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Abstract. We consider the symplectic quotient for a direct product of several integral coadjoint orbits of SU(3)

and investigate its symplectic volume. According to a fundamental theorem for symplectic quotients, it is equivalent
to studying the dimension of the trivial part in a tensor product of several irreducible representations for SU(3), and
its asymptotic behavior. We assume that either all of coadjoint orbits are flag manifolds of SU(3), or all are complex
projective planes. As main results, we obtain an explicit formula for the symplectic volume in each case.

1. Introduction

Let G be a compact Lie group, g the Lie algebra of G, and g∗ the dual of g. Under
the left coadjoint action of G on g∗, let Oλ be the orbit through λ ∈ g∗, which has a natural
symplectic (in fact, Kähler) structure. For λ1, . . . , λn ∈ g∗, let us consider the quotient space

M := {(x1, . . . , xn) ∈ Oλ1 × · · · × Oλn | x1 + · · · + xn = 0}/G ,

where G acts diagonally on the direct product of coadjoint orbits. We assume that M is not
empty and is a smooth manifold. The space M has the associated symplectic (or Kähler)
structure as the symplectic (or Kähler) quotient of the direct product of coadjoint orbits. The
topology and the symplectic geometry of M are quite interesting.

For example, in the case G = SU(2), M is identified with the moduli space of polygons

in R3 with fixed lengths of edges. Many results have been obtained from various points of
view (see, e.g. [9], [14], [27] and references cited therein). In particular, explicit formulas
for the symplectic volume vol(M) of M, and for the generating function of the cohomology
intersection pairings, which is closely related to vol(M), are given in [26].

In this paper, we consider the case G = SU(3). Our aim is to express the symplectic
volume vol(M) of M in an explicit form. As in the case G = SU(2), it might contain much
information of the cohomology intersection pairing of M. Except for the orbit consisting
only of the origin, each coadjoint orbit of SU(3) is diffeomorphic to either the flag manifold
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SU(3)/T or the complex projective plane P2(C), where T denotes the standard maximal
torus of SU(3). We will restrict ourselves to the following two cases.

Case 1. Oλi
∼= SU(3)/T for all i = 1, . . . , n.

Case 2. Oλi
∼= P2(C) for all i = 1, . . . , n.

Furthermore, we assume that the symplectic form of each coadjoint orbit represents an integral
cohomology class. More precisely, we assume that λi ∈ Λ+ for all i = 1, . . . , n, where Λ+
denotes the set of dominant integral weights of G (see Section 2, for the details).

As we will discuss in Section 2, under certain conditions on λ1, . . . , λn ∈ Λ+, we can
express vol(M) in terms of representations of G. Namely, vol(M) is equal to

V(λ1, . . . , λn) := lim
k→∞

1

kd
dimC(Vkλ1 ⊗ · · · ⊗ Vkλn)

G ,

where Vλ denotes the irreducible representation of G with the highest weight λ ∈ Λ+, and k

runs over positive integers while k goes to infinity. The number d corresponds to the complex
dimension of M, hence d = 3n − 8 (resp. d = 2n − 8) in Case 1 (resp. in Case 2). Besides,
in general, for a representation V of G, V G denotes the subspace of V consisting of all G-
invariant elements. Here, the theorem of Guillemin-Sternberg (and its generalization) on the
characteristic numbers of symplectic quotients (see, e.g. [6], [21]) plays the key role, as well
as the Borel-Weil theorem and the Hirzebruch-Riemann-Roch theorem.

Main results in this paper are the explicit formulas for V(λ1, . . . , λn) and hence for
vol(M). They are given in Theorem 4.5 and Corollary 4.9 (resp. in Theorem 5.6 and Corollary
5.9) for Case 1 (resp. for Case 2). The results are rather complicated alternating sums. Here
in this Introduction, we state only the main theorem for Case 1. The details of the notations
will be given in Section 2.

