On a Higher Class Number Formula of \mathbf{Z}_{p}-Extensions

Satoshi FUJII

Waseda University

(Communicated by Y. Yamada)

1. Introduction

Let p be a prime number and k a number field of finite degree over \mathbf{Q}, the rational number field. Let \mathbf{Z}_{p} be the additive group of p-adic integers, and K / k a \mathbf{Z}_{p}-extension over k. For an integer $n \geq 0$, we denote by k_{n} the n-th layer of the extension K / k, namely k_{n} is the unique intermediate field of K / k such that $\left[k_{n}: k\right]=p^{n}$. Recently, Ozaki studied the maximal unramified pro- p extensions \tilde{L} of K and \tilde{L}_{n} of k_{n} as in what follows. Let $\tilde{G}=\operatorname{Gal}(\tilde{L} / K)$ and $\tilde{G}_{n}=\operatorname{Gal}\left(\tilde{L}_{n} / k_{n}\right)$ for all non-negative n. We define the subgroups $C_{i}(\tilde{G})$ of \tilde{G} by the descending central series

$$
\tilde{G}=C_{1}(\tilde{G}) \supseteq C_{2}(\tilde{G}) \supseteq \cdots \supseteq C_{i}(\tilde{G}) \supseteq \cdots, C_{i+1}(\tilde{G})=\overline{\left[C_{i}(\tilde{G}), \tilde{G}\right]} .
$$

Then we consider the modules $X^{(i)}=C_{i}(\tilde{G}) / C_{i+1}(\tilde{G})$, and call $X^{(i)}$ the i-th Iwasawa module. We define the subgroups $C_{i}\left(\tilde{G}_{n}\right) \subseteq \tilde{G}_{n}$ and the modules $X_{n}^{(i)}$ similar to $C_{i}(\tilde{G})$ and $X^{(i)}$, respectively. Note that $X_{n}^{(1)}$ is isomorphic to the Sylow p-subgroup of the ideal class group $A_{k_{n}}$ of k_{n} and that $X^{(1)}$ is the Iwasawa module X_{K} of K / k which is defined as the projective limit $\lim _{\longleftarrow} A_{k_{n}}$ with respect to the norm maps. By definition, the complete group ring $\Lambda_{K / k}=\mathbf{Z}_{p}[[\operatorname{Gal}(K / k)]]$ acts on $X^{(i)}$ in the natural way, namely $\operatorname{Gal}(K / k)$ acts via the inner automorphism. For $i=1$, Iwasawa studied the $\Lambda_{K / k}$-module structure of X_{K} and deduced the following celebrated formula:

Theorem A. There exist non-negative integers $\lambda(K / k), \mu(K / k)$ and an integer $\nu(K / k)$ such that

$$
\# A_{k_{n}}=p^{\lambda(K / k) n+\mu(K / k) p^{n}+\nu(K / k)}
$$

for all sufficiently large n.

Received September 12, 2003; revised April 28, 2004

These integers $\lambda(K / k), \mu(K / k)$ and $\nu(K / k)$ are called the Iwasawa invariants of K / k. We remark that $\lambda(K / k)$ and $\mu(K / k)$ are the invariants of the $\Lambda_{K / k}$-module X_{K}. If $\mu(K / k)=0$, then X_{K} is a finitely generated \mathbf{Z}_{p}-module with $\operatorname{rank}_{\mathbf{Z}_{p}} X_{K}=\lambda(K / k)$, and $X^{(i)}$ is also a finitely generated \mathbf{Z}_{p}-module. When $\mu(K / k)=0$, we define the i-th λ-invariant of K / k by $\lambda^{(i)}(K / k)=\operatorname{rank}_{\mathbf{Z}_{p}} X^{(i)}$. Now we raise the following question on the higher Iwasawa modules $X^{(i)}$:

QUESTION. Suppose $\mu(K / k)=0$. Then, for each $i \geq 2$, does there exist an integer $\nu^{(i)}(K / k)$ such that $\# X_{n}^{(i)}=p^{\lambda^{(i)}(K / k) n+\nu^{(i)}(K / k)}$ for all sufficiently large n ?

Ozaki found infinitely many fields where the above question is affirmatively answered for $i=2,3$.

