Токуо J. Матн. Vol. 31, No. 2, 2008

On the Existence of a Non-trivial Solution for the *p*-Laplacian Equation with a Jumping Nonlinearity

Mieko TANAKA

Tokyo University of Science (Communicated by Y. Yamada)

Abstract. We consider the existence of a non-trivial weak solution for the equation

$$\begin{cases} -\Delta_p u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where f satisfies $f(x, u) = au_+^{p-1} - bu_-^{p-1} + o(|u|^{p-1})$ (p > 1) at 0 or ∞ . By using Morse theory and calculating the critical groups, we show the existence of a non-trivial weak solution to the equation under mild auxiliary conditions.

1. Introduction and the Main result

In this paper, we consider the equation

(P)
$$\begin{cases} -\Delta_p u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\Omega \subset \mathbf{R}^N$ is a bounded domain, Δ_p denotes the *p*-Laplacian defined by $\Delta_p u := \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right) (p > 1)$. We will treat $f \in C(\overline{\Omega} \times \mathbf{R})$ satisfying

$$f(x, u) = au_{+}^{p-1} - bu_{-}^{p-1} + o(|u|^{p-1})$$

as $|u| \to 0$ or $|u| \to \infty$, where $u_{\pm} := \max\{\pm u, 0\}$. We say that $u \in W_0^{1,p}(\Omega)$ is a weak solution of (P) if

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi \, dx = \int_{\Omega} f(x, u) \varphi \, dx$$

holds for any $\varphi \in W_0^{1,p}(\Omega)$.

The equation (P) in the case of $f(x, u) = au_+^{p-1} - bu_-^{p-1}$ has been considered by Fučík [7] (p = 2) and many authors (cf. [4], [3], [5]). The set Σ_p of points $(a, b) \in \mathbb{R}^2$ for which

Received December 4, 2006

Mathematics Subject Classification: 35J20, 58E05

MIEKO TANAKA

the equation

$$-\Delta_p u = a u_+^{p-1} - b u_-^{p-1}, \quad u \in W_0^{1,p}(\Omega)$$
(1)

has a non-trivial weak solution is called the Fučík spectrum of the *p*-Laplacian on $W_0^{1,p}(\Omega)$ $(1 ([3]). In the case of <math>a = b = \lambda \in \mathbf{R}$, the equation (1) reads $-\Delta_p u = \lambda |u|^{p-2}u$. Hence (λ, λ) belongs to Σ_p if and only if λ is an *eigenvalue* of $-\Delta_p$, i.e., there exists a non-zero weak solution $u \in W_0^{1,p}(\Omega)$ to $-\Delta_p u = \lambda |u|^{p-2}u$. The set of all eigenvalues of $-\Delta_p$ is, as usual, denoted by $\sigma(-\Delta_p)$. It is well known that the first eigenvalue λ_1 of $-\Delta_p$ is positive, simple, and has a positive eigenfunction $\varphi_1 \in W_0^{1,p}(\Omega)$. Therefore, Σ_p contains the lines $\{\lambda_1\} \times \mathbf{R}$ and $\mathbf{R} \times \{\lambda_1\}$. Moreover, by using the Mountain Pass Theorem, Cuestade Figueiredo–Gossez [3] showed that there exists a continuous curve C_2 contained in Σ_p , which passes through (λ_2, λ_2) , where λ_2 is the second eigenvalue of $-\Delta_p$. The curve C_2 is described as

$$C_2 := \{ (s + c(s), c(s)) \mid s \ge 0 \} \cup \{ (c(s), s + c(s)) \mid s \ge 0 \},\$$

where c(s) is a continuous, strictly decreasing function on \mathbf{R}^+ with the property $c(0) = \lambda_2$ and $\lim_{s\to\infty} c(s) = \lambda_1$.

