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Eigenvalue Problems on Domains with Cracks I

Kazushi YOSHITOMI

Tokyo Metropolitan University

Abstract. We study an eigenvalue problem for the Laplace operator on a planar region with a growing crack.
We impose the Neumann boundary condition on the crack and the Dirichlet boundary condition elsewhere. One tip
of the crack is fixed at the boundary. We obtain the full asymptotic expansions of the first two eigenvalues of that
operator as the other tip of the crack reaches the boundary.

0. Introduction

In this paper we investigate the asymptotic expansions of the eigenvalues of the Laplace
operator on a region with a growing crack.

Let £2 be a bounded, simply connected region in R? with a smooth boundary and let
y [0, 0] — R? be a smooth curve without self-intersection. We assume that

(A.1) v(©0.10) C 2, y0)=0€0d2, and y(1)<cif.
For ¢ € [0, fy), we put
2, = £2\y (e, 1)) .
For b > 0, we define
1T, = ((0, 00) x R)\([b, 00) x {0}).

Fora € R? and r > 0, we denote by D(a, r) the open planar disk of radius r centered at {a}.
We impose the following assumption on £2 and y.
(A.2) There exists rg € (0, tp) such that

2: N D, ry) = T, N D, ry) forall e el[0,r].

The set £2¢ consists of two connected components. Let £2 and £2_ be the connected compo-
nents of £2¢p which satisfy (0, r9/2) € 9§25+ and (0, —ro/2) € 52—, respectively. We define

0, = the closure of {u € C*®(£2,) N H'(£2,)| suppu N 92 =@} in HY(2,),

0% = the closure of {u € C®(£2+) N H'(2+)| suppu N 92+ N 32 = @F}in H (241),
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qe(u,v) = (Vu, Vv)Lz(_Q) for u,veQ,,
qi(u, v) = (Vu, VU)LZ(.Qi) for u,ve Qi.

Let L. be the self-adjoint operator associated with the quadratic form ¢g.. The operator L,
is the negative Laplacian in £2, subject to the Dirichlet boundary condition on 92 and the
Neumann boundary condition on the crack y ((e, #p)). By A (¢) we denote the jth eigenvalue
of L. counted with multiplicity. The aim of this paper is to find the full asymptotic expansions
of the first two eigenvalues of L, as & tends to zero. Let Lt and L~ be the self-adjoint
operators associated with the quadratic forms ¢+ and ¢, respectively. The operator L™ is
the negative Laplacian in £24+ with the Dirichlet boundary condition on 9£24+ N 92 and the
Neumann boundary condition on y ((0, #p)). Let )\f < Azi < k3i < --- be the eigenvalues of
L¥ repeated according to multiplicity. We confine our attention to the case where )LT =2,
because the analysis of A1 (¢) in this case is more difficult than that in the case where Afr # AL
We suppose that

(A.3) Af =0

Let llfoi (x) be the eigenfunction of L* associated with the first eigenvalue )»f which is nor-
malized by the conditions

) >0 in 2x, 1@, =1- 0.1)

By a simple reflection argument we see that 'J/Oi extends to an analytic function in D(0, r9/2).

Moreover, the function 'J/Oi is given by a convergent power series expansion:

j
Wi (x) = Z Z cj.fkrzf*‘ cos(2k — 1)6 in  D(0,r/2), 0.2)
j=lk=1

Ci, >0, (0.3)

where (r, 0) stand for the polar coordinates of x centered at {0}. Let

ct. C7.
K:{jzz‘—fj —“}. (0.4)
Cl,l Cl,l

We define v = min K if K # . We put Ao = )»f“(: A1 ). Our main result is the following
claim.

THEOREM 0.1. We have the assertions (i), (ii), and (iii) below.
(1) The second eigenvalue Ay (&) admits the asymptotic expansion of the form

oo m—1

M@ ~ o+ DY Amas(loge)" as & —0, (0.5)

m=1 n=0
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where
o= 2 ((CFN2 4 (Cm )2
1,0 = g(( 1,1) +( 1’1) ).
(i) If K # O, then the first eigenvalue \1(¢) has the asymptotic expansion of the
form
oo [(i—=2v+1)/3] _
M@ ~r+ Y. Y wijetloge) as £—0 (0.6)
i=2v—1 j=0
with
m2v—-1,0 > 0.

(i) IfK =0, then
A1(e) = Ao 0.7)
for sufficiently small ¢ > 0.

This theorem implies that if K # {J, then A (¢) is increasing at ¢ = 0; otherwise A1 (g) =
Ao for sufficiently small ¢ > 0. Under some additional conditions on y, we can determine
whether K # () or K = ¢ by the following theorem.

THEOREM 0.2. Suppose that there exists T € C*°([0, to]) such that
y(@)=(,t@) on [0,50] and t(19) =0.

Then the statements (i) and (ii) below are equivalent.
i K=¢.
(i1) The region $2 is symmetric with respect to the x1-axis and t(t) = 0 on [0, tp].

There are many works on the behavior of the eigenvalues of an elliptic boundary value
problem on a region when a small deformation is turned on the region. In the case when
the region is smoothly deformed, one can analyze the eigenvalues by using the Hadamard
variation formula [6] or, more directly, Kato-Rellich’s perturbation theory for abstract linear
operators (see [9, Chapter VII, Section 6.5] and its references). The point of these arguments
is to reduce the equation on the deformed region to an equation on the original region; the
coefficients of the latter equation then depend smoothly on a deformation parameter. However,
these arguments do not work in the case when the region is singularly deformed. To the best of
the knowledge of the author, such a singular deformation was studied by A. M. II’in [7] for the
first time. He obtained the full asymptotic expansion of the harmonic function on a region with
a narrow cavity by using the method of matched asymptotic expansion. The essence of this
method is to decompose the region into overlapping subregions and to construct asymptotic
solutions on the respective subregions so that the solutions asymptotically coincide on the
intersection of the subregions. This method was fully developed by numerous authors; we
refer to [3, 4, 10] and [8] for a thorough review.
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Our problem is also a singular deformation, because there is no diffeomorphism from
£20 onto 2, (¢ > 0). While we use the method of matched asymptotic expansions to prove
the main theorem, our problem has the characteristic that the asymptotic form of the first
eigenvalue heavily depends on the quantity v = min K. This increases difficulties in seeking
approximate solutions.

Our study is inspired and motivated by the work of M. Dauge and B. Helffer [1]. By
using the method of variation, they proved (under more general assumptions than ours) that

limA;(e) =v; forall j=>1,
e—0
where v; < v < --- are the rearrangement of {A;‘}?‘;l U {A;}?‘;l counted with multiplicity.

Our Theorems 0.1 and 0.2 fully extend their result for j = 1, 2.
We give the form of approximate solutions. We introduce the inner variable:

é:eilx.

We look for the approximate second eigenvalue of L, and the associated approximate eigen-
functions in the following form.

oo m—1
A(e) = Ao + Z Z Amne?™ (loge)" . (0.8)
m=1 n=0
oo i—1 ) .
UMEQ) = @) + ) D e oge) g0 in 2u\DO.VE). (09
i=1 j=0
_ oo k—1
win(x) = Z e loge) v () in 2N DO,2e). (0.10)
k=1 1=0

Here the leading term (pSEO on (0.9)+ is a constant-multiple of llloi. We construct these

approximate eigenfunctions in such a way that lllsin(x) asymptotically coincides with
YUt (x) and ¥~ (x) on the intermediate regions 24+ N (D(0,24/¢)\D(0, /¢)) and
- N (D(0,2/e)\D(0, \/¢)), respectively. Inserting (0.8) and (0.9)+ into the equation
Ay + A(s))llfgout’i(x) = 0 and identifying the powers of ¢ and loge, we have the outer
equations

p—1 g

(Ax + )»0)90;4 = _)‘p,qq)(:)lfo - Z Z)\m,n(p;tfm,qfn in 'Qi ’
m=1n=0 (0'11):;7:,4

3
¢y (0)=0 on 3R2NIR, a(pf,ﬁq(x)zo on y((0,1)).
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Plugging (0.8) and (0.10) into the equation (Ay + A(s))lllgn(x) = 0 and equating the powers
of ¢ and log ¢ on account of A, = 8’245, we get the inner equations

p—1 g

AsVpyl,g = —AoVp,g — Z Z)\m,nvpfm,qfn in I,
m=1n=0 (0~12)p,q

ad
U414 =0 on (0} xR, Zupii (20 =0 on (1,00).
We also seek the approximate first eigenvalue of L, and the associated approximate eigen-
functions in the following form in the case when K # ¢.

oo [(i—2v+1)/3]

wey=h+ ) > wijetloge), (0.13)

i=2v—1 j=0

oo [(k—v+2)/3]

oty =Y Y eHdoge) i, (x) in 2:\D(0,Ve), (0.14)+
k=0 [=0
. oo [Gi-v+1)/3] ,
nx) = Z Z g2 lloge) w; j(€) in £2:NDO,2e). (0.15)
i=1  j=0

Here the leading term ‘ﬂ(fo of (0.14)1 is also a constant-multiple of lIJOi. These ap-

proximate solutions are also constructed so that w;n(x) asymptotically coincides with
Ut (x) and ¥2"“~(x) on the intermediate regions 24 N (D(0,24/¢)\D(0, /€)) and

