Токуо J. Матн. Vol. 31, No. 2, 2008

On 2-Factors in *r*-Connected $\{K_{1,k}, P_4\}$ -Free Graphs

Yoshimi EGAWA, Jun FUJISAWA*, Shinya FUJITA[†] and Katsuhiro OTA

Tokyo University of Science, Nihon University, Gunma National College of Technology and Keio University

(Communicated by M. Tsuchiya)

Abstract. In [3], Faudree et al. considered the proposition "Every $\{X, Y\}$ -free graph of sufficiently large order has a 2-factor," and they determined those pairs $\{X, Y\}$ which make this proposition true. Their result says that one of them is $\{X, Y\} = \{K_{1,4}, P_4\}$. In this paper, we investigate the existence of 2-factors in *r*-connected $\{K_{1,k}, P_4\}$ -free graphs. We prove that if $r \ge 1$ and $k \ge 2$, and if *G* is an *r*-connected $\{K_{1,k}, P_4\}$ -free graph with minimum degree at least k - 1, then *G* has a 2-factor with at most max $\{k - r, 1\}$ components unless $(k - 1)K_2 + (k - 2)K_1 \subseteq G \subseteq (k - 1)K_2 + K_{k-2}$. The bound on the minimum degree is best possible.

1. Introduction

In this paper, all graphs considered are finite, undirected, and without loops or multiple edges. For a graph G, V(G), E(G) and $\delta(G)$ denote the set of vertices and the set of edges and the minimum degree of G, respectively. Also we let $\alpha(G)$ denote the independence number of G and let $\kappa(G)$ denote the (vertex-)connectivity of G. For a subset M of V(G), we let G[M] denote the subgraph induced by M in G. Let \mathcal{H} be a set of connected graphs, each of which has three or more vertices. A graph G is said to be \mathcal{H} -free if no graph in \mathcal{H} is an induced subgraph of G. When $|\mathcal{H}| = 1$, say, $\mathcal{H} = \{X\}$, we use the term "X-free" to mean " \mathcal{H} -free".

In this paper, we study the relationship between forbidden subgraphs and the existence of a 2-factor with few components. In the research field concerning forbidden subgraphs for the existence of a 2-factor with one component, that is, the existence of a hamiltonian cycle, there is a famous conjecture due to Matthews and Sumner [5].

CONJECTURE 1 (Matthews and Sumner [5]). Every 4-connected $K_{1,3}$ -free graph has a hamiltonian cycle.

In [1], Broersma et al. showed that the above conjecture is true if we replace the assumption " $K_{1,3}$ -free" by "{ $K_{1,3}$, $K_1 + 2K_2$ }-free." Along a slightly different line, there are some results concerning minimum degree conditions for the existence of a hamiltonian cycle

Received March 19, 2007

Key words: 2-factor, forbidden subgraph, minimum degree

^{*} This work is supported by the JSPS Research Fellowships for Young Scientists.

[†] This work is supported by the JSPS Research Fellowships for Young Scientists.

416 YOSHIMI EGAWA, JUN FUJISAWA, SHINYA FUJITA AND KATSUHIRO OTA

in $K_{1,3}$ -free graphs. For example, Lai et al. ([4]) proved that if G is a 3-connected $K_{1,3}$ -free graph of order $n \ge 196$ with $\delta(G) > (n + 6)/10$, then G has a hamiltonian cycle. Apart from the existence of a hamiltonian cycle, there are many results concerning forbidden sub-graphs for the existence of 2-factors. It seems that most of the research has been done from the following viewpoints:

- Consider the proposition "Every *H*-free graph of sufficiently large order has a 2-factor", and determine those families *H* which make the proposition true.
- For a given family \mathcal{H} , determine the sharp degree condition for the existence of 2-factors in \mathcal{H} -free graphs.
- What if we consider the above problems in highly connected graphs?

As an illustration of research done in the above directions, we mention some known results. In [6], Ota and Tokuda showed that every connected $K_{1,n}$ -free graph G ($n \ge 3$) with $\delta(G) \ge 2(n-1)$ has a 2-factor. Actually, they obtained a more general result, that is, they determined the sharp degree condition for the existence of *r*-factors in $K_{1,n}$ -free graphs. In [3], Faudree et al. considered the proposition "Every $\{X, Y\}$ -free graph of sufficiently large order has a 2-factor," and they determined the pairs $\{X, Y\}$ which make this proposition true. Their result says that one of them is $\{X, Y\} = \{K_{1,4}, P_4\}$. In connection with this result, they also obtained the following theorem.