THEOREM B. Let p be an odd prime number and K / k the cyclotomic \mathbf{Z}_{p}-extension over a CM-field k with the maximal real subfield k^{+}. Assume that the following conditions are satisfied:
(1) the Iwasawa μ-invariant of K / k is 0 ,
(2) the class number of k^{+}is prime to p,
(3) there is a unique prime of k^{+}lying over p.

Then there is an integer $\nu^{(i)}(K / k)(i=2,3)$ such that $\# X_{n}^{(i)}=p^{\lambda^{(i)}(K / k) n+v^{(i)}(K / k)}$ for all sufficiently large n.

For example, all imaginary quadratic fields satisfy the assumptions of Theorem B. In this paper, we will prove an asymptotic formula of $\# X_{n}^{(2)}$ in terms of $p^{\lambda^{(2)}(K / k) n}$, namely;

Theorem. Suppose that $\mu(K / k)=0$ and p does not split in K / \mathbf{Q}. Then $\# X_{n}^{(2)}=$ $p^{\lambda^{(2)}(K / k) n+O(1)}$.

2. Lemmas

To prove this Theorem, we use the following lemmas. For a number field F, let E_{F} be the unit group of F. Denote by A_{F} the Sylow p-subgroup of the ideal class group of F. Let L be a finite Galois extension of F and $\operatorname{Gal}(L / F)$ its Galois group. Then we denote by $H_{i}(L / F, M)$ the i-th homology group of a $\operatorname{Gal}(L / F)$-module M for a non-negative integer i. We regard the additive group of p-adic integers \mathbf{Z}_{p} as a $\operatorname{Gal}(L / F)$-module with trivial action. We denote by $M^{\operatorname{Gal}(L / F)}$ and $M_{\operatorname{Gal}(L / F)}$ the $\operatorname{Gal}(L / F)$-invariant submodule and the $\operatorname{Gal}(L / F)$-co-invariant module of M, respectively. For a \mathbf{Z}_{p}-module N, let $\operatorname{Tor}_{\mathbf{Z}_{p}} N$ be the maximal \mathbf{Z}_{p}-torsion submodule of N and put $N[p]=\{x \in N \mid p x=0\}$.

Lemma 2.1. Let F be a number field of finite degree and L / F an unramified $f i$ nite p-extension of finite degree such that L contains the Hilbert p-class field of F and let $G=\operatorname{Gal}(L / F)$ (p-extension means a Galois extension with p-power degree). Put
$\mathcal{H}_{L / F}=E_{F} / E_{F} \cap N_{L / F} L^{\times}$. Then we have the exact sequence

$$
0 \longrightarrow \mathcal{H}_{L / F} \longrightarrow H_{2}\left(L / F, \mathbf{Z}_{p}\right) \longrightarrow\left(A_{L}\right)_{G} \longrightarrow 0
$$

Furthermore, for any subfield k of F such that L / k and F / k are Galois extensions, the above sequence is exact as $\operatorname{Gal}(F / k)$-modules.

Proof. This lemma is well known as the central class field theory. For example, see Fröhlich [1].

Let $L_{n}=L_{n}^{(1)}=\tilde{L}_{n}^{C_{2}\left(\tilde{G}_{n}\right)}$ and $L_{n}^{(2)}=\tilde{L}_{n}^{C_{3}\left(\tilde{G}_{n}\right)}$. Then L_{n} is the Hilbert p-class field of k_{n} and $L_{n}^{(2)}$ is the central p-class field of L_{n} / k_{n}, respectively. It follows from the definition of $X_{n}^{(2)}$ that $X_{n}^{(2)}=\operatorname{Gal}\left(L_{n}^{(2)} / L_{n}\right) \simeq\left(A_{L_{n}}\right)_{\operatorname{Gal}\left(L_{n} / k_{n}\right)}$. Since L_{n} / k_{n} is an abelian extension, we have $H_{2}\left(L_{n} / k_{n}, \mathbf{Z}_{p}\right) \simeq A_{k_{n}} \wedge A_{k_{n}}$, where \wedge means the exterior product. For $m \geq n \geq 0$, let $N_{m, n}^{\prime}: A_{k_{m}} \wedge A_{k_{m}} \rightarrow A_{k_{n}} \wedge A_{k_{n}}$ be the homomorphisms induced by the norm maps. Note that the diagram

is commutative for $m \geq n \geq 0$. Here, we denote by $d_{m, n}$ the map induced by the restriction map $\operatorname{Gal}\left(L_{m} / k_{m}\right) \rightarrow \operatorname{Gal}\left(L_{n} / k_{n}\right)\left(\left.\sigma \mapsto \sigma\right|_{L_{n}}\right)$. By Lemma 2.1, we have the following:

LEMMA 2.2. The following diagram is exact and commutative as Γ-modules for $m \geq$ $n \geq 0$:

The action of $\sigma \in \Gamma$ on $A_{k_{n}} \wedge A_{k_{n}}$ is given by $\sigma(x \wedge y)=(\sigma x) \wedge(\sigma y)$ for $x, y \in A_{k_{n}}$.
The next lemma tells us that the knowledge of $A_{k_{n}} \wedge A_{k_{n}}$ gives information about $\mathcal{H}_{L_{n} / k_{n}}$ and $X_{n}^{(2)}$.

Lemma 2.3. Let $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}(n \geq 0)$ denote projective systems of finite abelian p-groups with the following exact commutative diagram:

and let $A=\lim A_{n}, B=\lim _{\longleftarrow} B_{n}$.
(1) Suppose that B is a finitely generated \mathbf{Z}_{p}-module. Then $\mathfrak{B}=\operatorname{Tor}_{\mathbf{Z}_{p}} B$ is isomorphic to a subgroup of B_{n} for all sufficiently large n.
(2) Suppose that B is a finitely generated \mathbf{Z}_{p}-module and

$$
\operatorname{Ker}\left(B_{n+1} / \mathfrak{B} \rightarrow B_{n} / \mathfrak{B}\right)=\left(B_{n+1} / \mathfrak{B}\right)[p]
$$

for all sufficiently large n. Then there exist integers a and b such that

$$
\begin{aligned}
& \# A_{n}=p^{\lambda(A) n+a} \\
& \# B_{n}=p^{\lambda(B) n+b}
\end{aligned}
$$

for all sufficiently large n. Here we denote by $\lambda(M)$ the \mathbf{Z}_{p}-rank of a finitely generated \mathbf{Z}_{p} module M.

Proof. (1) Let $\mathfrak{b}_{n}=\operatorname{Ker}\left(B \rightarrow B_{n}\right)$. Then $\left\{\mathfrak{b}_{n}\right\}$ is a system of fundamental neighborhoods of B. Since \mathfrak{B} is finite, there is n_{0} such that $\mathfrak{b}_{n} \cap \mathfrak{B}=0$ for $n \geq n_{0}$. It follows from the finiteness of B_{n} that \mathfrak{b}_{n} is a free \mathbf{Z}_{p}-module of $\operatorname{rank} \lambda(B)$ for all sufficiently large n. From the freeness of \mathfrak{b}_{n}, we see that \mathfrak{B} maps to B_{n} injectively and B_{n} is a product of the image of \mathfrak{B} and some subgroup of B_{n}.
(2) Let $B^{\prime}=B / \mathfrak{B}$. By (1), we have

$$
0 \longrightarrow \mathfrak{b}_{n} \longrightarrow B^{\prime} \longrightarrow B_{n} / \mathfrak{B} \longrightarrow 0 \quad \text { (exact) }
$$

and $\operatorname{dim}_{F_{p}}\left(B_{n} / \mathfrak{B}\right) / p\left(B_{n} / \mathfrak{B}\right)=\lambda(B)$ for all sufficiently large n, where F_{p} is the finite field of p elements. By the commutative diagram

and the snake lemma, we have $\operatorname{Ker}\left(B_{n+1} / \mathfrak{B} \rightarrow B_{n} / \mathfrak{B}\right)=\left(B_{n+1} / \mathfrak{B}\right)[p] \simeq \mathfrak{b}_{n} / \mathfrak{b}_{n+1}$. It follows from $\left(B_{n+1} / \mathfrak{B}\right)[p] \simeq\left(B_{n+1} / \mathfrak{B}\right) / p\left(B_{n+1} / \mathfrak{B}\right) \simeq F_{p}^{\oplus \lambda(B)}$ that $\mathfrak{b}_{n+1}=p \mathfrak{b}_{n}$.