2_ N (D(0,2/e)\D(0, \/¢)), respectively. As in the derivation of (0.11)* and (0.12) we
have

(Ax + 200V

k =1 k=3143j—v+2

_ Do+ o i

== D muWo—). D miViias; 2% (o6
i=3[+2v—1 j=0 i=3j+2v—-1

d
Yig =0 on 92:N02, —yi;=0 on y((0,n)),

Ang_Lq
s—1 q—1s5s=3q+3j—v+1
= —AWs,qg — Z HigWs—i,0 — Z Z Wi jWs—ig—j in Iy,
i=3g+2v—1 j=0 i=3j+2v—1

ws+1, =0 on {0} xR, a—gzws_H,q(-,j:O):O on (1,00).
0.17)
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We organize this paper as follows. In section 1 we construct the solutions to the outer
equations (0.11) and (0.16), and we analyze the asymptotic behavior of the solutions in a
neighborhood of the origin. For the latter purpose we cannot directly utilize the general regu-
larity theory of solutions to elliptic differential equations, because the region §24 has a conic
singularity at the origin. We eliminate this difficulty by using a reflection argument, which
enables us to apply the general regularity theory. In section 2 we construct the solutions to
the inner equations (0.12) and (0.17), and we study the asymptotic behavior of the solutions
in a neighborhood of infinity. To this end we reduce these equations to the Poisson equa-
tions in R? by using a reflection argument and a conformal map. In section 3 we construct
the coefficients of the approximate second eigenvalue (0.8) and those of the associated ap-
proximate eigenfunctions (0.9)1 and (0.10) which satisfy the mentioned coincidence on the
intermediate regions by combining the results in sections 1 and 2. In section 4 we construct
an approximate eigenfunction in £2, by joining the inner expansion (0.10) to the outer ones
(0.9)+, and we give an estimate on the error of the resulting appoximate eigenfunction. In
section 5 we construct the approximate first eigenvalue (0.13) and the associated approximate
eigenfunctions (0.14)1 and (0.15), and we complete the proof of Theorem 0.1. In section 6
we prove Theorem 0.2 by using analytic continuation. Section 7 is devoted to an appendix;
we prove a density result in H'-spaces which we need in sections 4 and 6.

Throughout this paper we adopt the following conventions to reduce complicated classi-
fications. We denote inessential constants by C on estimations. For k, [ € Z with k > [, we
define le=k aj =0and {bj}i<j< = ¥. A formula which contains either &= or  means two
formulae which correspond to the upper sign and the lower sign, respectively. For example,
the formula a* = bF means that at = b~ and a— = b™. We also regard undefined terms as
zero in formulae. For example, if a and ¢ are defined and if b is undefined, then the formula
a + b = cmeans a = ¢. We denote by N the set of all non-negative integers. We define
N* = N\{0}.

1. Outer equations

In this section we solve the outer equations (0.11)+ and (0.16) 1+ by areflection argument.
As its preliminary we need the following claim.

PROPOSITION 1.1. The eigenfunction 'Jloi extends to a real analytic function in
D(0, ro/2) and admits convergent power-series expansion of the form (0.2) with (0.3).

PROOF. We prove the assertion only for l1/0+ because that for ¥, is similar.
We proceed by the method of reflection. For » > 0 we put

Dy (r) = {(x1,x2) € D(0,r)| £x1 > 0},
Dyx(r) = {(x1,x2) € Dy.(r)| £x2 > 0}.
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We set

lI/+(x1,x2) for x € D1y (rp),
Yx,x) =1 ° A

@, (x1, —x2) for x € Dy_(ro).
The function ¥ (x) is even in x,. Because lI/0+ € O, we have

Y € H'(D+(ro)), ¥ =0 on ({0} x (—rg,70). (1.1)

Given ¢ € CSO(DJF(ro)), we set qg(xl,xz) = ¢(x1, —xp) for x € D44 (rp). Because lI/OJr is
the eigenfunction of L™ associated with the eigenvalue A(, we have

ag (¥5 . v) = MWy v)2q,, forany ve QF. (1.2)

Thus we obtain

f Y(—Ap)dx = / Vi - Vdx
D (ro)

D (ro)

= / Vi - Vodx +/ Vi - Vodx
D4 (ro) Dy —(ro)

by the coordinate change (x1, x2) — (x1, —x2) on the second term

= / VY, - Védx + / VY, - Vedx
Dy (ro)

D4 (ro)

by using (1.2) and ¢, ¢ € O+

=0 / Wt pdx + o / W pdx
Dy (ro) D+ (ro)

by the coordinate change (x1, x2) — (x1, —x2) on the second term

= o / Yédx + ko / Yédx
D4 (rg) D4 _(ro)

= Ko/ Yodx .
D (ro)

Thus we get
— Ay = Xy in the sense of distribution in D (79) . (1.3)

Using (1.1), (1.3), and the regularity estimate for the solutions of elliptic differential equations
(see [2, Part 1, Section 17]), we obtain

¥ € HX(D4(r0/2)). (1.4)



348 KAZUSHI YOSHITOMI

Next we set

Y(xy, x2) for x € Dy (r0/2),

v ) = {_w(—xuxz) for x € D_(ro/2).

The function &(x) is even in x, and is odd in x;. By (1.1) we have 1} e HY(D(0, r9/2)). As
in the above observation, we deduce that

—Ai} = )»01/} in the sense of distribution in D(0, ro/2) . (1.5)

Thus the regularity estimate for the solutions to elliptic differential equations (c.f. [2, Part 1,
Section 15]) implies that

¥ € C®(D(0,19/2)) . (1.6)

Moreover, the analytic hypoellipticity for elliptic differential equations with analytic coeffi-
cients (see [2, Part3, Section1]) implies that 1/7 is real analytic in D(0, r9/2). Combining this
with the fact that

Y (x1,x2) = =Y (=x1, x2) = ¥(x1, —x2) in D0, r9/2), (1.7)

we see that ¥ is given by a convergent power series expansion of the form
(o, oo o]
Z S djux 53 in D©.r0/2).
j=1k=0

Rewriting this in the polar coordinate, we have

o0
= ZZ Cc; (2 eos(2k —1)0 in D(0,70/2). (1.8)
j=1k=1
Let us show that Cf"; > 0. Note that ¥ = ¥ in D14 (ro/2). Because ¥ > 0 in

.Q+ and cosf® > 0 on (0, 7/2), we have C > 0. Seeking a contradiction, we assume that

1 | = 0. Inserting (1.8) into (1.5) and using the analiticity of w in D(0, ro/2), we have the
recurrent formula

)
ct. =_ cT 1.9
SRR 4G+ G+ 1 —k) Pk (49
for j > 1land 1 <k < j. Let us show that for all j € N*,
c+k =0 for 1<k<j (1.10)

by using induction on j. (1.10) is valid for j = 1 by the assumption. Let m € N*. Suppose
that (1.10) is valid for j < m. Then (1.9) implies that C;;JFLk =0forl <k <m. So, (1.8)
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implies that
1ﬁ(x) m+1 m+]r2m+1 cos(2m + 1)0 + O(F2m+3)

asr — 0. Because l1/+ > 0 in £24 and cos(2m + 1)6 takes both positive and negative sign on
(0, /2), we get Cerl ml = = 0. Hence (1.10) is also valid for j < m + 1. Therefore (1.10)
holds for all j € N*. This together with the analiticity of ¥ in D(0, ro/2) implies that ¢ = 0
in D(0, r9/2). But this violates the fact that '1/0+ > 0 in £24. Hence we get Cffl > 0. This
completes the proof of Proposition 1.1. a

Next we introduce function spaces which we need on the sequel. For an open set X' in
R2, a finite subset S of 3%, and k € N U {0}, we define

CK(Z\S) = {u: ¥ — R|u € CK(Z\A) for any open set A
such that S C A and X'\ A # 0}.

Choose x € C*°([0, o0)) such that
x@r)y=1 on [0,r9/4], x(r)=0 on [rg/2,00).

For p € N, we define J pi as the class of functions u which satisfies the conditions (a), (b),
(¢), and (d) below.

@ ueCPR2:\(0, y(m)}) (1 = x(r)u € Dom(L¥).

(b) u=0o0nadf2N 8.Qi, 3,4 = 0o0ny((0, 1)).

(¢) The function # admits an asymptotic expansion of the form

u(x)~<2 Xp: +2p222p:+ zi.::

s=0 j=p—s s=p j=1 s

0
Z > 2p+2s+1 COS(2j _ 1)9
1 j=p—s
oo min{p,s—p+1,[(s+1)/2]}
+ Z Z bs,jrzs_zl’ﬂlogrcos(Zj - 1o
j=1

asr — 0 and x € £24, which can be differentiated term by term infinitely many times.