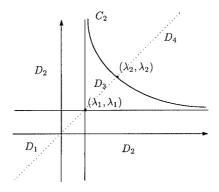
It is obvious that critical points of the following functional correspond to weak solutions of (1):

$$I_{(a,b)}(u) := \int_{\Omega} |\nabla u|^p \, dx - a \int_{\Omega} u_+^p \, dx - b \int_{\Omega} u_-^p \, dx \,, \quad u \in W_0^{1,p}(\Omega) \,.$$
(2)

To explain our results of this paper, recall the notation of the critical groups of an isolated critical point at u of a C^1 -class functional I. The critical groups at u are defined as

$$C_*(I, u) := H_*(U \cap I^c, U \setminus \{u\} \cap I^c),$$

where c = I(u), $I^c := \{u; I(u) \le c\}$, U is a neighborhood of u containing no other critical points, and $H_*(\cdot, \cdot)$ are the relative singular homology groups with a coefficient group G.



In addition, we should introduce subsets D_1 to D_4 of \mathbf{R}^2 as follows (see the figure below).

 $D_{1} = \{(a, b) | a, b < \lambda_{1} \}$ $D_{2} = \{(a, b) | b < \lambda_{1} < a\} \cup \{(a, b) | a < \lambda_{1} < b\}$ $D_{3} = \{(a, b) | (a, b) \notin \overline{D_{1} \cup D_{2}} \text{ and } (a, b) \text{ lies below the curve } C_{2} \}$ $D_{4} = \{(a, b) | (a, b) \text{ lies above the curve } C_{2} \}$

Then, in [5] and [3], it is shown that $D_i \cap \Sigma_p = \emptyset$ (i = 1, 2, 3). Moreover, the following result is also obtained in [5] and [3] as to the critical groups of $I_{(a,b)}$ at 0:

$$\begin{cases} C_q(I_{(a,b)}, 0) = \delta_{q,0}G & \text{if } (a,b) \in D_1 \\ C_q(I_{(a,b)}, 0) = 0 & \text{if } (a,b) \in D_2 \\ C_q(I_{(a,b)}, 0) = \delta_{q,1}G & \text{if } (a,b) \in D_3 \\ C_0(I_{(a,b)}, 0) = C_1(I_{(a,b)}, 0) = 0 & \text{if } (a,b) \in D_4 \setminus \Sigma_p \end{cases}$$
(3)

However, if $(a, b) \in D_4 \setminus \Sigma_p$ with $a \neq b$, [5] and [8] do not tell about $C_q(I_{(a,b)}, 0)$ $(q \ge 2)$. One of our main purpose is to show that if (a, b) belongs to some region in $D_4 \setminus \Sigma_p$, then there exists some number $q \ge 2$ such that $C_q(I_{(a,b)}, 0)$ is nontrivial.

To state our result in this paper, let us recall the definition of the Perera's eigenvalues of $-\Delta_p$. For symmetric subset $A \subset W_0^{1,p}(\Omega) \setminus \{0\}$, we denote by $i_Y(A)$ the Yang index (see [11] and Appendix). Then, Perera has proved in [11] that

$$\lambda_m := \inf \left\{ \sup_{u \in A} \int_{\Omega} |\nabla u|^p \, dx \, ; \, A \subset S \text{ is symmetric and } i_Y(A) \ge m - 1 \right\}, \tag{4}$$

where $S := \{u \in W_0^{1,p}(\Omega); \int_{\Omega} |u|^p dx = 1\}$, is the eigenvalue of $-\Delta_p$ such that $\lambda_m \nearrow +\infty$ as $m \to \infty$. We define

$$Q_m := \{(a, b) \in \mathbf{R}^2; \lambda_m < a, b < \lambda_{m+1}\}.$$

Now our result reads as follows.

PROPOSITION 1. If $(a, b) \in \overline{Q}_m \setminus \Sigma_p$ for $m \ge 2$, then $C_m(I_{(a,b)}, 0) \ne 0$.

REMARK 2. For p = 2, the above result is contained in several papers (cf. [13]).

In the case of $(a, b) \in \overline{Q}_m \setminus \Sigma_p$ with a = b, Perera [11] proved $C_m(I_{(a,a)}, 0) \neq 0$, and Jiang [8] showed that there exists some number q such that $C_q(I_{(a,a)}, 0) \neq 0$.