THEOREM 1 (Faudree et al. [3]). If G is a 2-connected $\{K_{1,4}, P_4\}$ -free graph of order at least 9, then G has a 2-factor with at most 2 components.

In this paper, we focus on the existence of 2-factors with few components in $\{K_{1,k}, P_4\}$ -free graphs. Our purpose is to extend Theorem 1 to $\{K_{1,k}, P_4\}$ -free graphs from the above viewpoints. Our first result involves a degree condition:

THEOREM 2. Let $r \ge 1$ and $k \ge 2$, and let G be an r-connected $\{K_{1,k}, P_4\}$ -free graph with $\delta(G) \ge k - 1$. Then either

- a) G contains a 2-factor with at most $\max\{k r, 1\}$ components, or
- b) *G* is a graph which satisfies $(k-1)K_2 + (k-2)K_1 \subseteq G \subseteq (k-1)K_2 + K_{k-2}$ (so |V(G)| = 3k 4 and $\delta(G) = k 1$).

We here discuss the sharpness of bounds in Theorem 2. For that purpose, assume that $1 \le r \le k-2$. Then the graph $(k-1)K_m + K_r$ shows that in the conclusion of the theorem, the upper bound k - r on the number of components of a 2-factor of *G* is best possible in the sense that there exists an *r*-connected $\{K_{1,k}, P_4\}$ -free graph *G* with arbitrary large minimum degree such that *G* has no 2-factor with strictly fewer than k - r components. We now turn our attention to the lower bound k - 1 on $\delta(G)$ in the assumption. Note that the graph $((k-2)K_2 \cup K_m) + K_{k-3}$ shows that there exists a (k-3)-connected $\{K_{1,k}, P_4\}$ -free graph *G* with arbitrary large order such that $\delta(G) = k - 2$ and *G* has no 2-factor. Thus if $1 \le r \le k-3$, the bound k - 1 is best possible. But if $r = k - 2 \ge 2$, the situation is different (if r = k - 2 = 1, the bound k - 1 is clearly best possible). In fact, the following theorem holds:

THEOREM 3. Let $r \ge 2$ and $k \ge 2$ be integers with $r \ge k-2$. Let G be an r-connected $\{K_{1,k}, P_4\}$ -free graph. Then either

- a) G contains a 2-factor with at most $\max\{k r, 1\}$ components, or
- b) $k \ge 4$, and G is a graph which satisfies $(qK_1 \cup (k-1-q)K_2) + (k-2)K_1 \subseteq G \subseteq (qK_1 \cup (k-1-q)K_2) + K_{k-2}$ for some q with $0 \le q \le k-1$ (so $|V(G)| \le 3k-4$ and $\kappa(G) = k-2$).

Note that if we let r = 2 and k = 4 in Theorem 3, then we obtain Theorem 1. In the proof of these theorems, we use the following theorem.

THEOREM 4 (Chvátal and Erdős [2]). Let G be an r-connected graph with at least three vertices. If $r \ge \alpha(G)$, then G contains a hamiltonian cycle.

Also we use the following lemma.

LEMMA 1. Let G be a non-complete P_4 -free graph and let S be a minimum cutset of G. Then for every two vertices u, v with $u \in S$ and $v \in V(G) \setminus S$, $uv \in E(G)$.

The proof of this lemma is implicit in [3, Theorem 3]. The following lemma immediately follows from Lemma 1.

LEMMA 2. Let $k \ge 2$, and let G be a connected P₄-free graph. Then G is $K_{1,k}$ -free if and only if $\alpha(G) \le k - 1$.

2. Proof of Theorem 2

Note that in view of Lemma 2, the assumption that *G* is $\{K_{1,k}, P_4\}$ -free is equivalent to the statement that *G* is P_4 -free and $\alpha(G) \leq k - 1$.