(d) There exists r; € (0, o) such that for each N > 2p the function

2p—=2 p
u(x)—(z Z YN o+ Z Z) 2Pt cos (2 — 1)6

s=0 j=p—s s=p j=1 s=2p-—1 j=p—s

N min{p,s—p+1,[(s+1)/2]}
Z bs,jr2s—2p+l logr COS(2j - 16
s=p Jj=1

in 24+ N D(0, r1) extends to a function hﬁ(x) e C2N=4r+3(D(0, r1)) which is even in x; and
is odd in x;.
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For f, g € ﬂre(o)ro)Lz(Qi\D(O, r)), we define

(fv g)Qi = ,

inlo(f’ 9 12(2:\DO.r))

if the limit exists.
The following lemma solves the outer equations.

LEMMA 1.2. Let p € Nand f € in. Given {aj}fzo C R, there exists a unique
u € R for which the equation

(A+r0)p = —p¥GE+f in 24,
0

$=0 on 32NI2e, —¢=0 on y((0,n0), (L.11)+
n

(0, U)o, =0

has a solution ¢(x) € J;:;t+1 whose asymptotic expansion asr — 0:

)4 p+1 2p  p+l1 o0 0
¢(x)~<2 PEEI D I D )Es,jrh’““cos(zj—l)e

s=0 j=p+1—s s=p+1j=1 s=2p+1 j=p+l—s

oo min{p+1,s—p,[(s+1)/2]}
+ Z Fy jr*72P~Mogr cos(2j — 1)6
s=p+1

~.
Il

satisfies
Espr1—s=ag for 0<s=<p.

Moreover, we have

14
T
=¥+ 5 (-2p+25— DaCE iy (1.12)
s=0

PROOF. We shall demonstrate the assertion only for (1.11)4, because that for (1.11)_
is similar.
Since f € J I‘,“ , the function f admits the asymptotic expansion of the form

p—1 p 2p—2 p o0 0
f(x)~< P DD I DY )as,,-r”’““‘ cos(2j — 1)0
s=0 j=p—s s=p j=1 s=2p—1 j=p—s

oo min{p,s—p+1,[(s+1)/2]}
n Z bs,jr2572p+l logrcos(2j — 1) (1.13)
s=p Jj=1
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asr — 0. For N > 2p, we introduce the partial sum of the formal power series on the right
side of (1.13):
p—1 p 2p—2 p N 0

Fy@ =0 Y+ 3+ > D agr P eos(2j — 1)6

s=0 j=p—s s=p j=1 s=2p—1j=p—s

N min{p,s—p+1,[(s+1)/2]}
+y by jr* 2P log r cos(2j — 1)6 . (1.14)

.
I

Thanks to the formulae
A2 cos(2j — 1)0) = 4m(2j +m — DrX 23 cos(2j — 1)6, (1.15)
AT ogrcos(2j — 1)) = 4m(2j +m — DrH 2" 3 Jogr cos(2j — 1)6
+22) +2m — DrEtm 3 cos2j — DO, (1.16)

one can construct the power series

p+1 2p  p+l N+1
lI/N(x)=<Z Yoo+ Y+ ) Z ) Pl eog(2j — 1)0
s=0 j=p+1—-s s=p+1 j=I s=2p+1 j=p+1—s
N+1 min{p+1,s—p,[(s+1)/2]}
+ ) Fy jr® =2 ogrcos(2j — 1)
s=p+1 j=l1

that satisfies (A + Ag)¥y = Fy and
Ew,_H_S =a; for 0<s<p.
We seek the solution of (1.11)4 in the form
@(x) = x(N¥N@) +Nv(x), T~ € Dom(L7).

Plugging this into the equation (1.11)4, we obtain the equation for 7y :

(A+ro)ty = —p¥ +gy in 24,

N=0 on 92NaR,;, %mzo on y((0, 1)), (1.17)

(N ¥ 120, = (X PN (), ¥ e,
where

gy =0 =) f —¥NAx —2Vx - VPN + x(f — Fn).

Since gy € L?(£24) and since XT is a simple eigenvalue of L™, we infer that the equation
(1.17) has a solution in Dom(L ™) if and only if

(—M‘I’()i + gn, l1’04_)L2(.(2+) =0; ie u=(gn, l1’()4_)1‘2(_(24_) .
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We define uy = (9w, l1/0+)L2(_Q+). For © = pp, we denote the unique solution of (1.17) in
Dom(L™) by Ty again. We put
oN(x) = x (PN (x) + TN (x) . (1.18)

Let us show that both ux and ¢ are independent of the choice of N > 2p. For N, M >
2p, we have

(A+20)(on —om) = (un — ¥, in 24,
(on — o, ¥, =0,
oN(x) — o (x) = X (N (PN (x) — ¥n (X)) + T (x) — Tp(x) € Dom(LY).
Since X is a simple eigenvalue of LT, we getuy —uy = 0and oy —¢@y = 0. Thus both uy

and ¢y are independent of the choice of N > 2p, which we denote by u and ¢, respectively.
Next we compute the asymptotic expansion of Ty (x) as r — 0. Since f € JI, there

exist r1 € (0, rg) and h € C*N~=*P+3(D(0, r1)) such that
—u¥ +gv=h on £2,N0DO,r),
h(xy, x2) = h(x1, —x2) = —h(=x1,x2) in D(0,r1).
Applying the reflection argument in the proof of Proposition 1.1 to (1.17), we see that
t™v|2,nD.r) extends to a function Ty(x) € H2N=4*5(D(0,r1/2)) which is even in

xp and is odd in x;. By the Sobolev imbedding theorem we claim that Ty(x) €
CIN—=4r+3(D(0, ry /4)). Hence the function Ty admits the asymptotic expansion of the form

N=2p+1 j
FEv) — D D Sar¥ T cos(2k — o) = O¢NArH-IA)
j=1 k=1

asr — Ofor|B| < 2N — 4p + 3. Combining this with (1.18) and the independence of ¢y
on N > 2p, we get the asymptotic expansion of ¢(x) as r — 0.
Finally we demonstrate (1.12). By (1.11)4+ we have

(A + 200, Yo, = —pn+ (£, ¥)a. -

We put 22 = £2,\D(0, 8). Using an integration by parts, we obtain

(A+20)p. ¥ . = lim fﬂ HT A+ e (0dx
+

= lim gl/+(x)i (x) — (x)illf"’(x) ds
_5—>O 3_Q§r 0 8n(p ¢ on 0

/2 9 + + d
= Ii 8,0)—w;"(5,0) — ¥, (5,0)—¢(8,0) |5d6 .
52%/0 ((p( )5 Yo (8.6) — ¥y (8, 0) 0 ))
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Notice that

3\’ .
(a—r) (p(x) — p(x)) = O~ |logrl),

3\’ y »
(5) (W () = ¥ () = O
asr — Ofor j =0, 1, where
14 p+1
guy=Y Y Egr P leos(2j— 1o,
s=0 j=p+1—s
p+l
Pt (x) = Z Z C;rkrz-/—l cos(2k — 1)6 .
j=1k=1

So we get

/2 9 . . )
A+ A U)o, = li 5 ./ — g —0 )
((A+20)o, ¥y ) e, sl_%/o <<p(5,9)8r 0 (6,6) — ¥, (8,9)8r<p(8,9))5d9
P
T +
=-> 5 (2P 425 = DEs pr1-5Chy iy

s=0

Therefore we obtain (1.12). o

2. Inner equations

In this section we solve the inner equations (0.12) and (0.17) by using a conformal
map and a reflection argument. To this end we give a reduction scheme to solve the Poisson
equation:

Agu() = f() in I,
0 2.1
u()=0 on {0} xR, a—&u(~, +0)=0 on (1,00),

where f is a given function in I71;.
For a function ¢ in IT;, we define

1
g5 ® = J(E, &) £ 9@, —&), Eell.
Then the functions g ¥ (£1, -) and g~ (£, -) are even and odd, respectively, and

9E =g ) +9 ®), &te.
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This decomposition reduces the equation (2.1) to the following two equations.
At ) = [ in RY,

ut(€)=0 on {0} xRy, %u+(.,+0)=0 on Ry.
2

Agqu™ ()= f7() in R%,

u (£)=0 on I7, iu‘(é):O on I3.
on

2.2)

(2.3)

Here R stands for the set of all positive real numbers, R = (R+)2, Iy = (1, 00) x {0}, and

I = dR3\ D).

Next we simplify the boundary condition in the latter equation by using a conformal

map. We identify R with C by the map
R® 5 (§1.62) = &1 + V16 € C.

We define

Em=n*+1, neP:=Ry+vV-IRy,

where the branch cut of the square root is the positive real axis. It is readily seen that the map
P > n+ &(n) € P is conformal and it sends R and +/—1R onto I> and I, respectively.

Putting v(n) = u~(£(n)), we arrive at the equation
Apu(n) =g() in RE,

a
v(n) =0 on {0} xR, a—nzv(-,O):O on Ry,

where

In|?
In%+1]

gn) = fEm).

