denote by A_F the Sylow p-subgroup of the ideal class group of F. Let L be a finite Galois extension of F and Gal(L/F) its Galois group. Then we denote by $H_i(L/F, M)$ the *i*-th homology group of a Gal(L/F)-module M for a non-negative integer i. We regard the additive group of p-adic integers \mathbb{Z}_p as a Gal(L/F)-module with trivial action. We denote by $M^{\text{Gal}(L/F)}$ and $M_{\text{Gal}(L/F)}$ the Gal(L/F)-invariant submodule and the Gal(L/F)-co-invariant module of M, respectively. For a \mathbb{Z}_p -module N, let $\text{Tor}_{\mathbb{Z}_p}N$ be the maximal \mathbb{Z}_p -torsion submodule of N and put $N[p] = \{x \in N | px = 0\}$.

LEMMA 2.1. Let F be a number field of finite degree and L/F an unramified finite p-extension of finite degree such that L contains the Hilbert p-class field of F and let G = Gal(L/F) (p-extension means a Galois extension with p-power degree). Put

 $\mathcal{H}_{L/F} = E_F/E_F \cap N_{L/F}L^{\times}$. Then we have the exact sequence

$$0 \longrightarrow \mathcal{H}_{L/F} \longrightarrow H_2(L/F, \mathbf{Z}_p) \longrightarrow (A_L)_G \longrightarrow 0.$$

Furthermore, for any subfield k of F such that L/k and F/k are Galois extensions, the above sequence is exact as Gal(F/k)-modules.

PROOF. This lemma is well known as the central class field theory. For example, see Fröhlich [1]. $\hfill \Box$

Let $L_n = L_n^{(1)} = \tilde{L}_n^{C_2(\tilde{G}_n)}$ and $L_n^{(2)} = \tilde{L}_n^{C_3(\tilde{G}_n)}$. Then L_n is the Hilbert *p*-class field of k_n and $L_n^{(2)}$ is the central *p*-class field of L_n/k_n , respectively. It follows from the definition of $X_n^{(2)}$ that $X_n^{(2)} = \text{Gal}(L_n^{(2)}/L_n) \simeq (A_{L_n})_{\text{Gal}(L_n/k_n)}$. Since L_n/k_n is an abelian extension, we have $H_2(L_n/k_n, \mathbb{Z}_p) \simeq A_{k_n} \wedge A_{k_n}$, where \wedge means the exterior product. For $m \ge n \ge 0$, let $N'_{m,n} : A_{k_m} \wedge A_{k_m} \to A_{k_n} \wedge A_{k_n}$ be the homomorphisms induced by the norm maps. Note that the diagram

$$\begin{array}{cccc} H_2(L_m/k_m, \mathbf{Z}_p) & \stackrel{\sim}{\longrightarrow} & A_{k_m} \wedge A_{k_m} \\ & & & \\ d_{m,n} \downarrow & & & N'_{m,n} \downarrow \\ H_2(L_n/k_n, \mathbf{Z}_p) & \stackrel{\sim}{\longrightarrow} & A_{k_n} \wedge A_{k_n} \end{array}$$

is commutative for $m \ge n \ge 0$. Here, we denote by $d_{m,n}$ the map induced by the restriction map $\text{Gal}(L_m/k_m) \to \text{Gal}(L_n/k_n)$ ($\sigma \mapsto \sigma|_{L_n}$). By Lemma 2.1, we have the following:

LEMMA 2.2. The following diagram is exact and commutative as Γ -modules for $m \ge n \ge 0$:

The action of $\sigma \in \Gamma$ on $A_{k_n} \wedge A_{k_n}$ is given by $\sigma(x \wedge y) = (\sigma x) \wedge (\sigma y)$ for $x, y \in A_{k_n}$.

The next lemma tells us that the knowledge of $A_{k_n} \wedge A_{k_n}$ gives information about \mathcal{H}_{L_n/k_n} and $X_n^{(2)}$.

LEMMA 2.3. Let $\{A_n\}$ and $\{B_n\}$ $(n \ge 0)$ denote projective systems of finite abelian *p*-groups with the following exact commutative diagram:

and let $A = \lim_{n \to \infty} A_n$, $B = \lim_{n \to \infty} B_n$.

SATOSHI FUJII

(1) Suppose that B is a finitely generated \mathbb{Z}_p -module. Then $\mathfrak{B} = \operatorname{Tor}_{\mathbb{Z}_p} B$ is isomorphic to a subgroup of B_n for all sufficiently large n.