For our main result on the existence of non-trivial weak solutions to (P), we consider the following assumptions for $f \in C(\overline{\Omega} \times \mathbf{R})$ and set $F(x, u) := \int_0^u f(x, s) ds$;

 $(f_1^0) \quad f(x, u) = a_0 u_+^{p-1} - b_0 u_-^{p-1} + o(|u|^{p-1}) \quad \text{as } |u| \to 0,$

 (f_2^0) there exist some $\delta > 0$ and $\mu \in (0, p)$ such that

$$f(x, u)u > 0 \quad \text{if } 0 < |u| \le \delta,$$
$$\mu F(x, u) \ge f(x, u)u \ge 0 \quad \text{if } |u| \le \delta$$

MIEKO TANAKA

$$\begin{array}{ll} (f_1^{\infty}) & f(x,u) = au_+^{p-1} - bu_-^{p-1} + o(|u|^{p-1}) & \text{as } |u| \to \infty, \\ (f_2^{\infty}) & \text{there exist some numbers } R, c > 0, q < p^* - 1, \theta > p \text{ such that} \end{array}$$

$$|f(x, u)| \le c(1 + |u|^q)$$
 for any (x, u) ,

$$f(x, u)u \ge \theta F(x, u) > 0$$
 if $|u| \ge R$,

where $p^* = Np/(N - p)$ for p < N, $p^* = \infty$ for $p \ge N$. Our existence result is the following.

THEOREM 3. (i) If (f_1^0) with $(a_0, b_0) \in \overline{Q}_m \setminus \Sigma_p$ $(m \ge 2)$ and (f_2^∞) hold, then (P) has a non-trivial weak solution.

(ii) If (f_2^0) and (f_1^∞) with $(a, b) \in \overline{Q}_m \setminus \Sigma_p$ hold, then (P) has a non-trivial weak solution.

(iii) If (f_1^0) with $(a_0, b_0) \in D_4 \setminus \Sigma_p$ and (f_1^∞) with $(a, b) \in D_2$ hold, then (P) has at least two non-trivial weak solution.

REMARK 4. In the cases $(a_0, b_0) \in D_i$ $(i = 1, 2, 3), a_0 = b_0 \notin \sigma(-\Delta_p)$, Jiang ([8]) showed under (f_2^{∞}) that (P) has a non-trivial solution. Under the same assumptions as (iii) in Theorem 1, it was proved that (P) has at least one non-trivial solution in [5].

For p = 2, if $Q_m \neq \emptyset$, then $Q_m \cap (\mathbb{R}^2 \setminus \Sigma_2) \neq \emptyset$ (see [14]). However, for $p \neq 2$, we do not know whether $Q_m \cap \Sigma_p$ is empty or not.

2. Preliminaries

Now we recall the definition of homological linking (see [2]).

DEFINITION 5. Let D, S, A be subsets of a real Banach space X, m a nonnegative integer, and **K** a field. We say that (D, S) links A homologically in dimension m over **K**, if $S \subset D$, $S \cap A = \emptyset$ and there exists a $z \in H_m(X, S; \mathbf{K})$ such that

$$z \in \operatorname{Im} i_*, \quad z \notin \operatorname{Im} j_*, \tag{5}$$

where $i_*: H_m(D, S; \mathbf{K}) \to H_m(X, S; \mathbf{K}), j_*: H_m(X \setminus A, S; \mathbf{K}) \to H_m(X, S; \mathbf{K}).$

The following result is proved in [2] by using \mathbb{Z}_2 -cohomological index (see [6]).

THEOREM 6 ([2, Theorem 4.1]). Let $\{\lambda_n\}_n$ be the Perera's spectrum of $-\Delta_p$ defined by (4). Let $m \in \mathbb{N} \cup \{0\}, \lambda_m < \alpha \leq \beta < \lambda_{m+1}$ (where $\lambda_0 = -\infty$), R > 0 and set

$$S := \left\{ u \in W_0^{1,p}(\Omega) \; ; \; R^p = \int_{\Omega} |\nabla u|^p \, dx < \alpha \int_{\Omega} |u|^p \, dx \right\}$$
$$A := \left\{ u \in W_0^{1,p}(\Omega) \; ; \; \int_{\Omega} |\nabla u|^p \, dx \ge \beta \int_{\Omega} |u|^p \, dx \right\}.$$

Then there exists a compact subset C of $W_0^{1,p}(\Omega)$ such that $(S \cup C, S)$ links A homologically in dimension m over \mathbb{Z}_2 .