Using the above procedure, we give the solutions of the Laplace equation:

Asu(€) =0 in I,
u()=0 on {0} xR, iu(o,:|:0)=0 on (1,00).
062

Let (p, 6) be the polar coordinates of & centered at the origin. For j € N*, we define

Uj€) =Re (X1 = p¥~lcos(2j — )6,

Vi(E) =Re((/&2 — )71,

2.4

2.5)
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These functions solve the equation (2.5). Furthermore, the functions U;(§1, -) and V; (&1, -)
are even and odd, respectively. A straightforward computation gives the following asymptotic
expansion of V; (&), which can be differentiated term by term infinitely many times.

o0
Vi€ ~ Y 1upH cos(2j—20 =10 as p—>oo, Eelll, +£>0,

[=0

(-D'@2j - D! .
- for I <j,

NERj—20—nn

—1I@2j =D
Tj,l = M for l — ,] ,
jl27

(=D @j—DNQRI-2j — D! .
for [ >j.

12!

It is convenient to normalize the harmonic functions V;(&). We define \7j (&) by the recurrent
formulae

Vi) =Vi(®),
~ ]7] ~
Vi) = Vi) =Y 1V for j=2.

=1

They admit the asymptotic expansions of the form

o
Vi) ~ £p*cos2j — DO £y 7102 H  cos(2j — 21 — 1)
=)

as p —> 00, & € II, & > 0. These harmonic functions play an important role in the
matching procedure in the next section.

Let us return to solve the equation (2.4). We denote by A the class of functions w(n) €
C®(R?\{—+/—1,/=1}) N L (R?) which is even in 7, and is odd in 7. We observe that if

the function g(n) extends to a function § (17) € A and if § () = O(|n|~3) as |n| — oo, then
the Newtonian potential of g:

1
v(n) = 7 / log|n — ylg(y)dy (2.6)
T JR2

solves the equation (2.4), because 7 € AN C'(R?*) N C®(R*\{—+/—1, ~/—1}) and AT(n)) =
G () in R*\{—+/—1, v/—1} (see [5, Lemmas 4.1 and 4.2]).
The following lemma gives the asymptotic expansion of v.

LEMMA 2.1. Let g € A. Assume that there exists an N € N* such that g (n) =
O(nI=N=1Y as |n| — oo. Then the function ¥ from (2.6) admits the following asymptotic
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expansion which can be differentiated term by term infinitely many times.

v(n) = Z Cjs/cosjo+ O™y as s — o0o.
1<j<N-2
j=1 (mod 2)
Here (s, w) stand for the polar coordinates of n centered at the origin.

PROOFE. Since

2yicosw  2yzsinw yz+y2
|n—y|2=s2(1— — +1--2),

s s 52

the kernel of (2.6) is expressed as follows.

2yjcosw  2ypsinw n ylz + )’%)

1
10g|n—y|=logs+—log<1— 5
2 s s

Let! = N — 2. Setting

[

H(t) =log(1+1) = Y

j=1

(—=1J-!
j

t/ on (—1, 00),

we obtain

21

. 1
logln —yl =logs + Y s 7/G,;(y1.y2.0) + s Hi -
og|n —y| =logs j—ls i1, 2, ) > z(

2yjcosw  2yrsinw n yl2 + y%)

s 52

where G is a homogeneous polynomial of y; and y, of degree j whose coefficients are
polynomials of sin w and cos w. Plugging this expression into (2.6), we get

21
2min =Y. [ 57160, 03 0)dy
j=1

1 2yicosw  2yrsinw  yr 4y .
+/ —H,(— - + =2 )G ()dy
D(n,s/2) 2 J s s
1 2yicosw  2yrsinw  y2+y3\ .
/ —H,(— - + === )G(ndy.
D(n,s/2¢ 2 s § s

Notice that there exists a constant C > 0 for which

3
|Hj(1)] = Cllog(1+1)| on (— 1, _Z> ;

3
|H;(t)] < Clt|'"™" on [‘Z’“)'
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Thus we obtain

v/D(n-,S/Z)

2yicosw  2yrsine  yP 4y
Hz(— — + =52 g |dy

N N

<c|
D(n.s/2)

sc/ (ogln — yl1 + logs)ly| 2N dy
D(n,s/2)

5C572N71 (/ |10g|r||dr+s210gs>
It|<s/2

< Cs2N+1 log s

2yicosw  2yzsinw yz-l-y2 _IN—
log(l— )y

and

—/D(U,S/Z)“

2yicosw  2yrsinw ¥4 y3\ .
H,(— - + =52 )i)|dy

N N

cof
D(n,s/2)¢

< Cs-! /2(1 4 A2 gy
R

1+1
(1+1yp~2N"lay

2yicosw 2y sinw ylz + y%
— — + S2

N N

< cs~-1,

Hence we get

I
u(n) = ZS_jo(a)) +0677Y as s — o0,
j=1

where W (w) is a polynomial of sin w and cos w.
Applying a similar method to the derivatives of v, we get
am+n

as™dw'"

1
(ﬁ(n) - Zs‘f'wj(w)) =077 as s> oo

j=1

for m, n € N. In particular, we obtain

l
Ag(m) =) Ag(sTIWj(@) + O™ )
j=1

I
=Y s W () + W] (@) + O™ )
j=1

=g
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— O~V
and hence
PWj@) + W/ (@ =0 for 1<j<I.
Since #i(s, 7/2) = +-1(s, 0) = 0, we have
Wj(m/2) =Wj©0)=0 for 1<j<I.
Thus we obtain

kijcos jo forodd j <I,
Wj(w)=:oj

foreven j <I,

where k; is a constant. O

Our next aim is to solve the equation (2.3) when its right side is unbounded. For ¢ € N,
we denote by B, the class of functions f which satisfy the conditions (e) and (f) below.

(e)

Inl?
In?+ 1|

fEm) e A.

(f) The function f admits the asymptotic expansion of the form

[(g+1)/2] 0 q l ) 1
f($)~< oY+ D> Y+ > >, )aq,l,j,ozq21+lcos(2j—1)9
=0 j=l—q I=[(q+1)/2]+] j=1 I=q+1 j=I—q
[(g+1)/21 g—2j+1
+ > > by jup¥ P log peos(2j — 1o 2.7)
j=1 1=0

as p — 00, & € P, which can be differentiated term by term infinitely many times.

LEMMA 2.2. Letq € Nandlet f~ € B,. Then the equation (2.3) has a solution
u= (&) in By41 whose asymptotic expansion as p — 00 does not contain any harmonic term
of positive order in p.

PROOF.  Since f~ € B,, we may assume that its asymptotic expansion is given by
(2.7). For N > g + 1, we introduce the following partial sum of (2.7):

[(g+1)/21 0 q l N

[
fN@):( Y OY4s Y OYHY Y )aq,,,jpzqzl+lcos<zj_1)9
=0

j=l=q I=l@+D/2+1j=1 I=q+1 j=I—q
[(q+1)/21g=2j+1

+ Z Z by.j1p* T og pcos(2j — 1)6 .
j=1 =0
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Thanks to the formulae (1.15) and (1.16), one can construct a power series

gn (§)

q+1 N

0 !
Z + Z Z + Z Z )Aq,z,jp2‘121+3cos(2j— 16

=0 j=l—q I=[(g+2)/2]+1 1<j<I I=q+2 j=l—q
Jj#q—1+2

< [(g+2)/2]

[(g+2)/21q—2j+2

+ > > BgjupP P logpeos(2j — 16
j=1 =0

which satisfies the equation

Asgn () = fn(8).

We choose x1 € C*°(]0, 00)) such that x1(s) = 0 for0 < s < 2 and x;(s) = 1 for
s > 3. Let x2(¢§) = x1(In(&)|). We look for a solution of (2.3) in the form

u (&) = x28)gn () +hn(§).

Inserting this into (2.3), we obtain the equation for /4y :
Achy(E) =sn(€) in R,

d
hy(E)=0 on I7, a—hN(é)zo on I,
n

where
s =0 =x2)f"+ (" —fn)x2—2Vx2-Vgny —gnAx2.
Putting
() = €y . v = — ey
2+ 1]

we rewrite the above equation as
Aghn () =35n(m) in RZ,
~ 0 ~
hnv(m =0 on {0} xRy, a—hN(wO) =0 on R;.
2

Since §y € A and since 5y (1) = O(|n|??~*N=1), we infer by Lemma 2.1 that this equation

has a solution /2y which admits an asymptotic expansion of the form

hy(m) = Z Kn, s/ cos jw+ O(sTIN=DR2IH3) a5 — 00,

I<j<N—q-2
j=1 (mod 2)
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Notice that s~/ cos jw is given by a power-series expansion of the form

o0
s~ cos jo = Re(n(é)_j) = th,kp_j_y‘ cos(j+2k)o, p=2.
k=0

Therefore, the function 4y (§) has an asymptotic expansion of the form

hy(€) = Z KN,j,o_-" cos jO + O(p_[(N_q)/2]+3) as p — 00.
I<j<N—q-2
j=1 (mod 2)

Next we shall demonstrate that the right side of (2.8) is independent of the choice of
N > g + 1. Let N1, N> > g + 1. The function

@(&) == (X2 gn, (6) +un, (§)) — (x2(E) gn, () +un, (5))

is harmonic and bounded in P. So the function ¢(£(n)) extends to a bounded, harmonic
function in R2. Thus the Liouville theorem implies that ¢ identically equals zero. O
3. Construction of the approximate second eigenvalue

This section is devoted to the construction of the coefficients in (0.8), (0.9) 4, and (0.10).
We first give the explicit form of their leading terms. Put

Po o) =ks¥ (x), x € Q. 3.1)
k. being a constant which we shall specify later. Using (0.2) and £ = ¢~ !x, we have
9o o) = k+Cy 7 cosd + OG?)
= 8](:th1,00089 +003 as r—0.

