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1. Introduction

In elliptic cryptography, it is needed for a given finite field F', to construct an elliptic
curve whose group of F-rational points is cyclic of a large order. An approach to construct
such elliptic curves is, for a given elliptic curve E defined over an algebraic number field K,
to determine a set Sg x of prime ideals p of K such that group E (Fp) of rational points of
the reduction E of E modulo p is cyclic. R. Gupta and M. R. Murty [3] obtained a result for
this problem in probabilistic point of view. However, in general, the problem to determine
the set Sg x is not easy. In the case E has complex multiplication and an ordinary good
reduction at p, it is noted the group structure of £ (Fp) is determined by the trace of Frobenius
endomorphism (cf. [9]). In this case, the trace can be computed easily from the quadratic
norm representation of a prime number (cf. [4], [5], [6], [7]). Therefore, in this case, we can
give a family of prime ideals contained in Sg g . For example see [2].

The purpose of this article is, without the properties of complex multiplication, to con-
struct a family of elliptic curves E defined over Q such that for prime numbers of the form
p = 293574 4+ 1(g :an odd prime) E (F p) are cyclic. The key for considering this problem
is the next theorem.

THEOREM 1 (cf. [3]). For an elliptic curve E/Q and a positive integer n, let E[n] be
the set of n-division points and K, (E) be the field generated over Q by all points of E[n]. Let
p be a prime number such that E has good reduction at p and E_(Fp) the group of rational
points on the reduction of E modulo p. Then we have

(a) E(F,,) is cyclic if and only if p does not split completely in K;(E) for any prime L.

(b)  The cyclotomic field Q(¢,) is contained in K, (E) for any n.

COROLLARY 2. If a prime p of the form p = 2‘”(1{3l ---q,ﬁm +1 (g1, ,qm :odd

primes) does not split completely in K»(E), K4, (E), - -+, Ky, (E), then E(F,,) is cyclic.
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PROOF. For an odd prime ¢ # ¢;(i = 1,---m), we have p % 1 (mod ¢). Thus p
does not split completely in the cyclotomic field Q(¢,). By Theorem 1(b) p does not split
completely in K, (E), either. Therefore by (a), we have our assertions. O

EXAMPLE 3. (i) If a prime of the form p = 2%' + I(Fermat prime) does not split
completely in K»(E), then it is clear that E(Fp) is cyclic.

(i) For a prime of the form p = 2°¢ + 1(g : an odd prime such that 212 < ¢), if p
does not split completely in K»(E), then we can show easily that g2 [|E(F »)| and therefore
E(F,,) is cyclic. We see there exist no integers k # 0 such that |kq2 —-p—1=<2/pas
follows. If this inequality holds, then

2% +2— «/25q7+ << 25g+2+V2g+1
q* - q* '

However, since

2q+24+VPg T _ 2 2 2/TgHT 11

7 >zt e 72 2t <!
and
2°qg+2— m‘ q+2‘+‘2m‘ +2\/2S+1<1
2 9
q

k is not a non-zero integer. Thus g2 /HE(FP)I by Hasse’s inequality ||E(Fp)| -p—11=<2/p.

2. Primes of the form p = 293F + |

Let p be a prime number of the form p = 2%3# 4 1. In this section, we construct a family
of elliptic curves E over Q such that E (F p) are cyclic groups. By Corollary 2, if p does not
split completely in K»(E) and K3(E), then E(F p) is cyclic. First, we note there exist many

prime numbers of the form 2038 4 1, for example,

a=1 B=---,132, 180,320,696, 782, 822, 897, -

a=2 ,8_ -,201,249,805,~-~

a=3  B=---,130,143,331,332,980, -- -

a=4 B=---,195296,297,533, 545, 644,884,932, - - -
«=1000 B =---,544,807, -

THEOREM 4. For given integers ¢ and u, let E.,,/Q be an elliptic curve defined as
follows:

Ecu/Q:y? =x3 = (® = 3)ux? + 2c + 3)u’x.
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For a prime number of the form p = 23 + 1, ifc # —1, —3/2,3 (mod p) and
(—u>_((6+1)(c—3)>_ ]
p p ’

PROOF. Put A = —(c?> —3)u, B = (2c 4+ 3)u® and f(x) = x> + Ax + B. Then
E..[2] = {0, (0,0), (11, 0), (n2, 0)} where 1y, n2 are the roots of f(x) = 0. Since the
discriminant of f(x) is

then E¢ ,(F)) is cyclic.

Dy =A% —4B = (c + 1)*(c — 3)u?,
we have Q(+/(c + 1)(c — 3)) C K2(E¢,,). Therefore, if

<W):_l
p 9

then p does not split completely in K2(E. ,). Next we consider the decomposition of p in
K3(E; ). In this case, the 3-division polynomial ¢3(x) of E. , factors over Q[x] as follows:
¢3(x) = 3x* +4Ax3 +6Bx> — B? = (x + 14)(3)63 + rzx2 +rix +rg) .