By this homological linking, we can find a critical value.

THEOREM 7 ([2, Theorem 3.2]). Let (D, S) link A homologically in dimension m over **K**, and let $z \in H_m(X, S; \mathbf{K})$ satisfy (5). Assume that $I \in C^1(X, \mathbf{R})$ satisfies (PS) condition and

$$-\infty < \inf_{A} I$$
, $\sup_{D} I < +\infty$, $\sup_{S} I < \inf_{A} I$.

And define

$$c := \inf \left\{ \begin{array}{ll} b \in \mathbf{R} \,; & S \subset I^b \text{ and } z \text{ belongs to the image of the homomorphism} \\ & H_m(I^b, S; \mathbf{K}) \to H_m(X, S; \mathbf{K}) \text{ induced by inclusion} \end{array} \right\}$$

where $I^b := \{u \in X; I(u) \le b\}$. Then c is a critical value of I such that $\inf_A I \le c \le \sup_D I$. Moreover, if each element of $K_c := \{u \in X; I'(u) = 0, I(u) = c\}$ is isolated in the critical set of I, then there exists $u \in K_c$ with $C_m(I, u) \ne 0$.

Now we prove Proposition 1 which is the main tool for the proof of (i) and (ii) in Theorem 3.

PROOF OF PROPOSITION 1. For every $(a_0, b_0) \in \mathbf{R}^2 \setminus \Sigma_p$, according to [5, Proposition 1.2.], if (a, b) is sufficiently close to (a_0, b_0) , then $C_*(I_{(a,b)}, 0) \cong C_*(I_{(a_0,b_0)}, 0)$ holds. Hence, it suffices to show that $C_m(I_{(a,b)}, 0) \neq 0$ for $(a, b) \in Q_m \setminus \Sigma_p$ because Σ_p is closed.

Therefore, let $(a, b) \in Q_m \setminus \Sigma_p$. Choose α , β satisfying $\lambda_m < \alpha < \min\{a, b\} \le \max\{a, b\} < \beta < \lambda_{m+1}$ and R > 0. Define

$$S := \left\{ u \in W_0^{1,p}(\Omega) \; ; \; R^p = \int_{\Omega} |\nabla u|^p \, dx < \alpha \int_{\Omega} |u|^p \, dx \right\},$$
$$A := \left\{ u \in W_0^{1,p}(\Omega) \; ; \; \int_{\Omega} |\nabla u|^p \, dx \ge \beta \int_{\Omega} |u|^p \, dx \right\}.$$

By Theorem 6, there exists some compact subset *C* of $W_0^{1,p}(\Omega)$ such that $(S \cup C, S)$ links *A* homologically in dimension *m* over \mathbb{Z}_2 .

In the case of $b \le a$, we have for any $u \in S$

$$I_{(a,b)}(u) = \int_{\Omega} |\nabla u|^p \, dx - b \int_{\Omega} |u|^p \, dx - (a-b) \int_{\Omega} u_+^p \, dx$$

$$\leq (1-b/\alpha) R^p \, .$$

Similarly, if $a \le b$, then $I_{(a,b)}(u) \le (1 - a/\alpha)R^p$ for any $u \in S$. Therefore $\sup_S I_{(a,b)} \le (1 - \min\{a, b\}/\alpha)R^p < 0$. On the other hand, for $u \in A$,

$$I_{(a,b)}(u) \ge \beta \int_{\Omega} |u|^p dx - a \int_{\Omega} u_+^p dx - b \int_{\Omega} u_-^p dx$$

$$\ge (\beta - a) \int_{\Omega} u_+^p dx + (\beta - b) \int_{\Omega} u_-^p dx \ge 0$$

Thus $\inf_A I_{(a,b)} = 0$ and hence $\sup_S I_{(a,b)} < \inf_A I_{(a,b)}$. Since C is compact and $I_{(a,b)}$ is C¹-class, $\max_C I_{(a,b)} < +\infty$ and so $\sup_{S \cup C} I_{(a,b)} < +\infty$. It follows from Theorem 7 that $C_m(I_{(a,b)}, 0) \neq 0$ because 0 is the only critical point of $I_{(a,b)}$.