Recall that vy o(£) is the coefficient of ¢ in (0.10) and is harmonic in I7;. So we seek vy o(§)
for which

v1,0) = kinl,ocosG +o(p) as p—>o00, =& >0.
Such a harmonic function is given by
1 _ 1 _
v1,06) = S+ CYy +k-Cy DUIE) + 5 (k4 Oy —k-Cy pVI(§) . (3.2)
We have

1
£v1,0(§) = £kx.Cy pcost F 84—1(k+cﬁ1 —k_CyDp ' cost +£0(p™)

1
= ekyCT pcoshd F ezz(mcﬁ] —k_Cr " cosf +£0(p7?)
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as p — 00, £& > 0. Since gofo is the coefficient of £2 in (0.9), we look for gofo such that
1 . _
P o(x) = ;Z(lchl —k-Cyrcosf + o) (3.3)x

asr — 0. By Lemma 1.2 we see that the solvability condition for the equation (0.1 1)1+,0 with
(3.3)+ and that for (0.1 1);0 with (3.3)_ are given by

T _
Ao = 8—(k+cl+l —k-Cy 1)C1+1
P . , .

and

b _ _
Ao = —&Cf(k+cf1 —k-C DCy >

respectively. These two expressions coincide if and only if either
+ —
k+ Ci) ky  Cpy
T == o —=—-"
k— Cia k— Cia
holds. In the former case we have Ao = %((C]Jrl)2 + (C[])z), while in the latter case we
get A1,0 = 0. We adopt the former case; we now fix

ke =£CT),

and define gogfo and v10 by (3.1) and (3.2), respectively. The equation (0.11)4+ admits a
solution gofo which satisfies (3.3)+.

By induction we shall construct the rest of the coefficients in (0.8), (0.9)4, and (0.10).
Our main aim in this section is to prove the following assertion.

LEMMA 3.1.  There exist 9y o, {9y 4i41. v IN20.i20, {UN+i 418} N0, 120, and
{AN+iNIN>0, i>1 satisfying (0.1, (0.12), and the conditions (\)—-(iv) below.

(i) The function (pf_m!q belongs to J;E.

(i1) The function VN ;41N admits the decomposition

UN4i+1NE) =04 v E) F Uy v €

where v/J(,JriH’N(é) is a linear combination 0f,02j’1 cosk—1)0 (1 <j<i+1,1 <k <j),
and the function vy, \ belongs to B;.

Because of these two conditions, the functions (pf_m’ q and VNyi1,N admit the asympiotic

expansions of the form

0 i

ON++LN(E) ~ D hi (0.0 + D mif (. O)logp (p—> o0, Ee€ll, +E>0),
=0 =1

GBAN+iN
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o0 o0
Paipg®) ~ Y 15, O+ Y ui, (0 logr (r—0,x€Ry),

(3.5) p.q
5=0 s=p
where hic,l,q(.’ 0), m;t!l,q(‘, 0). 1,

sl.q (-,0) and u;t,l,q(o, 0) are homogeneous polynomials of de-
gree2s — 21 + 1.

(iii) (matching conditions) It holds for ¢ > 0,1 > 1, and s > [ that

uf,z,q(w ) = m;t,,,q(', 6). (M. )14
Forq > 0,s > 0,andl > 0, we have

G50 =h (0 —mi (. 6). (M.2)s14

We denote by W; n ; the coefficient of p¥ 21+ cos(2i — 21 + 1)0 in the asymptotic expansion
of vy, n@E)asp — 00,0 <0 < Zfor N >0,i>0,andl >i+1.
(iv) (compatibility condition) It holds for N > 0 and M > 1 that

M—1
_ T
() 1{ =Y @M =25 = DWonmChiy

s=0

N+M—-1 N+M-—s

+ +
Y e @ % m}

s=1  j=N—s+1

M-1
=— (CM)‘{

N

- _
5 @M =25 = DWs N Cly_s m—

N+M—1 N+M—s
> xs,Nj<¢N+M_S,j,w0>g}. (Cm.y
1 j=N—s+1
REMARK. The number Ay 4y, n is given by the both sides of (C) s n.
The above lemma immediately follows from the following lemma and induction.

LEMMA 3.2. Let N > 0and M > 0. Suppose that there exist sequences

+ +
lon v h=ism—1 U9 Jo<j<n—1, j+i<i
{vv+inh<ism U {vijlo<j<n—1, j+1<i

{(Anvtinh<ism—1 YA jlo<j<n—1, j+i<i
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which satisfy

Oy, y for 1<i<M-1,
©0.11);; for 0<j<N-1, j+1<i,
0.12)Nti—1,y for 1 <i<M,

(0.12); 1, for 0<j<N-1, j+1<i,
(M.1)7, y for 0<s<M-1, 1<I<s,
(M.l);'fl’q for 1>1, s>1, 0<g<N-—1,
M2E for 0<s<M-1, 0<I<M-1,
M2, for s>0, 1>0, 0<g<N-1,

and (C)p . N-
Then there exist ¢1%/+M,N’ UN+M+1,N and ANim,N which satisfy (0-11)ﬁ+M,N»
0.12)n4m,N»

(M), y for 0<s<M, 1<I<s,
(M2)7, y for 0<s<M, 0<I<M

’

and (C) m+1,N-

PROOF. We shall first solve the equation (0.1 l)ﬁ +m.n- We claim by Lemma 1.2 that
there exists XAi,IJrN’N for which the equation (0.1 l)ﬁJrM’N admits a solution (ﬁﬁJrM’N € J;,;
such that (¢1%/+M,N’ l,I/Ojt)_qi = 0 and that the coefficient of r 2M+25+1 cos(2M — 25 — 1)0

of the asymptotic expansion of (ﬁﬁJrM_N(x) asr — Ois £W, yy for0 < s < M — 1.
Furthermore, we have

M—1

B b1
AE Ly = (CE) 1{ T Y @M =25 = DWonmChiy ey
s=0
N+M—1 N+M—s

+ +
- Z Z )‘s,N—j(ﬁoN+M,S)j’ tI’() ).Qi} .

s=1  j=N-s5+1

By (C) y,n we have
+ - _.
)”M-l-N.,N = )‘M+N,N =!AM+N.N -
We define
Pty ) = By v @)+ T (@) for x € 24

Pnam N =0y () for x e -,

where 7 is a constant which will be specified later.
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Next we solve the equation (0.12) x4+, y. We use the reduction scheme in section 2.
By the formula (1.15) one can construct U;JFMH (&) which is a linear combination of

%" Vcos(2k —1)0 (2 < j <M +1,1 <k < j — 1) and solves the equation

N+M~-1 N
+ + +
AEUN+M+1,N(5) = _)‘OUN+M,N(‘§) - Z Z}“m’"UN+M—m,N—n(€)'

m=1 n=0

On the other hand, Lemma 2.2 implies that the equation

N+M—-1 N
Ay ipii v E = 2oV @ = D0 D AV &) i P
3 m=1 n=0
VN (&) =0 on I, %v;/JrMJr],N(é):O on I3

has a solution vy, .y () € By whose asymptotic expansion as p — oo does not
contain any harmonic term of positive order in p. Let AljE and BljE be the coefficients of
p2M=2+1 cos(2M — 21 + 1)6 in the polynomials t]f” ~(p,6) and mEH 141 n—1(0. 0), re-
spectively, for 0 </ < M. We have B, = —B;r . We define

UNAMALNE) = 0 v E) F Uy v E)

M

1 ~
t+ 5 2 AAT + ADUM111©) + (Af = A7 +2BD) Vi1 )} G.6)
=0

Next we verify the matching conditions. Let 0 < [ < M. Inserting (3.4)n+nm, n into
(0.12) y+-m, v and identifying the powers of p and log p, we have
Ag(miy, n (0, 0)log p+hy v (0, 6))

= —ho(my_y, y(P.0)1og p + hyy_y ; n(p,0))
N+M—-1 N

+
- Z Z )”mﬂ"(mM—m+n—l,l—m+n,N—n (p,0)logp

m=1 n=0

+
+ hM—m+n—l,l—m+n,N—n ('O’ 9)) .
Plugging (3.5);, 5 into (0.11) y4;, ;v and equating the powers of r and logr, we get
Ay y(r0)logr + ) (. 0))

= _)‘O(uf/l—l,l,N(r’ 0)logr + t]ﬁ_l,l!]\/(rv 0)) — )LN+I,NtAi/1_l_1’0,O

N+I-1 N
+ +
- Z Z )""!”(un+M7m71,n+lfm,an (r,0)logr + by M—m—1.n+1—-m,N—n (r,0)).

m=1 n=0
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Inserting (3.4)n+m n—1 into (0.12) y4pr, y—1 and equating the terms of ,OZM_ZZ_1 log p, we
have
Agm? (0,0)
EMpyr11,0+1,N-1\Ps

M+N—1N-1
_ + +
= =2y 11 n—1(P>0) — Z Z A WMy 41— pl—m, N—n—1 (0 0) -

m=1 n=0
Combining these three equalities with the assumption on the matching conditions, we get
Ax(uﬂi/l_’l_’N(r, 0)logr — mf“’N(r, 0)logr
+ tﬁ,z,N(V’ 0) — hjlt/l,l,N(r’ 0) + mjlt/l+],l+l,N7] (r,0)) =0.