Now we proceed by induction on k. First let k = 2. Then G is a complete graph. If $|V(G)| \ge 3$, then G contains a hamiltonian cycle, and hence a) holds. Otherwise, G must be K_2 , which satisfies b). Let now $k \ge 3$, and assume that the theorem holds for smaller value of k. We may assume that G is not a complete graph, because otherwise a) holds.

Note that $|V(G)| \ge 3$ because $\delta(G) \ge k - 1 \ge 2$. If $\kappa(G) \ge k - 1$, then since $\alpha(G) \le k - 1$, Theorem 4 implies that G contains a hamiltonian cycle, and hence a) holds. Thus we may assume that $\kappa(G) \le k - 2$.

Let *S* be a minimum cutset of *G*. Since *G* is *r*-connected, $k - 2 \ge |S| = \kappa(G) \ge r$. Let H_1, H_2, \ldots, H_l be the components of G - S, and let $\alpha_i = \alpha(H_i)$ for every *i* with $1 \le i \le l$. By Lemma 1,

$$uv \in E(G)$$
 for every $u \in S$ and $v \in V(G) \setminus S$. (1)

Moreover, for every $v \in V(G) \setminus S$, $d_{G-S}(v) = d_G(v) - |S| \ge k - 1 - |S| \ge 1$. Hence $|H_i| \ge 2$ for every *i* with $1 \le i \le l$.

If $\alpha(G) \le k - 2$, then by the induction hypothesis, *G* contains a 2-factor with at most max{k - 1 - r, 1} components (note that if *G* satisfies b) for k - 1, then by the parenthetic remark in the statement of b), we have $\delta(G) = (k - 1) - 1$, which contradicts the assumption

that $\delta(G) \ge k - 1$, and hence a) holds. Thus we may assume that $\alpha(G) = k - 1$. Let *I* be a maximum independent subset of V(G) with $|I| = \alpha(G) = k - 1$. Then by (1), $I \subseteq S$ or $I \subseteq V(G) \setminus S$. Since $|S| \le k - 2$, it follows that $I \subseteq V(G) \setminus S$, which implies $\sum_{i=1}^{l} \alpha_i = k - 1$. We consider two cases.

CASE 1. There exists *i* with $1 \le i \le l$ such that $\alpha_i \le |S|$.

Take *i* so that $|H_i| = \max\{|H_j| \mid 1 \le j \le l, \alpha_j \le |S|\}$. Note that $k - \alpha_i \ge k - |S| \ge 2$. Let *S'* be a subset of *S* with cardinality $\alpha_i - 1$. Let $S^* = S \setminus S'$ and $H^* = G - (S \cup V(H_i))$. Moreover, let $G' = G[S' \cup V(H_i)]$ and $G^* = G[S^* \cup V(H^*)]$.

Now $|S^*| = |S| - |S'| \le k - 2 - (\alpha_i - 1) = k - \alpha_i - 1$ and $\alpha(H^*) = k - \alpha_i - 1$. Hence it follows from (1) that $\alpha(G^*) = k - \alpha_i - 1$. Further $|H^*| \ge \alpha(H^*) + 1 \ge k - \alpha_i$ because $|H_j| \ge 2$ and H_j is connected for every j with $1 \le j \le l$ and $j \ne i$. Hence for every $v \in S^*$, we have $d_{G^*}(v) \ge |H^*| \ge k - \alpha_i$ by (1). On the other hand, for every $v \in H^*$, $d_{G^*}(v) = d_G(v) - |S'| \ge k - 1 - (\alpha_i - 1) = k - \alpha_i$. Therefore $\delta(G^*) \ge k - \alpha_i$. Moreover, it follows from (1) that $\kappa(G^*) \ge \min\{|S^*|, |H^*|\} = |S^*| = |S| - \alpha_i + 1$. Since G^* is an induced subgraph of G, G^* is P_4 -free. Consequently, by the induction hypothesis, G^* contains a 2factor F^* with at most max $\{k - \alpha_i - (|S| - \alpha_i + 1), 1\} = k - |S| - 1$ components (see the parenthetic remark in b) of the statement of the theorem).