Fix an integer $n_{0} \geq 0$ such that $\mathfrak{b}_{n} \cap \mathfrak{B}=0$ and $\mathfrak{b}_{n+1}=p \mathfrak{b}_{n}$ for all $n \geq n_{0}$. Let $\#\left(B_{n_{0}} / \mathfrak{B}\right)=p^{\lambda(B) n_{0}+b^{\prime}}$ for an integer b^{\prime}. Since $\# \operatorname{Ker}\left(B_{n+1} / \mathfrak{B} \rightarrow B_{n} / \mathfrak{B}\right)=$ $\#\left(B_{n+1} / \mathfrak{B}\right)[p]=p^{\lambda(B)}$, we have $\#\left(B_{n} / \mathfrak{B}\right)=p^{\lambda(B) n+b^{\prime}}$ if $n \geq n_{0}$. Then $\# B_{n}=$ $\#\left(B_{n} / \mathfrak{B}\right) \# \mathfrak{B}=p^{\lambda(B) n+b^{\prime}} \# \mathfrak{B}$. Let $p^{b}=p^{b^{\prime}} \# \mathfrak{B}$. Then $\# B_{n}=p^{\lambda(B) n+b}$ for all sufficiently large n.

Let $\mathfrak{a}_{n}=\operatorname{Ker}\left(A \rightarrow A_{n}\right)$ and $\mathfrak{A}=\operatorname{Tor}_{\mathbf{z}_{p}} A$. Since $A \subseteq B$ we have $\mathfrak{A}=A \cap \mathfrak{B}$. It follows from the exact commutative diagram

that $\operatorname{Ker}\left(A_{n+1} / \mathfrak{A} \rightarrow A_{n} / \mathfrak{A}\right)=\left(A_{n+1} / \mathfrak{A}\right)[p]$. Then $\mathfrak{a}_{n+1}=p \mathfrak{a}_{n}$ for all sufficiently large n. The remaining part is proved as in the case of B_{n}.

Lemma 2.4. Let K / k be a \mathbf{Z}_{p}-extension with a number field k. Assume that the Iwasawa μ-invariant of K / k is 0 . Then we have the following commutative diagram for all sufficiently large n :

where $a_{1}, \cdots, a_{\lambda(K / k)}$ are integers independent of n and satisfy the inequalities $a_{1} \leq a_{2} \leq$ $\cdots \leq a_{\lambda(K / k)}$.

Proof. For the proof of this lemma, see Grandet-Jaulent [2].
The following is keystone of the proof of main theorem.
Lemma 2.5. Let K / k be a \mathbf{Z}_{p}-extension, and let $\Gamma_{n}=\operatorname{Gal}\left(K / k_{n}\right)$. For $m \geq n \geq 0$, let $B_{m}^{(n)}=\left\{\left.c \in A_{k_{m}}\right|^{\exists} \mathfrak{a} \in c\right.$ s.t. $\sigma \mathfrak{a}=\mathfrak{a}$ for all $\left.\sigma \in \Gamma_{n}\right\} \subseteq A_{k_{m}}^{\Gamma_{n}}$. If p is not decomposed in K / \mathbf{Q}, then $A_{k_{m}}^{\Gamma_{n}} / B_{m}^{(n)} \simeq \hat{H}^{0}\left(k_{m} / k_{n}, E_{k_{m}}\right)$.

Proof. For the proof of this lemma, see Theorem 1 of Greenberg [3].
Here, we give a sketch of the proof of Theorem B for the case $i=2$. By Lemma 2.4, we have

$$
A_{k_{n}} \wedge A_{k_{n}} \simeq\left(\bigoplus_{1 \leq i \leq \lambda(K / k)}\left(\mathbf{Z} / p^{a_{i}+n} \mathbf{Z}\right)^{\oplus(\lambda(K / k)-i)}\right) \oplus D
$$