Using the formula (1.16), we see that A (uy;, y(r.0) — mjy;, \(r.0)) = 0 and that
Ac((uyy (. 0) — myy , y(r,0)) logr) is a multiple of r?M=2~1cos2M — 21 + 1). On
the other hand, we infer that Ax(tﬁjfl!l!N(r, 6) — hfu!N(r, 0) + mif,Jr])lH’Nf] (r,0)) has no

term of r2M—21=1 cog(2M — 21 + 1)6 in view of the formula (1.15). So we get
”ﬁ,z,N(r’ 0) = m?\;,l,/v("’ 0)
and
Aty 8) = iy (. 0) iy gy (€)= 0.
Combining the latter equality with (3.6), we arrive at
G 0) = g N (R O) F gy (m0) = 0.

Therefore the matching conditions (M.1) ;. y and (M.2)pr; n are valid for 0 < [ < M.
Similarly, we have (M .2)s py v forO <s < M — 1.
Finally we choose t for which the compatibility condition (C) 41,5 hold. Notice that
this condition is equivalent to
M-l
() ot = (C?L,l)‘{ > 2 @M =25+ DWonwrs1 o1
s=0
N+M N+M+1-s
+ +
DI MRS S
s=2 j=N-s+1
M-l
—_ —1 —_
— () { Z 5(2M =25 + DWs nm+1C 1 g pvi—s
s=0
N+M N+M+1—s

- Z Z )‘Sij((pN+M+l—s,j’lI/O)-Q}‘

s=2 j=N-s+1



366 KAZUSHI YOSHITOMI

Since the right side of this equality is independent of t and since 11,0 > 0, there exists T for
which this equality holds. a

4. Error estimate on approximate eigenfunction

Let us construct an approximate eigenfunction defined in £2; by joining the inner expan-
sion (0.10) to the outer ones (0.9)+. Choose xo(t) € C*°([0, 00)) for which

xo)=1 on [0,1], xo(#) =0 on [2,00).

Put

¢ﬁj(x) for x e 24,

i (X) —
Pij ¢ ;(x) for xeg2_.

For L € N, we define

L+1k—1
oL () = xo(e 2 D 0N Te¥ oge) v s (67 x)
k=1 1=0
L i
+ (1= xo(e™Pr) Y > ¥ (loge) gi j (x).
i=0 j=0

Our aim in this section is to demonstrate the following assertion.

LEMMA 4.1. We have

% € Dom(L,) 4.1)
for sufficiently small ¢ > 0 and
L m—1
<A +ro+ Y > 82"1(1oge)"xm,n>¢>€ =o@l) in L*(2) as e > 0.  (4.2)
m=1 n=0

PROOF.  We immediately obtain (4.1) from the following claim.

CLAIM. Let ny be the outward unit normal vector to 0§2+. Suppose that h € Q.,
Ah € L*(2), hla, € CH(RL\{0, (), ¥ (t0))), and 50—hla, = 0 on y((e. 10)). Then we
have h € Dom(L,).

We first prove this claim. Pick an u € Q.. Using a standard mollifier argument together
with the method in the proof of Proposition 7.1, we claim that there exist two sequences
{uj};?‘;l C C®(£24) and {u; )32, C C*(£2-) which satisfy

(D uf — ulq, in H'(2+) as j — oo;

(2) Foreach j € N*, there exist an open set Vl.i such that (02N 3d21)U{y(e)} C Vl.i

and that u]i =0on .Q_i N Vji;
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(3) uj =uj ony((0,¢) forall j € N*.

Put hy = h|p, . We get

Vi, Vu) 2y = jli{glo{(Vth, Vul) o,y + (Vh—, V)2 )

9 ]
= lim {/ u'!'(x)—h+(x)d5+/ u; (x)—h_(x)dS
Jj—>oo 0924 J 8I’l+ 902 J on_
— (Ah_l,_, u]+)L2(Q+) - (Ah_, M‘]_)LZ(Q_)}

= — (Ah, M)LZ(Q) .

Hence we obtain & € Dom(L,) by the definition of Dom(L,), and the Claim follows.

Next we prove (4.2). We have

L m—1
(Atro+ Y Y ¥ (loge) hmn)p™*

m=1 n=0

L i
=(- xo(s_l/zr)){ Y Y &¥dloge)! (A + ro)gi, i (x)

i=0 j=0

L m—1 L i
+ Z Z Z 282m+2i (1og 8)n+-j)\ln,n(/7[,j (x)}

m=1n=0 i=0 j=0

L+1k—1
+ xo(s_l/zr){ > " e*(loge) (Ax + ro)vra(e ™ x)
k=1 1=0

82m+2k7] (log 8)n+l)\'m,nvk,l (871x) }

L+1k—1 L i
+e! (Axo)(sl/zr){ e (loge) vei(e™x) = Y Y e (loge) g (x)}
k=1 [=0 i=0 j=0
L+1k—1
+e2(Vxo) e ) - Vx{ e* 1 oge) v s(e7'x)
k=1 1=0

L i
=YY e¥loge) g j(x)}
i=0 j=0

=l H I+ 3+ 1] 4.
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First we estimate Iz,r Using (0.11)*, we get

2L p—1 min{p—m,q}
If == xE2r)) Y > e (loge)! Z D Mg Ppm-
p=L+14g=0 m=p—L j=max{0,q—m+1}

Since ¢; j(x) = O 20=D+1y a5 r — 0 and since (pl.’j(x) € L2(£2+\D(0, rp)), we get

2L p-1
17 il =€ ) 282p|10g8|q(/

1/2
(r2L+])2dx> +C82(L+1)|10g8|L
p=L+1g=0 el/2<r=ro

= 0@ 10gelh).

Next we estimate [ 22. Using (0.12), we obtain

L
I[,= xo(e™V/2r)g?tt! Z(log &)1 41,4( %)

q=0
2L+1 p-2
+ xo(e™'?r) Z Zszp*l(loge)q
p=L+14g=0
min{p—1,L} min{g,p—m—1}

X Z Z )»m,q_lvp_m,l(sflx) .

m=max{p—L—1,1} [=max{0,g—m+1}

Because |v, 4(8)] < C(|g)*P=D=1 4 1) on IT;, we have
Ixo(e™ 2 vp.q (€™ ) 200y < C( ((e7'r)*P=D=2 4 1)dx) /2
r<2el/2

< Ce~ P+l

and hence

17§ 5l 200y < Ce¥*'[logel”

Let us estimate /] ;. We rewrite I} 5 as follows.

L L-I

Ijy=¢" (Axo)(s”zr){ O 2 oge) vy s (§)

=0 s=0

L L—j
Z 82]+2t(10g 8)-’g0.,'+;,,(x)} .
j=0 =0
We put

L-1

U ) = v €) = Y hE [(p.0) — st,,(p 6)logp .
t=0 t=1
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L-1 L-1
-1
SO = Qrra () = Y 15,0 0) =Y uE, (r.0) logr .
s=0 s=t

Then, (M.1)T, , and (M.2)F, , imply that

L+1L-l

I} 3= 1(A)(())(el/zr){ Z 82l+2’(log8)lmf71+])t+])171(x)
I=1 1=0
L Ll L Ll
LD+, — LD+
+ Z Zeszs“(log 8)lvl(+l+)s!s(8 v+ Z &2+ (log 8)l¢l(+t’l) (x)}
=0 s=0 1=0 =0

on §24. By using
65, 0] < Cr2t=2=2 3 logr| inan  $2:-neighborhood of {0},
o DRE) < Cle* 227N for Eell, x5 >0, |g] =1,
Mt i1 E S CIEPEH2F for e, +& >0,
we obtain
1} 5llz200) = O"+/2)
In a similar fashion, we get

1§ 4ll 20y = OEH1/2).

This completes the proof of Lemma 4.1. O

5. Construction of approximate first eigenvalue

In this section we construct the approximate first eigenvalue (0.13) and the associated
approximate eigenfunctions (0.14)+ and (0.15), and we complete the proof of Theorem 0.1.
In the case when K # @, we define

Do={(5,0,00€Z|0<s}U{(s,2,0) e Z’|v—1<s, v—1<1},

1
D; = U{(s,3j+v—1+k,j)6Z3|sz3j+v—1+k}
k=—1

U{(s, 1, j) e Z}|1>3j+v+1,s>3j+v—1} for j>1,

o
p=JD;.
i—0

Ej={(,t,j))eZ®|3j+v+1<t, s>1} for j=0,
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o0
E=[]JE;.
Jj=0

LEMMA 5.1. Suppose K # (. Then there exist {ii j}o<j.i=3j+20-1. (Wi o}ior
{w]fl}lfl,kz3l+v—2’ {wi,O}?i]’ and {ws,q}lfq,sz?aq-i-v—l which satisfy M2v—1,0 #0,(0.16)+,
(0.17), and the following (i)—(vi).