Thus we see P3 = (—u, =4/ f(—u)) are 3-division points of E.,. Since f(—u) = —(c +
1243, we have Q(v/—u) C K3 (E¢.u). Therefore, the assumption shows that p does not split
completely in K3(E¢ ). O

REMARK. The discriminant of E. ; is §g,,, = (c+ 1)3(2¢+3)%(c—3), and j-invariant

. 256 3 ‘376 -—6 3
J(Ee ) = 20 =000
c,u

COROLLARY 5. Let w be an integer such that
w
3)--
P

Tw+NDw+1DHOw+7) %20 (mod p).

and

Then for

—(BSw+3) 3w+5
c= or
w—1 w—1

’

(W) = —1, and therefore E. ,(F ) is cyclic.

PROOF. Put

—(Bw+3)
c=——-.
w—1
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Since
CHZM and C_3=—_8w,
w—1 w—1
((c+ 1)(c—3)> B (32w(w+ 1)) )
p B p '

By assumptions,

_512(Tw 4+ 9 (w + 1w

Sg. = 0 dp).
Ecu w16 #0 (mod p)
On the other hands, for
, 3w+5
¢ = ,
w—1
it satisfies that
"+ 1D =3) 32(w + 1)
( - : 2)
p p
and we have
5129w + 2)%(w + 1)3
Eo, = - £0 (mod p).
: (w—1)
By (1) and (2),
<(c + D(c— 3))((6/ + (' — 3)) B (w) _
p p p '
Therefore by Theorem 4, we have our assertions. O

In the next example, by using Corollary 5, we shall give families of elliptic curves E.
in Theorem 4 such that E. , (F ) are cyclic. Hereafter, the notion Cy denotes the cyclic group
of order N.

EXAMPLE 6. In the following tables, let

—(5 3 3 5
cﬂw):% and o (w) = z;uj_l .

1) p=27334+1=23457. (%) = (*75) = —1.Putu =5.

w 5 7 10 14 15 17 19 20 21 23

c ciw) cr(w) cp(w) o) c(w) ci(w) co(w) o) c(w) cp(w)

Ec5(Fp) || Ca388 C3412 C3406 C3448 C3460 C3s44  Caasq4  C3aag Casig C3a00

2) p=2%3541=3889. (171) = (—7“) =—1.Putu = 11.
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w 11 13 19 26 29 33 38 39 41 43

c ciw) cpw) cp(w) cp(w) cp(w) ci(w) ) c(w) c(w) c(w)

Ec11(Fp) || C3850 C3o40 C3994 C3g44  C3g74  C3ggo  C3g3s  C3gse Cagg  C3008

3. Primes of the form p = 295/ + | and 2958 ¢7 + 1

In this section we consider the case that a prime p is given by the form 2%5f + 1 or
205B4% 4 1.

3.1. p=2%F 4 1. The following (e, B)’s are examples such that p = 2%5f + 1 are
primes:

a=1p=--,105 159,297, - --
a=4p=--,116, 166,394, - -
a=5p=--,159, 483,891,897, - -
a=6p=--,194,854, ..

a =100 B = 36,324,418, 428, 436, 596, 804, - - -

Let E/Q be an elliptic curve and j the j-invariant of E. Then we know K5(E) contains the
splitting field over Q of the polynomial

9(X, j) = X° +5X* +40X° — 3)
(cf. §3 of [1]). Therefore if g(X, j) is not decomposed into linear factors modulo p, p does

not split completely in K5(E). Furthermore if p does not split completely in K>(E), we see
EF p) is cyclic. Hereafter, we consider the case that g(X, j) factors in Q[X] as follows:

g X, )= X2 +aX+b)(X>+rX>+5X +1). ()
Comparing the coefficients (3) with (4), we obtain the quadratic equation of s:
s? + (a* — 40)s — a(a* — 5a +40)(a — 5) = 0. Q)
Take
5= %{—(az —40) = V/5(a — H)va? + 20},
Then we have
b= 21302 — 10(a — 4) + v/3(a — 4)V/a? £ 20}, (6)

2

t = é{a2(4a —25) 4 50(a — 4) + /5(2a — 5)(a — 4)v/a? + 20} (7)
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and
j = —bt. ®)
The discriminant of X2 +aX + b is

Ds(E) = a® — 4b = —5(a* — 4a + 16) — 2+/5(a — 4)v a2 +20.

(D5(E)) _
— ,

then p does not split completely in K5(E). Further if there exists a positive rational number

u such that /a2 + 20 = +/5u, then
Ds(E) = —5(u — 2)(Su+2a + 2) . )

If

Thus by a simple calculation, we have the next theorem.