Assume for the moment that $|H_i| \ge 3$. Since $|S'| = \alpha_i - 1$ and $\alpha(H_i) = \alpha_i$, it follows from (1) that $\alpha(G') = \alpha_i$. Moreover, by (1) and the fact that H_i is connected, we have $\kappa(G') \ge |S'| + 1 = \alpha_i$. Therefore we obtain a hamiltonian cycle F' of G' by Theorem 4. Now $F' \cup F^*$ is a 2-factor with at most $k - |S| \le k - r$ components, and hence a) holds.

Thus we may assume that $|H_i| = 2$. Since $d_G(v) \ge k - 1$ for every $v \in V(H_i)$, we have |S| = k - 2. Now for every j with $1 \le j \le l$, $\alpha_j \le \sum_{h=1}^l \alpha_h - 1 \le k - 2 = |S|$. Hence for every j with $1 \le j \le l$, we obtain $H_j = K_2$ by the choice of i and the fact that $|H_j| \ge 2$. Since $\sum_{j=1}^l \alpha_j = k - 1$, l = k - 1. With (1) and the assumption that |S| = k - 2, we see that b) holds.

CASE 2. For every *i* with $1 \le i \le l, \alpha_i \ge |S| + 1$.

Let *i*, *j* be distinct integers with $1 \le i$, $j \le l$. Then $\alpha_i \le k - 1 - \alpha_j \le k - 1 - (|S| + 1) = k - 2 - |S|$. Hence $\delta(H_i) \ge \delta(G) - |S| \ge k - 1 - |S| \ge \alpha_i + 1$. Note that H_i is P_4 -free and $\kappa(H_i) \ge 1$. Consequently, by the induction hypothesis, H_i contains a 2-factor with at most $\alpha_i + 1 - 1 = \alpha_i$ components.

Applying the above argument to every component of G - S, we see that G - S contains a 2-factor F with at most $\sum_{i=1}^{l} \alpha_i = k - 1$ components. Let C_1, C_2, \ldots, C_m be the components of F. For every i with $1 \le i \le m$, take $u_i v_i \in E(C_i)$ and let $P_i = C_i - u_i v_i$.

Write $S = \{w_1, w_2, \ldots, w_s\}$ $(s = \kappa(G))$. Recall that we have (1). In the case where $m \ge s$, let $C = v_1 P_1 u_1 w_1 v_2 P_2 u_2 w_2 v_3 P_3 u_3 \cdots v_s P_s u_s w_s v_1$. Then $(\bigcup_{i=s+1}^m C_i) \cup C$ is a 2-factor of G with $m - s + 1 \le k - s \le k - r$ components, and hence a) holds. In the case where m < s, let $C = v_1 P_1 u_1 w_1 v_2 P_2 u_2 w_2 v_3 P_3 u_3 \cdots v_m P_m u_m w_m v_1$. Since $|V(G - S)| \ge \alpha(G - S) = k - 1$, F has at least k - 1 edges. Hence there are at least k - 1 - m edges

in $E(C) \cap E(F)$. Choose s - m edges from $E(C) \cap E(F)$, say $u'_1 v'_1, u'_2 v'_2, \ldots, u'_{s-m} v'_{s-m}$ (note that $s - m \le k - 2 - m$). Let C' be the cycle obtained from C by replacing $u'_i v'_i$ by $u'_i w_{m+i} v'_i$ for every $1 \le i \le s - m$. Then C' is a hamiltonian cycle of G, and hence a) holds. This completes the proof of Theorem 2.

3. **Proof of Theorem 3**

First, note that G has at least three vertices because G is 2-connected. As in the proof of Theorem 2, we may assume that $k \ge 3$ and G is not a complete graph.

As in the proof of Theorem 2, we may also assume $\kappa(G) \le k - 2$. Then $\kappa(G) = r = k - 2$. Since $r \ge 2$, this implies $k \ge 4$. Let *S* be a cutset with |S| = k - 2. Let H_1, H_2, \ldots, H_l be the components of G - S, and let $\alpha_i = \alpha(H_i)$ for every *i* with $1 \le i \le l$. By Lemma 1,

$$uv \in E(G)$$
 for every $u \in S$ and $v \in V(G) \setminus S$. (2)

If $\alpha(G) \leq k - 2$, then by Theorem 4, *G* contains a hamiltonian cycle and hence a) holds. Thus we may assume that $\alpha(G) = k - 1$. As in the proof of Theorem 2, this implies $\sum_{i=1}^{l} \alpha_i = k - 1$. Since $\alpha_i \geq 1$ for every *i* with $1 \leq i \leq l$, it follows that $\alpha_j \leq k - 1 - 1 = k - 2$ for every *j* with $1 \leq j \leq l$.