(2) Suppose that B is a finitely generated \mathbb{Z}_p -module and

$$\operatorname{Ker}(B_{n+1}/\mathfrak{B} \to B_n/\mathfrak{B}) = (B_{n+1}/\mathfrak{B})[p]$$

for all sufficiently large n. Then there exist integers a and b such that

$$#A_n = p^{\lambda(A)n+a},$$
$$#B_n = p^{\lambda(B)n+b}$$

for all sufficiently large n. Here we denote by $\lambda(M)$ the \mathbb{Z}_p -rank of a finitely generated \mathbb{Z}_p -module M.

PROOF. (1) Let $\mathfrak{b}_n = \operatorname{Ker}(B \to B_n)$. Then $\{\mathfrak{b}_n\}$ is a system of fundamental neighborhoods of *B*. Since \mathfrak{B} is finite, there is n_0 such that $\mathfrak{b}_n \cap \mathfrak{B} = 0$ for $n \ge n_0$. It follows from the finiteness of B_n that \mathfrak{b}_n is a free \mathbb{Z}_p -module of rank $\lambda(B)$ for all sufficiently large *n*. From the freeness of \mathfrak{b}_n , we see that \mathfrak{B} maps to B_n injectively and B_n is a product of the image of \mathfrak{B} and some subgroup of B_n .

(2) Let $B' = B/\mathfrak{B}$. By (1), we have

$$0 \longrightarrow \mathfrak{b}_n \longrightarrow B' \longrightarrow B_n/\mathfrak{B} \longrightarrow 0 \quad (\text{exact}) \,,$$

and $\dim_{F_p}(B_n/\mathfrak{B})/p(B_n/\mathfrak{B}) = \lambda(B)$ for all sufficiently large *n*, where F_p is the finite field of *p* elements. By the commutative diagram

and the snake lemma, we have $\operatorname{Ker}(B_{n+1}/\mathfrak{B} \to B_n/\mathfrak{B}) = (B_{n+1}/\mathfrak{B})[p] \simeq \mathfrak{b}_n/\mathfrak{b}_{n+1}$. It follows from $(B_{n+1}/\mathfrak{B})[p] \simeq (B_{n+1}/\mathfrak{B})/p(B_{n+1}/\mathfrak{B}) \simeq F_p^{\oplus \lambda(B)}$ that $\mathfrak{b}_{n+1} = p\mathfrak{b}_n$.

Fix an integer $n_0 \ge 0$ such that $\mathfrak{b}_n \cap \mathfrak{B} = 0$ and $\mathfrak{b}_{n+1} = p\mathfrak{b}_n$ for all $n \ge n_0$. Let $\#(B_{n_0}/\mathfrak{B}) = p^{\lambda(B)n_0+b'}$ for an integer b'. Since $\#\operatorname{Ker}(B_{n+1}/\mathfrak{B} \to B_n/\mathfrak{B}) = \#(B_{n+1}/\mathfrak{B})[p] = p^{\lambda(B)}$, we have $\#(B_n/\mathfrak{B}) = p^{\lambda(B)n+b'}$ if $n \ge n_0$. Then $\#B_n = \#(B_n/\mathfrak{B})\#\mathfrak{B} = p^{\lambda(B)n+b'}\#\mathfrak{B}$. Let $p^b = p^{b'}\#\mathfrak{B}$. Then $\#B_n = p^{\lambda(B)n+b}$ for all sufficiently large n.

Let $\mathfrak{a}_n = \operatorname{Ker}(A \to A_n)$ and $\mathfrak{A} = \operatorname{Tor}_{\mathbb{Z}_p} A$. Since $A \subseteq B$ we have $\mathfrak{A} = A \cap \mathfrak{B}$. It follows from the exact commutative diagram

that $\operatorname{Ker}(A_{n+1}/\mathfrak{A} \to A_n/\mathfrak{A}) = (A_{n+1}/\mathfrak{A})[p]$. Then $\mathfrak{a}_{n+1} = p\mathfrak{a}_n$ for all sufficiently large *n*. The remaining part is proved as in the case of B_n .

LEMMA 2.4. Let K/k be a \mathbb{Z}_p -extension with a number field k. Assume that the Iwasawa μ -invariant of K/k is 0. Then we have the following commutative diagram for all sufficiently large n:

where $a_1, \dots, a_{\lambda(K/k)}$ are integers independent of *n* and satisfy the inequalities $a_1 \leq a_2 \leq \dots \leq a_{\lambda(K/k)}$.

PROOF. For the proof of this lemma, see Grandet–Jaulent [2].

The following is keystone of the proof of main theorem.