3. Proof of Theorem 3

Now we prove Theorem 3. Define $X := W_0^{1,p}(\Omega)$ and

$$J(u) := \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx - \int_{\Omega} F(x, u) \, dx$$

for $u \in X$, where $F(x, u) = \int_0^u f(x, s) ds$. Then J is a functional of class C^1 , and critical points of J are weak solutions of the equation (P). Moreover, it is well known that J satisfies (PS) condition if (f_1^{∞}) with $(a, b) \notin \Sigma_p$ or (f_2^{∞}) holds (see [12], [9]). If there exists a constant c such that $J^c := \{u \in X; J(u) \le c\}$ contains no critical value of J, then we define $C_*(J, \infty) := H_*(X, J^c)$, which denotes the critical groups of J at infinity.

PROOF OF (I). Jiang [8] has shown that if (f_2^{∞}) holds, then $C_q(J, \infty) = 0$ for any $q \in \mathbb{Z}$. Moreover, it follows from the homotopy invariance that $C_q(I_{(a_0,b_0)}, 0) \cong C_q(J, 0)$ for any $q \in \mathbb{Z}$ under the assumption (f_1^0) with $(a_0, b_0) \notin \Sigma_p$ (see [8]).

By Proposition 1,

$$C_m(J,\infty) = 0 \neq C_m(I_{(a_0,b_0)},0) \cong C_m(J,0).$$

Hence J must have a non-trivial critical point (cf. [1]).

PROOF OF (II). It is known that $C_q(J, 0) = 0$ for any $q \in \mathbb{Z}$ by the assumption (f_2^0) (see [9]). By the homotopy invariance, it follows from (f_1^∞) with $(a, b) \notin \Sigma_p$ that $C_q(J, \infty) \cong C_q(I_{(a,b)}, 0)$ for any $q \in \mathbb{Z}$ (see [8]).

Therefore $C_m(J, 0) \not\cong C_m(J, \infty)$ by Proposition 1. This yields that J has a non-trivial critical point.

PROOF OF (III). Let

$$f_{\pm}(x, u) := \begin{cases} f(x, u) & \text{if } \pm u \ge 0, \\ 0 & \text{if } \pm u < 0, \end{cases} \quad F_{\pm}(x, u) := \int_0^u f_{\pm}(x, s) \, ds$$

and

$$J_{\pm}(u) := \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx - \int_{\Omega} F_{\pm}(x, u) \, dx \, .$$

If $(a, b) \in D_2$, then $b < \lambda_1 < a$ or $a < \lambda_1 < b$ holds. Thus, we treat each case.

THE CASE OF $b < \lambda_1 < a$. It is easily seen that J_- is bounded below and coercive. Therefore there exists a global minimum point w of J_- . From Lemma 2.2. in [5], w is a critical point and a local minimum point of J. Hence

$$C_q(J, w) \cong C_q(J_-, w) = \delta_{q,0} G \quad \text{for any } q \in \mathbb{Z}.$$
 (6)

Moreover, it follows from (f_1^0) with $(a_0, b_0) \in D_4 \setminus \Sigma_p$ that $J_-(w) = \min_X J_- < 0 = J_-(0)$, and so $w \neq 0$.