THEOREM 7. For a rational number } such that 5)> — 1 > 0, let E; be an elliptic
curve defined by

E; : y> = x> +3375T(L)x — 6750T (M),

where T (A) = % and

RO) = (. — D(10A2 + 51 + 1),
S(A) = (15X% +10A +2)(522 — 51 — 1)2(152% + 100 + 7).

Then we have
(a) The j-invariant j(E,) and discriminant g, of Ej are

8000(A — 1)(10A2 4+ 51 + 1)3 5o — —15625R(V)2(522 — 1)°
Gr2— 1) CoE T 645(%)3

J(E) =

(b) For a prime number p such that

—(15X> 4+ 101 +2) 502 —1
=—1 and =1,
P P

p splits completely neither in K>(E)) norin Ks(E)). Furthermore, if p is of the form p =
2958 1 1, then E(Fp) is cyclic.

PROOF. In the above argument, put

201
SA2—1°



PARAMETRIC FAMILIES OF ELLIPTIC CURVES

Then
20522+ 1)
=——>0
502 —1
By (6)~(8), we know the j-invariant j(E}) of E) is

8000(x — 1)(10A% + 51 + 1)3
(5.2 = 1)5 :

J(Ey =

By (9), we have

—5.42(1522 4+ 101 + 2)
(522 = 1)2

Ds(E)) =

Since (%) =1,

<D5(EA)> B (—(15)\2 + 10X + 2))
p ) p '

The discriminant of x3 + 33757 (L)x — 67507 (1) = 0 is

2231256 R(1)2(5A2 — 1)°

Dy (E;) = — SG)?

Therefore

<DQ(EA)) B (—(15)\2 + 102 4 2)(52% — 1))
r ) p '

The assumption in (b) implies

<Ds(EA>) _ <Dz(EA)> _
p p '

Hence the prime p splits completely neither in K7 (E}) norin K5(E)).

387

a

In the above theorem, if we take A such that 1542 + 101 + 2 = 3w? for some w € Q,

then

(2)- ()
p p
Therefore we obtain the next theorem.

THEOREM 8. Lete =9+ 45 and e" = ¢, + /5dn(n € Z). Put
- 3_ .

5d2+10d,—4
P

For a prime number p = 2%58 + 1, if (

) =1, then E_;\(Fp) is cyclic.



388 NAOYA NAKAZAWA

PROOF. Consider the quadratic equation of A:

152 + 100 +2 = 3w? = 0. (10)

Its discriminant is D’ = 20(9w?—1). Therefore if there exists w € Q such that Qw2 —1 = 512
for L € Q, the equation (10) has Q-rational roots. Set e = 9 +44/5, which is a unit of Q(\/§),
and " = ¢, + ﬁdn(cn, d, € 7). Then c,% — Sd,f = 1. Therefore if we put w = £c¢, /3 and
L = +d,, then one of the roots of (10) is

Thus
<—(15x2+ 10x+2)> B (ic,%) B <—_3> _
p p p
and since
5M2—1\ _ (5d2+410d, —4
( p ) a ( p ) ’
by Theorem 7, we have our assertions. O

We shall give some examples of cyclic groups obtained from the elliptic curves in Theo-
rem 8.
EXAMPLE 9. Puti =
1) p=275+1=64l.
n 2 3 5 6 7 8 15 16 28 79
A mod p 403 210 637 397 318 418 303 164 566 101
E3(Fp) || Co2  Cosr Ceoz Coiz Ce1z Ces2  Cox2 Cesa Ces2  Con
2) p=2°5341=4001.
n 1 5 9 11 12 13 17 22 24 76
A mod p 1332 2695 3590 2353 93 196 1458 1329 1147 443

—l—dy
3 .

E,(Fp) || Caozz Cao0z Cio:2 Ca062 Caosz Caoex Caosr Carz Caizz Caonz

EXAMPLE 10. 1) p=2%5% 4 1 Putr = =172 Then
EA:y2=x3+Ax+B,

A = 6593835193563839442112337701815846247497905895342
B = 24065232597491461740775324596368307505004188209317

and

Ey(Fp) 2~ C37252902984619140625000006249485571812164870373232 -
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2) p=2'05% 4 1 Putr = =7% Then

E;\:y2=x3+Ax+B,

A = 6452482780111551966830874190826611545976242828986367767
B = 5541778513486447682338251618346776908047514342027264467

and

E5 (Fp) 2 C18446744073709551616000000003334801223258812729409907692 -

32. p=295Pgr 1

321. p =2%PgY + 1(g > 7 :an odd prime). Next we consider primes p of the
form p = 2%5P¢” + 1(g > 7 :an odd prime). If ¢ does not divide |E;.(Fp)|, then clearly
E,(F p) is cyclic. Thus we have the following theorem.