() We have Yy = CT " The functions ¥ o, Voo, and ¥, g (1= 1,
—1 < g < 1) are multiples oflIJOi. The functions w§?+v71+q,l belongs to quforl >0,q > 2.
It holds for 1 < j <v — 2 that y5 = 0.

(ii)  The functions wy 4(§) admits the decomposition

Wy (6) = wi (&) +wy (&), &ell.

(iii) We have

j
who®) = ch,j,k,opzj_l cosk—1)0 for 1<j<v—1,
k=1

vts

w0 = corevtskop™ 7 cos2k — 1)0

k=1
s+1 Jj

+ D) cvrnjikop™ eosQk— 18 for 520,
j=1k=1

5 =0 f > 1
w3q+v71’q or qg=>1,
s+2 J

w;]+v+s’q(§) = ZZCMHHJ,/(JI,OZ-"_I cosQk —1)0 for s>0 and g >1.
j=1k=1

@iv) We have %wgq (E()) € A. The functions Wy (&) admit the following asymp-

totic expansions as p — 00,0 < 0 <
many times.

%, which can be differentiated term by term infinitely

w;O(S)NO for 1<j<v—1.

o0
w;o(g) ~ cv_!_l’v_o,oz"_1 cos(2v — 1)0 + ch_’q’qﬁopl_zq cos(2g — 1)6.
g=1

v+1
w1 08) ~ Do ey i gep” T cos2k — 1)
k=1
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2
Z V+1.0.k.0P cos(2k— DO +c, 10,ocos@

o8] q
+ 03N e, 0c0s2i — 1)
q=2 Jj=q—1
v+s
Wy o@® ~ Y ey op® T eos2k — 1)6
k=1

[(s+1)/2] s s q 0 g
(D3N SETD SEND I D Dl L
qg=0 j=q—s q=[(s+1)/2]+1 j=1 q=s+1j=qg—s
s—2
x p2 72t cos(2j — 10 + Y Dyys1.,00% ! log pcosd
=0

[(s+1)/2]s—2j+1
+ > Z Duts.jr0p? 2 Mog pcos2j — 16 for s >2.
j=2 =0

w;q+v—1,q(§)N0 for g=>1.

W3, g (E) ~ €3y 100" COS30 + Zc;qﬂl,l,qpl—” cos2l — 10 for q>1.

=0
1#1
s+2
N ~ - 25+3 _
w3¢]+v+5sq(§) Zc3q+u+s,7],k,qp cos(2k — )0
k=1

> 1t XS: i"' i i >63q+v+s,l,j,q

([(S+1)/2] 0
=0 j=l-s I=[(s+D)/2]+1 j=1 I=s+1 j=l—s

x pP =2+ cos(2j — 1)6

s—2
+ Z D3q+v+s,l,l,q,021+l log p cos 6
1=0
[(s+1)/2]s=2j+1 '
+ 3> Dsgruresigl U og peos2j — 1)
j=2  1=0
for g>1 and s=>1.
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The above conditions (i), (ii), and (iii) allow us to write the asymptotic expansions of xpl.ij (x)

and wiy1,1(§) as follows.

Ipl#j(x)~ > ryﬁ)j(r,9)+ > Usi’i’j(r,é’)logr r— 0),

(s,i,j)eD (s,i,j)€EE
wer i@~ Y HE (0.0 + > M, (p.0)logp (p— 00, £y > 0),
(k,m,l)eD (k,m,)eE

where Ty, (. 0), Uy, (. 0), Hy, .(-.0), and M}, (-, ) are homogeneous polynomials of
degree 2a — 2b + 1.
(v) The following matching conditions are satisfied. For (s,l, L) € E, we have

M0 =US (0).
For (s,1, L) € D, we have
HY (O =T, .0+ M, (.0).

(vi) For L = 0and I > 0, the following compatibility condition holds.
I

— =1 T _ +
— () { Z 5(21 =25+ Despiong i 1-5, L Crbt—s 141

s=0

3L4v+i—1
R +

+ Z it (U3p yqr—io Yo ey
i=3L+42v—1
L—1 I+3j+1

e +

+ Z Z Wi 3 prr—in—j» %o )9+}
J=0i=3j+2v—1
!

) NOT s, - -
=—(C/) { Z 2(21 25 + Dy 41, 141-5,LC 11— 1415

s=0
3L4v+i—1

+ Z :u'i,L(I/f3L+U+],i)()v lI/O ).Q,
i=3L+2v—1
L—1 I+3j+1

+ Z Z Wi jV3p ppgr—in—jo %—)9_} . ©rL
=0i=3j+2v—1

The number (31 +v+1,1 is given by the both sides of (¢)j, L.

PROOF. We show 12,10 # 0 only, because the other statements can be shown along
the lines of the proof of Lemma 3.1. We need the following explicit form of {‘/”fo}:':ol and
{wj,O};:1 :

Yoo ) = CT 19" (x)
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j
wj o) =Cr, Y ChrPleos@k—1)0 for 1<j<v—1,
k=1

‘ﬁfo(x)=0 for 1<i<v—2,
Vi1 0@) = Y (),
wu:],()(x) =0,

v—1
w,0(8) = Y Cr CF p™ ™ cos(2k — 1)0
k=1

1 -
+ (€L = CL GV E)
[ _
+ E(Cucva +C 1 Co)ULE)
1
+ 2 BCHWUIE) + V1€)), (5.1)

where
B =2(CTHCT,CF, = € Ch) T
We proceed by contradiction. Suppose that p2,-1 0 = 0. By the compatibility condition

(c)v—1,0 we get

v—1
p— p— JT -
0=—(C : Z 5(21} -2 - 1)Cv+s,v,v—s,0c:r—s!”—s
s=0

v—1
_ T _ _
= (Ctl) 1 Z 5(21} — 25 — l)cv-l—s,v,v—s,OCU—S,v—S . (5.2)
s=0

Letus show thatc, |, |, o # 0. We identify the coefficients of p'=2 cos(2v—1)# and p~! cos @

s

in the asymptotic expansions of the both sides of (5.1) to get

~ 1, ,~— + e
< T,v Tl,l) E(CI,ICIU —ChLCD) ( 0 )
~ 1 —_ — .
Tv,2v—1 Tl E'BCTTI Cov,0,0

The definition of v implies %(CZICIU — Cffle’)U) # 0. By [3, Lemma 1] we have

det (f“’” T“) £0.

Ty,2v—1  Tl,v
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Therefore we have ¢ # 0. This together with (5.2) yields

v,v,v,0
2 v—1 -
CrCii=—-—————) >@Qv—2s— ) ct cT
’ g - +s,v,v—s,0"V—s,v—5 1,1
T(2v — l)cv!v,v!o - 2
and thus C;’f WCi1=¢C,,C rl which violates the definition of v. Thus we obtain 2,10 #
0. O
We put

W,Tj(x) for x e 24

Vi) = Y () for xeQ-.

For an integer L > 2v — 1, we define

L+1 max{0,[(k—v+1)/3]}

Yt =x e Y] Y. g wiae )
k=1 =0

L max{0,[(i—v+2)/3]}

+ (1 —xE 2 Yo &loge) v ().
i=0 j=0

We get the following assertion.

LEMMA 5.2. We have ¥%¢ € Dom(L,) for sufficiently small ¢ > 0 and

L [(—2v+1)/3]
(A +ho+ Y, Y. &¥(log g)fu,»,.,-)l//“ —ol) in LXR2) as £— 0.
i=2v—1  j=0
PROOF. The proof is analogous to that of Lemma 4.1. g

Now we are ready to prove Theorem 0.1.

PROOF OF THEOREM 0.1. We recall that for any self-adjoint operator A in a real
Hilbelt space H and for any u € R, the inequality

(A = wellx = dist(n, o (A)llelln, ¢ € Dom(A)

holds. First we consider the case that K # (). Combining the above inequality with Lemmas
4.1 and 5.2 and the facts that

1"l 20y = (CTD* + (€T D2 +0(1) as & —0,
o™l 22y = (CF D>+ (€T D2 +0(1) as &0,

we obtain

L [(—2v+1)/3]

dist(a(Lg), Xo + Z Z m,,-sz"(logg)/’) =o(eh), (5.3)

i=2v—1  j=0
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L m-1

dist(a(Lg), Ao+ Z Z Amne X (log s)") =o(eh) (5.4)

m=1 n=0

forall L > 2v — 1. Because A (-) is monotone non-decreasing, we get
A3(e) = A3(0) = min{AS, A5} > Ag. (5.5)

Using (5.3), (5.4), (5.5) and the facts that A1 o > O and v > 2, we get

L [(i—2v+1)/3]
e =x+ Y, Y. wijeloge) +o(h),

i=2v—1 j=0
L m—1
M) =10+ > rmae”"(loge)" + o)

m=1 n=0

forall L > 2v — 1. Because A{(-) is monotone non-decreasing and u2,—1,0 # 0, we have
Hav—1,0 > 0. So we proved (0.5) and (0.6) in the case that K # .