for some finite abelian p-group D independent of n. Now we prove the surjectivity of the norm map $N_{m, n}: E_{k_{m}} \rightarrow E_{k_{n}}$, which is equivalent to $\hat{H}^{0}\left(k_{m} / k_{n}, E_{k_{m}}\right)=E_{k_{n}} / N_{m, n} E_{m}=0$. Since k is a CM-field and K / k is the cyclotomic \mathbf{Z}_{p}-extension, k_{n} is also a CM-field with the maximal real subfield k_{n}^{+}. Because the unit index of k_{n} / k_{n}^{+}is 1 or 2 and p is odd, we have $\hat{H}^{0}\left(k_{m} / k_{n}, E_{k_{m}}\right)=\hat{H}^{0}\left(k_{m}^{+} / k_{n}^{+}, E_{k_{m}^{+}}\right)$. By the assumptions (2), (3) and Iwasawa's theorem (Iwasawa [4]), the class number of k_{n}^{+}is prime to p for $n \geq 0$. Therefore, $\hat{H}^{0}\left(k_{m}^{+} / k_{n}^{+}, E_{k_{m}^{+}}\right)=$ 0 for $m \geq n \geq 0$ by Lemma 2.5. Applying Lemma 2.3 to $\mathcal{H}_{L_{n} / k_{n}}$ and $A_{k_{n}} \wedge A_{k_{n}}$, we see that there is an integer $v^{(2)}(K / k)$ such that $\# X_{n}^{(2)}=p^{\lambda^{(2)}(K / k) n+v^{(2)}(K / k)}$ for all sufficiently large n. The proof of the case $i=3$ is much more difficult.

Let D_{n} be the subgroup of $A_{k_{n}}$ generated by the classes each of which contains a prime above p. We put $A^{\prime}{ }_{k_{n}}=A_{k_{n}} / D_{n}$ and define $A_{k_{n}}^{\prime} \rightarrow A^{\prime}{ }_{k_{m}}$ as the homomorphism induced by the natural inclusion $k_{n} \rightarrow k_{m}$.

LEMMA 2.6. The order of the kernel of the homomorphism $A^{\prime}{ }_{k_{n}} \rightarrow A^{\prime}{ }_{k_{m}}$ is bounded for $m \geq n \geq 0$.

Proof. For the proof of this lemma, see Iwasawa [5].

3. Proof of Theorem

Let $\mathcal{H}=\lim \mathcal{H}_{L_{n} / k_{n}}$, where the projective limit is taken with respect to the norm maps, and $\mathcal{I}_{n}=\operatorname{Im}\left(\mathcal{H} \rightarrow \mathcal{H}_{L_{n} / k_{n}}\right)$ the image of the projection map. Applying Lemma 2.3 to \mathcal{I}_{n} and $A_{k_{n}} \wedge A_{k_{n}}$, we see that there exist integers a and b such that $\# A_{k_{n}} \wedge A_{k_{n}}=p^{\lambda\left(X_{K} \wedge X_{K}\right) n+a}$ and $\# \mathcal{I}_{n}=p^{\lambda(\mathcal{H}) n+b}$ for all sufficiently large n. By Lemma 2.2, we have

$$
\begin{aligned}
\# X_{n}^{(2)} & =\# A_{k_{n}} \wedge A_{k_{n}} / \# \mathcal{H}_{L_{n} / k_{n}} \\
& =p^{\lambda^{(2)}(K / k) n+(a-b)} /\left[\mathcal{H}_{L_{n} / k_{n}}: \mathcal{I}_{n}\right] .
\end{aligned}
$$

Hence, we have to prove that $\left[\mathcal{H}_{L_{n} / k_{n}}: \mathcal{I}_{n}\right]$ is bounded for $n \geq 0$. We can easily see that $\mathcal{I}_{n}=\bigcap_{m \geq n} N_{k_{m} / k_{n}} \mathcal{H}_{L_{m} / k_{m}}$. Therefore, if $\# \hat{H}^{0}\left(k_{m} / k_{n}, E_{k_{m}}\right)$ is bounded for $m \geq n \geq 0$, then [$\mathcal{H}_{L_{n} / k_{n}}: \mathcal{I}_{n}$] is bounded for n according to the following commutative diagram:

Therefore, we have only to prove that $\# \hat{H}^{0}\left(k_{m} / k_{n}, E_{k_{m}}\right)$ is bounded for $m \geq n \geq 0$. Let $n_{0} \geq 0$ be the integer such that $k_{n_{0}}$ is the maximal unramified subextension of K / k. We deal with two cases separately.