We assume that J has no critical points other than 0 and w. Because w is a critical point of J_- , w is a negative function and $J_-(w) = J(w)$. Let $c := J(w) = J_-(w) < J_-(0) = 0$. Then, for $\varepsilon > 0$ sufficiently small with $c + \varepsilon < 0$,

$$H_q(X, J^{c+\varepsilon}) \cong C_q(J, 0) \quad \text{for any } q \in \mathbf{Z}, H_q(J^{c+\varepsilon}, J^{c-\varepsilon}) \cong C_q(J, w) = \delta_{q,0}G \quad \text{for any } q \in \mathbf{Z}, and \quad H_q(X, J^{c-\varepsilon}) \cong C_q(J, \infty) \cong C_q(I_{(a,b)}, 0) = 0 \quad \text{for any } q \in \mathbf{Z}.$$

$$(7)$$

Set $B_n(A, B) := \operatorname{rank} H_n(A, B)$ and $P(t, A, B) := \sum_{n=0}^{\infty} B_n(A, B)t^n$. It follows from the exact sequence for $(X, J^{c+\varepsilon}, J^{c-\varepsilon})$ that for $t \ge 0$

$$P(t, X, J^{c+\varepsilon}) + P(t, J^{c+\varepsilon}, J^{c-\varepsilon}) = P(t, X, J^{c-\varepsilon}) + (1+t)Q(t),$$

where $Q(t) = \sum_{n=0}^{\infty} R_{n+1}t^n$, $R_n := \operatorname{rank} \partial_{n*}$ and

$$\partial_{n*} \colon H_n(X, J^{c+\varepsilon}) \to H_{n-1}(J^{c+\varepsilon}, J^{c-\varepsilon})$$

denotes the boundary homomorphism (see [10]). From (7), we obtain

$$1 + P(t, X, J^{c+\varepsilon}) = (1+t)Q(t).$$
(8)

Taking t = 0 in the equation (8), we have Q(0) = 1 because $P(0, X, J^{c+\varepsilon}) = 0$. Moreover, taking t = -1 in the equation (8), we have also $P(-1, X, J^{c+\varepsilon}) = -1$, and so there exists some number $q_0 \ge 2$ such that $C_{q_0}(J, 0) \ne 0$ because $C_q(J, 0) \cong C_q(I_{(a_0, b_0)}, 0) = 0$ for q = 0, 1. It yields that there exists some $n_0 \ge 1$ such that $R_{n_0+1} \ne 0$. Indeed, if $R_{n+1} = 0$ for all $n \ge 1$, then for $t \ge 0$,

$$1 + (\operatorname{rank} C_{q_0}(J, 0)) t^{q_0} \le 1 + P(t, X, J^{c+\varepsilon}) = (1+t)R_1.$$

This shows a contradiction.

Now from $R_{n_0+1} \neq 0$,

$$0 \neq H_{n_0}(J^{c+\varepsilon}, J^{c-\varepsilon}) \cong C_{n_0}(J, w)$$
.

It contradicts to (6). Thus J has a critical point other than 0 and w.

THE CASE OF $a < \lambda_1 < b$. It is easily seen that J_+ is bounded below and coercive. By using J_+ instead of J_- , we can prove that J has at least two non-trivial critical points, similarly as in the case of $b < \lambda_1 < a$.

APPENDIX. Following Perera [11], let $(X, A), A \subset X$, be a pair of closed symmetric subsets of a Banach space. C(X, A) denotes the singular chain complex with \mathbb{Z}_2 coefficients, and T_{\sharp} the chain map of C(X, A) induced by the antipodal map $T: x \mapsto -x$. We say that a *q*-chain *c* is symmetric if $T_{\sharp}(c) = c$, which holds if and only if $c = c' + T_{\sharp}(c')$ for some *q*-chain *c'*. The symmetric *q*-chains form a subgroup $C_q(X, A; T)$ of $C_q(X, A)$. Then the boundary operator ∂_p maps $C_q(X, A; T)$ into $C_{q-1}(X, A; T)$, hence these subgroups form a subcomplex C(X, A; T).