Next we consider the case that K = (. Recall Proposition 1.1. Notice that the Taylor
series expansion of 1//(;"r o at {0} coincides with that of 1//(; o at {0}. Since the functions 1//(;"r o and

¥, o are analytic in a neighborhood of {0}, the function

Yoo(x) for x ey,

Voolx) = Vo.0() for x € £2_

is also analytic in a neighborhood of {0} and ¥9 0 € Dom(L,) for sufficiently small ¢ > 0.
Moreover we have L.v0.0 = Ao¥o,o for sufficiently small ¢ > 0. Combining this with the
fact that L1(e) > A1(0) = Ag, we obtain (0.7). Using (0.7), (5.4), (5.5), and the fact that
A1,0 > 0, we get (0.5). This completes the proof of Theorem 0.1. a

6. Proof of Theorem 0.2

It is easily seen that the statement (ii) implies (i). So we prove the converse only. We
assume (i). We put Cx = 082+ N 9£2. Without any loss of generality, we may assume that
the curve Cy is represented as follows:

Cy: [0,54]3 1> (1) = (¢ (1), T (1) € R?,
TH(0) =0,

t*(s4) = y(to) = (1, 0),

d
‘Eti(t) =1 on [0,54].
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Let us first show that C. is symmetric to C_ with respect to the x;-axis by using analytic
continuation. Let C_ and y denote the curves
[0,s_13 1+ T(t) == (r; (1), -7, (1)) € R?
and
[0,10] 3 1 = y(t) == (1, —7(1)) € R?,

respectively. We have 17(0) = 0 and 7~ (s—) = (fp, 0). Let 2_ be the region enclosed by
the closed curve C_ U y. We put

Yy () = Cry9f (1) for x ey,
Yo (x1,x2) = Cilior (x1,—x2) for xe Q.

Using Proposition 1.1 and K = ¢, we have

Yy =9 on Diy(r0/2). (6.1)

We define
S = min{s;, s_}, (6.2)
g=sup{te[0,8]] th@w)=7%"() on [0,1]}. (6.3)

By (A.2), we have g € (0, S]. Let us prove that ¢ = S by contradiction. Assume that g < S.
We have r*(t) = 77 (¢) on [0, g]. We note that the inner unit normal vector to 32 at T (t)
is (dtr2 1), —% (t)) For n > 0, we define a curve k), : [r9/4, g] — R? by

iy (1) = T (1) +n(—r2 (1), ——rl (t))

Then there exists ng > 0 such that
ieq([ro/4,q1) C 24 N 2- forall 1€ (0,no).

Putd = t%(g) (= ©~(g)). We choose an Euclidian coordinate system y = (y1, y2) in which

d (g = i%—(q) =(1,0), and d= 0
dt dt

hold, where we write the coordinates in y as (-, -)y and O, stands for the origin of the coor-
dinate system y. Then there exist r; > 0 and smooth functions f* and f ~on (—rp, r1) such
that

24N D0y, r1) ={(y1.y2)y €R*|y1 € (=r1.71), y2 < FEGDIND(Oy. 1), (6.4)

R_ND(0y, 1) = {1, y2)y €R?|y1 € (—=r1,r1), Y2 < [ (yDIND(Oy,r1). (6.5
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We choose rp € (0, r1) such that

O, fT o))y € DOy, 1) and  (y1, f~(1))y € D(Oy,r1) for yi €[0,72].

Let us prove that

oD =701 on (0,r] (6.6)

by contradiction. Suppose that there exists p; € (0, r2] such that f(p1) # f’ (p1). We
consider the case that f+(p1) < f~(p1). We put g(t) = min{ f(¢), f~(r)}. By (6.4) and
(6.5), we claim that there exists £; > 0 such that

(t,g(t) —e)y € 2. N2 for 1€[0,p1] and &€ (0,¢1).

We set 1o = min{no, €1, ro/4}. Let n € (0, n2). Note that ¢ is analytic in £21 and that 1/V/,
is analytic in 2. By using (6.1) and the analytic continuation along the continuous curve
ey ([ro/4, gD U (1, ) — )y € RE 1 € [0, pi1} (C 24+ N 2-), we have ¥4 = v on
{(t, g@t) —n)y € R%; 1 €0, p1]}. Thus we get

Yr=v_ on Y:={g(t)—n, R |10, pil, n €0 m)}.

Because ¥4 and t/vf, are continuous at 1 = (p1, g(p1))y € Y, we get

v

Yi(h) =v_(h). (6.7)

On the other hand, (6.4), (6.5), and the fact that £ (p1) < f~(p1) imply thath € 32, NS2_.
Thus we get ¥4 (k) = 0 and 1}_ (h) > 0 which contradict (6.7). In a similar fashion, we get

a contradiction in the case that f*(p;) > f ~(p1)- So we obtain (6.6). This combined with
(6.4) and (6.5) implies that there exists r3 > 0 such that T+ () = ¥~ (u) on [g, ¢ + r3] which
violates (6.3). Thus obtain ¢ = S and hence T+ (u) = ¥~ () on [0, S]. This combined with
t(s4) = ¥ (s_) = (fo, 0) and (6.2) implies 7+ (S) = £ (S) = (19, 0). Because C and C_
are not self-intersecting, we have S = sy = s_. Hence, C is symmetric to C_ with respect
to the x-axis.

Next we prove that t = 0 on [0, 7] by contradiction. Suppose that there exists ko €
(0, 1) such that 7 (kg) # 0. We consider the case that t(kg) > 0. We put

ki = inf{t € (0, ko) | 7(t) > O on [z, kol} (€ [ro, ko)) ,
ka = sup{r € (ko, t0) | T(t) > 0 on [ko, 11} (€ (ko, f0]) .
We have t(k1) = t(k2) = 0and t(¢) > Ofor ¢t € (k1, k). We put
Ty ={(t, +1(1) € R*|1 € (k1, k2)} .
We denote by M the domain enclosed by the closed curve X, U X¥_. We have

McCQ , ¥, Co,N2_, and ¥_Cos2_.
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Using similar analytic continuation as above, we have

d 0 v
— = —1_ iU
NV =ay¥- o 2+ {(k1,0)},
where N is the inner unit normal vector to d§24. Hence we get
- e H'(M) N C®(M\{(k2, 0))) (6.8)
a -
V= 0 on 9dM\{(k2,0)}, (6.9)
n
—AY_=Xio¥_ in M. (6.10)

We put
E={pce C°°(R2) |¢ =0 in aneighborhood of {(k2,0)}}.
Using (6.8), (6.9), (6.10), and Green’s formula, we have

v 0 v v
(Vl/fﬂVWLZ(M) Z/a o—y- dS—/ pAY_dx
M

M on
= AO(I/vfﬂ ©) 20 (6.11)

for all ¢ € E. Because & is dense in Hl(M) (see Proposition 7.1), (6.11) holds for all
@ € H'(M). Thus /_ is an eigenfunction of the Neumann Laplacian on M associated with

the nonzero eigenvalue Ao. Hence we get |’ M Y_dx = 0 which violates the fact that ¥/_ > 0
on M. In a similar fashion, we get a contradiction in the case that 7 (ko) < 0. Thus we obtain
7 = 0on [0, 9], and the statement (ii) holds. This completes the proof of Theorem 0.2. O

7. Appendix

PROPOSITION 7.1. Let A C R? be a bounded region having the segment property and
let p € A. Then

®={he C(‘)’O(Rz) | h = 0in a neighborhood of { p}}
is dense in H'(A).

PROOF. Since A has the segment property, Cf)’o (R?) is dense in H!(A). So, it suffices
to show that ® is dense in C8°(R2) with respect to the norm || - | 51 g2). For R > ¢ and
£ € R?, we put

1

Ag(&) = 1 1&12(log |€]) log(log R)
0 in the other cases,

e<|§| <R,
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1
Brr) = P AR = p) = o= [ eV T = p)-£) ARG de
R
where F~! stands for the inverse Fourier transformation. We obtain Bz € C*°(R?) and

dr=1.

Br(p) = 1 /R 1
kP ~ log(logR) J, rlogr

By the Plancherel theorem, we get

BRI ) = /Rza +IEP)IAR®) de

2 142
< / dr >0 as R — o0. (7.1)
{log(log R)}? J,  r3(logr)?
Let f € C(‘)X’(RZ). We put fr(x) = (1 — Br(x))f(x). Then we have fgr € C8°(R2) and
fr(p) = 0. Moreover, we infer by (7.1) that

||fR—f||H1(R2)—>O as R— 0. (7.2)

We choose x3 € C8°(R2) such that y3(x) = 1 for |x| < 1 and that x3(x) = O for |x| > 2.
Foré > 0, we put fgrs = (1 — X3(8_1(x — p))) fr(x). Then we have frs € C(‘)X’(Rz) and
fr.s = 0on D(p, 8). Notice that

1 frs = fRI1 ey < 1367 = PRI G2y + 282NV O = P fR(O) 72

+ 20667 0 = PV R 2 g
Using supp x3(8~'(- — p)) € D(0, 28) and fr(x) = O(|x — p|) as x — p, we have

lim — =0.
5550 ||fR,6 fR||H1(R2)

This combined with (7.2) implies that & is dense in CSO(RQ) with respect to the norm

I N et r2)- U
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