THEOREM 11. For primes p of the form 2°58qY 4+ 1(q > 7 :an odd prime), let us
consider the rational number
-1 - dn

3

and the elliptic curve E;, given in Theorems 7 and 8. Let E; be the twist of E;, defined by

A=

EY : y? = x% 4+ 33750*T (M)x — 67500°T (1), v € Z.

5d% +10d, — 4
(£>=—1 and (—"+ " >=1,
p p

then either E_;\(Fp) or E_X(Fp) is cyclic.

If

PROOF. Since ¢ # 0 (mod 3), p = 2%5f¢¥ + 1 = 2 (mod 3). Thus similarly in

Theorem 8,
(—(15)\2+10)\+2)>_<—3)_ .
p p '

<5d,3 + 10d, — 4) .
p 9

If

then p splits completely neither in K5(E)) nor K»(E;). Further, if p splits completely in
K, (E»), then we have ¢2||E; (F ,)|.



390 NAOYA NAKAZAWA

On the other hands, since
|Ex(Fp)| + |[EJ(Fp)| =2p+2%#0 (mod q)

and |E; (F,)| =0 (mod q), we see |EV(F,)| # 0 (mod g).

Now since j(E}) = j(E;), Ds(E;) = Ds(E;). Thus p does not split completely in
Ks(EY). Since the discriminant D, (EY) of x3 + 33750 T (\)x — 6750037 (1) = O satisfies
Dy (E)) = UGDQ(E;L}), p does not split completely in K>(E"V), either.

Hence E_X(F p) is cyclic. [l

322, p = 2%385Y 4+ I(@ = 1,2). Let p be a prime number of the form p =
29385Y 4 1. Since p = 1 (mod 3), for a parameter A and the elliptic curve E; defined
in Theorems 7 and 11, p may split completely in Ks(E,). However, for these p,if p = 5,7
(mod 8), thus o = 1, 2, we can give another type of A such that E(Fp) is cyclic.

THEOREM 12. Let p be a prime number of the form 2*3P57 +1(a = 1,2, 8,y > 0).
Further if o = 1, then we assume that p =7 (mod 8). Put

e = V65
and
e = mop V6 + V5 (k=1,2,3, -, may_1,n%_1 €Z).
Let
- -1 —3n2k71

and Ej, E} be elliptic curves defined in Theorems 7 and 11. If

(Sngkl + 10n2%—1 —4) .
> )

then either E_)L(Fp) or E_X(Fp) is cyclic.
PrROOF. Consider the quadratic equation

1522 + 101 + 2 — 2w? = 0. (11)

Its discriminant is D’ = 20(6w* —1).  We shall give integers L and w such that 6w? — 1 =
5L2. Let e = /6 — +/5. Then e~ = my_1v/6 + nop_1v/5 (mar_1,nax—1 € Z). This
shows that 6m%k71 — Sngkf1 = 1. Therefore (w, L) = (£mor_1, £nyr_1) are solutions of
6w? — 1 =5L2. Put

—1 —nok_
—

A=
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Then 1542 + 104 + 2 = 2m3,_,. Thus

<-{15x2+-10x4-2)>__ (—2) — 1 and <5x2-1> 3 (Sni_4—+10n%—1-'4)
p p P P '

Therefore by the first part of (b) of Theorem 11 and the similar argument in its theorem, we
have our assertions. O

3.2.3. Examples. The following two examples are groups of rational points of elliptic
curves given in Theorems 11 and 12 respectively.

EXAMPLE 13. Puti = —5% and p = 24527 + 1 = 2801.

n 4 6 7 8 15 18 23 25 26
Amod p || 2542 763 1159 1431 2760 66 2469 997 1783

E,(Fp) || Caz1a Cagiz Cagon Csg x (C7)2 Camn Cager Casaz Caszn Coman

EJ(Fp) || Cogoa  C2792  Co712 2762 Cogsn Coraa Corea Cor32 Cogen

EXAMPLE 14. Puti = %
) p=2-3.-534+1=751

k 4 5 8 10 11 17 21 25
A mod p 168 441 721 692 545 484 376 110
Ex(Fp) || C78 x (C3)? Cr90 Cre0 C17p Coan C112 C750 Csoz
E}(Fp) Csm Ci1p Cuy O Crep Cgg x (C3)2 Csn Cyp
2) p=223%52 11 =2810Ll.
k 1 2 3 7 12 14 18 22 26
A mod p 5400 0 5408 4484 6637 7311 6318 3628 1985
Ex(Fp) || Csim2 Csip Cson2 Csos2 Csoaz Csioa Cssg x (C3)2 Cgozn Crosn
E)(Fp) || Cso32  Csi02 Cs202 Csi1s2 Csi62  Csoso C212 Cs172 Cgom
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