THEOREM 4.5. Let n ≥ 3 be an integer and let λi = (li − mi)ω1 + miω2 ∈ Λ+
with li > mi > 0 (i = 1, . . . , n) satisfy the assumptions (A1) and (A2) in Section 2.5. For
λ = (λ1, . . . , λn), denote by Iλ the set of 6-partition (I1, . . . , I6) of {1, . . . , n} such that

lI1,I2 + mI4,I5 <
1

3
(L + M) , lI3,I4 + mI6,I1 <

1

3
(L + M) ,

and denote by Jλ the set of (I1, . . . , I6) such that

lI3,I4 + mI6,I1 >
1

3
(L + M) , lI5,I6 + mI2,I3 >

1

3
(L + M) ,

where L = l1 + · · · + ln and M = m1 + · · · + mn. Define the functions Aλ on Iλ and Bλ on
Jλ as follows.

Aλ(I1, . . . , I6) := −(−1)|I1|+|I3|+|I5|

6(3n − 8)!
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

)
(

L + M

3
− lI3,I4 − mI6,I1

)c (
L + M

3
− lI1,I2 − mI4,I5

)3n−8−c

,
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Bλ(I1, . . . , I6) := −(−1)|I1|+|I3|+|I5|

6(3n − 8)!
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

)
(

lI3,I4 + mI6,I1 − L + M

3

)c (
lI5,I6 + mI2,I3 − L + M

3

)3n−8−c

.

Then we have

V(λ1, . . . , λn) =
∑
Iλ

Aλ(I1, . . . , I6) +
∑
Jλ

Bλ(I1, . . . , I6) .

Let us mention that a 6-partition (I1, . . . , I6) of {1, . . . , n} corresponds to an n-tuple
(w1, . . . , wn) in the Weyl group, which in turn corresponds to a fixed point for the action of
the maximal torus T of G = SU(3) on Oλ1 × · · · × Oλn . It might be interesting that each
term in the formula above is a certain value of the hypergeometric function. Corresponding

to the fact that P2(C) is a degenerate coadjoint orbit, the proof for Case 2 is technically more
complicated than that for Case 1. We indicate that a special case of Corollary 5.9 is obtained
also in [20], although the method is completely different from ours.

In [24], we will study the symplectic volume vol(M) of M in the more general setting
that G is any connected, simply connected, compact simple Lie group. The results for G =
SU(3) in this paper, as well as the previous results for G = SU(2), will provide important
examples. On the other hand, it is shown in [12] that M is identified with the moduli space of
flat G-connections over the punctured sphere, with fixed conjugacy classes for the holonomies
around the punctures. Hence we would be able to express vol(M) by the so-called Witten’s
volume formula (see, e.g. [29], [19], [22]), which is in the form of an infinite series. It is quite
different from the formula given in this paper (see the example in Section 4.2). The details
will be studied in [24], too. (We refer to [15], [27] for the case G = SU(2)).

This paper is organized as follows. In Section 2, after reviewing some generalities on
coadjoint orbits, we prove the identity vol(M) = V(λ1, . . . , λn), which allows us to re-
duce the study on vol(M) to that on asymptotic behaviors for tensor products of irreducible
representations of G. Then, we translate the problem into a combinatorial form via the rep-
resentation theory of SU(3), such as the Weyl character formula and the Weyl integration
formula. These arguments above are essentially the same with those in [25], [26] for SU(2),
and available also for a general compact Lie group G. At the end of Section 2, we clarify our
assumptions on λ1, . . . , λn.

In Section 3, we prepare a lemma on the asymptotic behavior of a certain sum consisting
of products of binomial coefficients. It is here that the hypergeometric integrals appear. In
Section 4 and 5, we state and prove our main theorems. We also consider several examples
and write down the volume formulas for them more explicitly.