Take *i* so that $|H_i|$ is as large as possible. Note that $k - \alpha_i - 1 > 0$. Let *S'* be a subset of *S* with cardinality $\alpha_i - 1$. Let $S^* = S \setminus S'$ and $H^* = G - (S \cup V(H_i))$. Moreover, let $G' = G[S' \cup V(H_i)]$ and $G^* = G[S^* \cup V(H^*)]$. Now $|S^*| = |S| - |S'| = k - 2 - (\alpha_i - 1) = k - \alpha_i - 1$ and $\alpha(H^*) = k - \alpha_i - 1$. Hence by (2), we obtain $\alpha(G^*) = k - \alpha_i - 1$ and $\kappa(G^*) \ge \min\{|S^*|, |H^*|\} = |S^*| = k - \alpha_i - 1$. Consequently it follows from Theorem 4 that G^* contains a Hamiltonian cycle F^* or $G^* \simeq K_2$.

We first consider the case where $|H_i| \ge 3$. Since $|S'| = \alpha_i - 1$ and $\alpha(H_i) = \alpha_i$, it follows from (2) that $\alpha(G') = \alpha_i$, Moreover, by (2) and the fact that H_i is connected, we have $\kappa(G') \ge |S'| + 1 = \alpha_i$. Hence we obtain a hamiltonian cycle F' of G' by Theorem 4. If G^* contains a hamiltonian cycle, then $F' \cup F^*$ is a 2-factor with 2 = k - r components, and hence a) holds. Thus we may assume $G^* \simeq K_2$. Then $|S^*| = |H^*| = 1$. Write $S^* = \{w_0\}$ and $V(H^*) = \{v_0\}$. Since $|S| = r \ge 2$, we have $S' \ne \emptyset$, and hence F' contains an edge wv with $w \in S'$ and $v \in V(H_i)$. In view of (2), we can replace wv by wv_0w_0v , to get a hamiltonian cycle of G, which implies a).

We now consider the case where $|H_i| \le 2$. By the choice of i, $|H_j| \le 2$ for every j with $1 \le j \le l$. This implies $l = \sum_{j=1}^{l} \alpha_j = k - 1$. With the fact |S| = k - 2 and (2), we see that b) holds. This completes the proof of Theorem 3.

YOSHIMI EGAWA, JUN FUJISAWA, SHINYA FUJITA AND KATSUHIRO OTA

References

- H. J. BROERSMA, M. KRIESELL and Z. RYJACEK, On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001), 125–136.
- [2] V. CHVÁTAL and P. ERDŐS, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111–113.
- [3] J. R. FAUDREE, R. J. FAUDREE and Z. RYJACEK, Forbidden subgraphs that imply 2-factors, Discrete Math., to appear.
- [4] H. LAI, Y. SHAO and M. ZHAN, Hamiltonicity in 3-connected claw-free graphs, J. Combin. Theory Ser.B, to appear.
- [5] M. M. MATTHEWS and D. P. SUMNER, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984), 139–146.
- [6] K. OTA and T. TOKUDA, A degree condition for the existence of regular factors in $K_{1,n}$ -free graphs, J. Graph Theory **22** (1996), 59–64.

Present Addresses: Yoshimi Egawa Department of Mathematical Information Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162–8601 Japan.

JUN FUJISAWA DEPARTMENT OF APPLIED SCIENCE, KOCHI UNIVERSITY, AKEBONO-CHO, KOCHI, 780–8520 JAPAN. *e-mail*: fujisawa@is.kochi-u.ac.jp

SHINYA FUJITA DEPARTMENT OF MATHEMATICS, GUNMA NATIONAL COLLEGE OF TECHNOLOGY, TORIBAMACHI, MAEBASHI, GUNMA, 371–8530 JAPAN. *e-mail*: fujita@nat.gunma-ct.ac.jp

Katsuhiro Ota Department of Mathematics, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, 223–8522 Japan.

420