Define homomorphisms $\nu \colon Z_q(X;T) \to \mathbb{Z}_2$ inductively in q by

$$\nu(z) = \begin{cases} \ln(c) & \text{for } q = 0, \\ \nu(\partial c) & \text{for } q \ge 1, \end{cases}$$

if $z = c + T_{\sharp}(c)$, where the index In (c) of a 0-chain $c = \sum_{i} n_i \sigma_i$ is defined by In (c) $= \sum_{i} n_i (\text{mod } 2)$.

Then we can define the homomorphism

$$\nu_* \colon H_q(X; T) \to \mathbf{Z}_2 \quad \text{by } \nu_*([z]) = \nu(z) \,,$$

and the Yang index of X by

$$i_Y(X) = \inf\{l \ge -1; \nu_* H_{l+1}(X; T) = 0\}$$

taking $\inf \emptyset = \infty$.

Now we consider the spectrum of $-\Delta_p$. The eigenvalues of

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(9)

are critical values of the following C^1 functional

$$I(u) = \int_{\Omega} |\nabla u|^p \, dx \,, \quad \text{for } u \in S := \{ u \in X \,; \, \int_{\Omega} |u|^p \, dx = 1 \,\} \,,$$

which satisfies the (PS) condition.

Let \mathcal{A} be the class of closed symmetric subsets of S, and set

$$\mathcal{F}_{l} := \{ A \in \mathcal{A} ; i_{Y}(A) \ge l - 1 \}$$

$$\lambda_{l} := \inf_{A \in \mathcal{F}_{l}} \sup_{u \in A} I(u) .$$

Then λ_l is an eigenvalues of (9) and $\{\lambda_l\}$ satisfies $0 < \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_l \leq \cdots$, and $\lambda_l \nearrow +\infty$ as $l \rightarrow \infty$ ([12, Proposition 3.1.]).

ACKNOWLEDGEMENTS. The author would like to express her sincere thanks to Professor Shizuo Miyajima for helpful comments and encouragement.

References

- [1] K. C. CHANG, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993.
- [2] S. CINGOLANI and M. DEGIOVANNI, Nontrivial Solutions for *p*-Laplace Equations with Right-Hand Side Having *p*-Linear Growth at Infinity, Comm. Partial Differential Equations **30** (2005), 1191–1203.
- [3] M. CUESTA, D. DE FIGUEIREDO and J.-P. GOSSEZ, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations 159 (1999), 212–238.

- [4] E. DANCER On the Dirichlet problem for weak nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh 76A (1977), 283–300.
- [5] N. DANCER and K. PERERA Some Remarks on the Fučík Spectrum of the *p*-Laplacian and Critical Groups, J. Math. Anal. Appl. 254 (2001), 164–177.
- [6] E. R. FADELL and P. H. RABINOWITZ, Bifurcation for Odd Potential Operators and an Alternative Topological Index, J. Funct. Anal. 26 (1977), 48–67.
- [7] S. FUČÍK, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat. 101 (1976), 69–87.
- [8] M. Y. JIANG Critical groups and multiple solutions of the *p*-Laplacian equations, Nonlinear Anal. 59 (2004), 1221–1241.
- [9] Q. JIU and J. SU Existence and multiplicity results for Dirichlet problems with p-Laplacian, J. Math. Anal. Appl. 281 (2003), 587–601.
- [10] J. MAWHIN and M. WILLEM, Critical Point Theory and Hamiltonian System, Springer-Verlag, New York, 1989.
- [11] K. PERERA Nontrivial critical groups in *p*-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal. 21 (2003), 301–309.
- [12] K. PERERA On the Fučík Spectrum of the *p*-Laplacian, Nonlinear Differential Equations Appl. 11 (2004), 259–270.
- [13] K. PERERA and M. SCHECHTER, Solution of nonlinear equations having asymptotic limits at zero and infinity, Calc. Var. Partial Differential Equations 12 (2001), 359–369.
- [14] M. SCHECHTER, The Fucik Spectrum, Indiana Univ. Math. J. 43 (1994), 1139–1157.

Present Address: DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF SCIENCE, WAKAMIYA-CHO, SHINJYUKU-KU, TOKYO, 162–0827 JAPAN. *e-mail*: tanaka@ma.kagu.tus.ac.jp