ACKNOWLEDGEMENT. The authors are grateful to the referee for useful comments.
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2. Formulation of the problem

2.1. Preliminaries. We refer to [3] for the generalities on compact Lie groups and
their representations.

Let G = SU(3), g = su(3), T the standard maximal torus of G consisting of diagonal
matrices in G, and t its Lie algebra. Let g∗ and t∗ be the duals of g and t, respectively. We
denote by 〈 , 〉 the pairing between g∗ and g, or between t∗ and t. Let W ∼= S3 be the Weyl
group of G = SU(3) with respect to T . We define the AdG-invariant positive definite inner
product ( , ) on g by

(X, Y ) := − 1

4π2 TrXY (X, Y ∈ g) .

If we identify t∗ with t by means of ( , ), the action of the Weyl group W on t∗ ∼= t is given
by permutations of diagonal entries. The elements

H1 = 2π
√−1


1 0 0

0 −1 0
0 0 0


 , H2 = 2π

√−1


0 0 0

0 1 0
0 0 −1


 ,

in t are generators of the integral lattice Ker(exp : t → T ) and form a basis of t. Define
ω1, ω2 ∈ t∗ by 〈ωi,Hj 〉 = δij . Under the identification t∗ ∼= t, ω1, ω2 corresponds the
elements

Ω1 = 2π
√−1

3


2 0 0

0 −1 0
0 0 −1


 , Ω2 = 2π

√−1

3


1 0 0

0 1 0
0 0 −2


 ,

in t, respectively. Define

t∗+ := R≥0ω1 + R≥0ω2 , Λ+ := Z≥0ω1 + Z≥0ω2 ,

then t∗+ is a positive Weyl chamber and Λ+ is the associated set of dominant integral weights.
We write an element λ in t∗+ or Λ+ in the following form:

λ = (l − m)ω1 + mω2 (l ≥ m ≥ 0) .

Under the identification t∗ ∼= t, it corresponds to the element

2π
√−1

3


2l − m 0 0

0 −l + 2m 0
0 0 −l − m


 = 2π

√−1


l − l+m

3 0 0
0 m − l+m

3 0
0 0 0 − l+m

3




in t.
Irreducible representations of G are, by assigning their highest weights, in one-to-one

correspondence with elements in Λ+. Denote by Vλ the irreducible representation of G with
the highest weight λ ∈ Λ+ and by χλ : G → C the character of Vλ. When we write an
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element of T as t = diag(x, y, z) (|x| = |y| = |z| = 1, xyz = 1), the Weyl character formula
tells us that

χλ(t) = 1

(x − y)(x − z)(y − z)

∣∣∣∣∣∣
xl+2 xm+1 1
yl+2 ym+1 1
zl+2 zm+1 1

∣∣∣∣∣∣
for λ = (l − m)ω1 + mω2 ∈ Λ+.

2.2. Coadjoint orbits. Although we mainly consider the case G = SU(3), most of
the followings still hold when G is a general compact Lie group. For further details on coajoint
orbits, see, e.g. [18], [16]. We also refer to [2], [11] for the Borel-Weil Theorem.

The left coadjoint action of G on g∗ is defined by g · f := Ad∗(g−1)f for g ∈ G and
f ∈ g∗, where

〈Ad∗(g−1)f,X〉 = 〈f, Ad(g−1)X〉 ,

for X ∈ g.
If we identity g∗ with g by the inner product ( , ), the coadjoint action corresponds to the

adjoint action. We regard t∗ as a subspace of g∗ by the identification

t∗ = {f ∈ g∗ | t · f = f (∀t ∈ T )} .

Hence t∗+ and Λ+ also can be regarded as subsets in g∗. We denote by Oλ the coadjoint orbit
through λ ∈ t∗+. The intersection Oλ ∩ t∗ is the W -orbit through λ, and Oλ ∩ t∗+ consists of
the single point λ.