Case 1. $n<n_{0} \leq m$.
By our assumption that p is not decomposed in K / \mathbf{Q} and Lemma 2.5, we have

$$
\begin{aligned}
\# \hat{H}^{0}\left(k_{m} / k_{n}, E_{k_{m}}\right) & =\# A_{k_{m}}^{\Gamma_{n}} / \# B_{m}^{(n)} \\
& \leq \# A_{k_{m}}^{\Gamma_{n}} \\
& \leq \# A_{k_{m}}^{\Gamma_{n_{0}}} \\
& =\# A_{k_{n_{0}}} .
\end{aligned}
$$

Hence the boundedness holds.
Case 2. $n_{0} \leq n$.
Let \mathfrak{p}_{n} be the unique prime of k_{n} above p. Since \mathfrak{p}_{n} is Γ-invariant and $\# A_{k_{n}}^{\Gamma} \leq \# A_{k_{n}}^{\Gamma_{n_{0}}}=$ $\# A_{k_{n}}$, we see that $D_{n} \subseteq A_{k_{n}}^{\Gamma}$ and the order of D_{n} is bounded. Then there is a constant $C_{1}>0$ such that $\# A_{k_{n}} / \# A_{k_{n}}^{\prime}=\# D_{n} \leq C_{1}$ for all $n \geq 0$. Now we consider the homomorphism $A^{\prime}{ }_{k_{n}} \rightarrow A^{\prime}{ }_{k_{m}}$ induced by the natural inclusion $k_{n} \rightarrow k_{m}$. Clearly the image of the above map
is contained in $B_{m}^{(n)} / D_{m}$. Conversely, let $c \bmod D_{m}$ be an element of $B_{m}^{(n)} / D_{m}$. Then there is an ideal $\mathfrak{a} \in c$ of k_{m} such that $\sigma \mathfrak{a}=\mathfrak{a}$ for all $\sigma \in \Gamma_{n}$. Since every Γ_{n}-invariant ideal of k_{m} is a product of a power of the prime above p and an ideal of k_{n}, we may assume that the class c contains an ideal of k_{n}. Therefore $\operatorname{Im}\left(A^{\prime}{ }_{k_{n}} \rightarrow A^{\prime}{ }_{k_{m}}\right)=B_{m}^{(n)} / D_{m}$. By Lemma 2.6, there is a constant $C_{2}>0$ such that $\# A^{\prime}{ }_{k_{n}} \# D_{m} / \# B_{m}^{(n)} \leq C_{2}$. Hence we have

$$
\begin{aligned}
\# \hat{H}^{0}\left(k_{m} / k_{n}, E_{k_{m}}\right) & =\# A_{k_{m}}^{\Gamma_{n}} / \# B_{m}^{(n)} \\
& \leq \frac{\# A_{k_{n}} C_{2}}{\# A_{k_{n}}^{\prime} \# D_{m}} \\
& \leq C_{1} C_{2} / \# D_{m} \\
& \leq C_{1} C_{2}
\end{aligned}
$$

because $n \geq n_{0}$. This completes the proof of Theorem.
Acknowledgement. I would like to express my thanks to Prof. Manabu Ozaki for his valuable advice in this paper.

Note added in proof. After the author submitted, M. Ozaki showed that the Question of this paper is affirmatively answered for each $i \geq 1$. See his preprint: Non-abelian Iwasawa Theory of \mathbf{Z}_{p}-extensions. His article will be to appear to a journal.

References

[1] A. Fröhlich, Central extensions, Galois groups, and ideal class groups of number fields, Contemporary Mathematics 24 (1983), American Mathematical Society.
[2] M. Grandet and J-F. Jaulent, Sur la capitulation dans une \mathbf{Z}_{ℓ}-extension, J. Reine Angew. Math. 362 (1985), 213-217.
[3] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[4] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[5] K. IWASAWA, On \mathbf{Z}_{ℓ}-extensions of algebraic number fields, Ann. Math. 98 (1973), 246-326.
[6] M. OzAKI, Non-abelian Iwasawa theory of \mathbf{Z}_{p}-extensions, preprint.

Present Address:
Department of Mathematical Science, School of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan.
e-mail: fujii@ruri.waseda.jp