LEMMA 2.5. Let K/k be a \mathbb{Z}_p -extension, and let $\Gamma_n = \operatorname{Gal}(K/k_n)$. For $m \ge n \ge 0$, let $B_m^{(n)} = \{c \in A_{k_m} | \exists \mathfrak{a} \in c \text{ s.t. } \sigma \mathfrak{a} = \mathfrak{a} \text{ for all } \sigma \in \Gamma_n\} \subseteq A_{k_m}^{\Gamma_n}$. If p is not decomposed in K/\mathbb{Q} , then $A_{k_m}^{\Gamma_n}/B_m^{(n)} \simeq \hat{H}^0(k_m/k_n, E_{k_m})$.

PROOF. For the proof of this lemma, see Theorem 1 of Greenberg [3]. \Box

Here, we give a sketch of the proof of Theorem B for the case i = 2. By Lemma 2.4, we have

$$A_{k_n} \wedge A_{k_n} \simeq \left(\bigoplus_{1 \le i \le \lambda(K/k)} (\mathbf{Z}/p^{a_i+n}\mathbf{Z})^{\oplus(\lambda(K/k)-i)} \right) \oplus D$$

for some finite abelian *p*-group *D* independent of *n*. Now we prove the surjectivity of the norm map $N_{m,n} : E_{k_m} \to E_{k_n}$, which is equivalent to $\hat{H}^0(k_m/k_n, E_{k_m}) = E_{k_n}/N_{m,n}E_m = 0$. Since *k* is a CM-field and *K/k* is the cyclotomic \mathbb{Z}_p -extension, k_n is also a CM-field with the maximal real subfield k_n^+ . Because the unit index of k_n/k_n^+ is 1 or 2 and *p* is odd, we have $\hat{H}^0(k_m/k_n, E_{k_m}) = \hat{H}^0(k_m^+/k_n^+, E_{k_m^+})$. By the assumptions (2), (3) and Iwasawa's theorem (Iwasawa [4]), the class number of k_n^+ is prime to *p* for $n \ge 0$. Therefore, $\hat{H}^0(k_m^+/k_n^+, E_{k_m^+}) =$ 0 for $m \ge n \ge 0$ by Lemma 2.5. Applying Lemma 2.3 to \mathcal{H}_{L_n/k_n} and $A_{k_n} \land A_{k_n}$, we see that there is an integer $\nu^{(2)}(K/k)$ such that $\#X_n^{(2)} = p^{\lambda^{(2)}(K/k)n+\nu^{(2)}(K/k)}$ for all sufficiently large *n*. The proof of the case i = 3 is much more difficult.

Let D_n be the subgroup of A_{k_n} generated by the classes each of which contains a prime above p. We put $A'_{k_n} = A_{k_n}/D_n$ and define $A'_{k_n} \to A'_{k_m}$ as the homomorphism induced by the natural inclusion $k_n \to k_m$.

SATOSHI FUJII

LEMMA 2.6. The order of the kernel of the homomorphism $A'_{k_n} \to A'_{k_m}$ is bounded for $m \ge n \ge 0$.

PROOF. For the proof of this lemma, see Iwasawa [5].

3. Proof of Theorem

Let $\mathcal{H} = \varprojlim \mathcal{H}_{L_n/k_n}$, where the projective limit is taken with respect to the norm maps, and $\mathcal{I}_n = \operatorname{Im}(\mathcal{H} \to \mathcal{H}_{L_n/k_n})$ the image of the projection map. Applying Lemma 2.3 to \mathcal{I}_n and $A_{k_n} \wedge A_{k_n}$, we see that there exist integers *a* and *b* such that $\#A_{k_n} \wedge A_{k_n} = p^{\lambda(X_K \wedge X_K)n+a}$ and $\#\mathcal{I}_n = p^{\lambda(\mathcal{H})n+b}$ for all sufficiently large *n*. By Lemma 2.2, we have

$${}^{k}X_{n}^{(2)} = {}^{\#}A_{k_{n}} \wedge A_{k_{n}}/{}^{\#}\mathcal{H}_{L_{n}/k_{n}}$$

= $p^{\lambda^{(2)}(K/k)n + (a-b)}/[\mathcal{H}_{L_{n}/k_{n}}:\mathcal{I}_{n}].$

Hence, we have to prove that $[\mathcal{H}_{L_n/k_n} : \mathcal{I}_n]$ is bounded for $n \ge 0$. We can easily see that $\mathcal{I}_n = \bigcap_{m \ge n} N_{k_m/k_n} \mathcal{H}_{L_m/k_m}$. Therefore, if $\#\hat{H}^0(k_m/k_n, E_{k_m})$ is bounded for $m \ge n \ge 0$, then $[\mathcal{H}_{L_n/k_n} : \mathcal{I}_n]$ is bounded for n according to the following commutative diagram:

$$\begin{array}{cccc} E_{k_m} & \longrightarrow & \mathcal{H}_{L_m/k_m} \\ \text{norm} & & & & & \\ & & & & & \\ E_{k_n} & \longrightarrow & \mathcal{H}_{L_n/k_n} \, . \end{array}$$

Therefore, we have only to prove that $#\hat{H}^0(k_m/k_n, E_{k_m})$ is bounded for $m \ge n \ge 0$. Let $n_0 \ge 0$ be the integer such that k_{n_0} is the maximal unramified subextension of K/k. We deal with two cases separately.

Case 1. $n < n_0 \le m$.

By our assumption that p is not decomposed in K/\mathbf{Q} and Lemma 2.5, we have

‡

$$\hat{H}^{0}(k_{m}/k_{n}, E_{k_{m}}) = \#A_{k_{m}}^{\Gamma_{n}}/\#B_{m}^{(n)}$$

$$\leq \#A_{k_{m}}^{\Gamma_{n}}$$

$$\leq \#A_{k_{m}}^{\Gamma_{n_{0}}}$$

$$= \#A_{k_{n_{0}}}.$$

Hence the boundedness holds.

Case 2. $n_0 \leq n$.

Let \mathfrak{p}_n be the unique prime of k_n above p. Since \mathfrak{p}_n is Γ -invariant and $\#A_{k_n}^{\Gamma} \leq \#A_{k_n}^{\Gamma_{n_0}} =$ $\#A_{k_{n_0}}$, we see that $D_n \subseteq A_{k_n}^{\Gamma}$ and the order of D_n is bounded. Then there is a constant $C_1 > 0$ such that $\#A_{k_n}/\#A'_{k_n} = \#D_n \leq C_1$ for all $n \geq 0$. Now we consider the homomorphism $A'_{k_n} \to A'_{k_m}$ induced by the natural inclusion $k_n \to k_m$. Clearly the image of the above map

is contained in $B_m^{(n)}/D_m$. Conversely, let $c \mod D_m$ be an element of $B_m^{(n)}/D_m$. Then there is an ideal $\mathfrak{a} \in c$ of k_m such that $\sigma \mathfrak{a} = \mathfrak{a}$ for all $\sigma \in \Gamma_n$. Since every Γ_n -invariant ideal of k_m is a product of a power of the prime above p and an ideal of k_n , we may assume that the class c contains an ideal of k_n . Therefore Im $(A'_{k_n} \to A'_{k_m}) = B_m^{(n)}/D_m$. By Lemma 2.6, there is a constant $C_2 > 0$ such that $\#A'_{k_n} \#D_m/\#B_m^{(n)} \le C_2$. Hence we have

$$\begin{split} #\hat{H}^{0}(k_{m}/k_{n}, E_{k_{m}}) &= #A_{k_{m}}^{\Gamma_{n}}/#B_{m}^{(n)} \\ &\leq \frac{#A_{k_{n}}C_{2}}{#A'_{k_{n}}#D_{m}} \\ &\leq C_{1}C_{2}/#D_{m} \\ &\leq C_{1}C_{2} \,, \end{split}$$

because $n \ge n_0$. This completes the proof of Theorem.

ACKNOWLEDGEMENT. I would like to express my thanks to Prof. Manabu Ozaki for his valuable advice in this paper.

Note added in proof. After the author submitted, M. Ozaki showed that the Question of this paper is affirmatively answered for each $i \ge 1$. See his preprint: Non-abelian Iwasawa Theory of \mathbb{Z}_p -extensions. His article will be to appear to a journal.

References

- A. FRÖHLICH, Central extensions, Galois groups, and ideal class groups of number fields, Contemporary Mathematics 24 (1983), American Mathematical Society.
- [2] M. GRANDET and J-F. JAULENT, Sur la capitulation dans une \mathbb{Z}_{ℓ} -extension, J. Reine Angew. Math. 362 (1985), 213–217.
- [3] R. GREENBERG, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263–284.
- [4] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [5] K. IWASAWA, On \mathbb{Z}_{ℓ} -extensions of algebraic number fields, Ann. Math. 98 (1973), 246–326.
- [6] M. OZAKI, Non-abelian Iwasawa theory of \mathbb{Z}_p -extensions, preprint.

Present Address: DEPARTMENT OF MATHEMATICAL SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO, SHINJUKU-KU, TOKYO, 169–8555 JAPAN. *e-mail:* fujii@ruri.waseda.jp