Let Gλ be the isotropy subgroup at λ = (l − m)ω1 + mω2 ∈ t∗+ (l,m ∈ R, l ≥ m ≥ 0)
for the coadjoint action of G = SU(3) on g∗.

(1) If l > m > 0, then Gλ = T and Oλ
∼= G/T .

(2) If l > 0,m = 0, then Gλ =




∗ 0 0

0 ∗ ∗
0 ∗ ∗


 ∈ SU(3)


 and Oλ

∼= P2(C).

(3) If l = m > 0, then Oλ
∼= P2(C) likewise.

(4) If l = m = 0, then Gλ = G and Oλ = {0}, of course.
On each coadjoint orbit Oλ, there exists a natural G-invariant symplectic structure ωλ,

called the Kirillov-Kostant-Souriau symplectic form, defined by

(ωλ)x(X̃, Ỹ ) = 〈x, [X,Y ]〉 (x ∈ Oλ, X, Y ∈ g) ,

where X̃ is the vector field on Oλ given by

X̃x := d

dt
(exp tX) · x

∣∣∣∣
t=0

.

The action of G on Oλ is Hamiltonian and the associated moment map is given by the inclu-

sion ι : Oλ ↪→ g∗, that is, we have d〈ι, X〉(·) = ωλ(X̃, ·).
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In addition, there exists a G-invariant complex structure Jλ on Oλ, which is compatible
with the symplectic structure ωλ, that is, ωλ(·, Jλ·) becomes a Riemann metric, and makes
Oλ into a Kähler manifold. Moreover, in the case that λ ∈ Λ+, there exists a G-equivariant
holomorphic line bundle Lλ over Oλ such that c1(Lλ) = [ωλ]. The Borel-Weil theorem
asserts that

H 0(Oλ, Lλ) = Vλ , H i(Oλ, Lλ) = 0 (i > 0)

as representations of G, where Hi(Oλ, Lλ) stands for the i-th cohomology group of Oλ with
coefficients in the sheaf of germs of holomorphic sections of Lλ.

REMARK 2.1. In other words, the Kähler structure on Oλ
∼= G/Gλ and the holomor-

phic line bundle Lλ are characterized as follows (see [4], [7], [11]).
The contragredient representation V ∗

λ of Vλ has the lowest weight −λ. Let v ∈ V ∗
λ

be a lowest weight vector and denote by [v] the corresponding element in P(V ∗
λ ). Then,

Oλ
∼= G/Gλ is identified with the G-orbit X through [v] in P(V ∗

λ ). Since the complexification
GC of G acts on X, X turns out to be a complex submanifold, hence a Kähler submanifold of
P(V ∗

λ ). The Kähler form ωλ and the holomorphic line bundle Lλ over Oλ are identified with
the restriction to X of the Fubini-Study Kähler form and the hyperplane bundle over P(V ∗

λ ),
respectively.

REMARK 2.2. (1) For k ∈ R>0 and λ ∈ t∗+, Okλ and Oλ are the same as complex
manifolds. If we compare the symplectic forms under this identification, we have ωkλ = kωλ.

In the case k ∈ Z>0 and λ ∈ Λ+, we have Lkλ = L⊗k
λ .

(2) For λ ∈ Λ+, the action on Oλ of the center Z(G) ∼= Z/3Z of G = SU(3) is trivial,
while those on Lλ and Vλ is not trivial in general. However, if we replace λ with 3λ, then
these actions become trivial, too.

2.3. Symplectic quotient of a direct product of coadjoint orbits. See, e.g. [1], [7],
[17], [23], for general properties of symplectic and Kähler quotients. The following still hold
for a general compact Lie group G.

Let λ1, . . . , λn ∈ t∗+. The diagonal action of G on the direct product Oλ1 × · · · ×Oλn is
also Hamiltonian and the moment map Φ : Oλ1×· · ·×Oλn → g∗ is given by Φ(x1, . . . , xn) =
x1 + · · · + xn. Consider the symplectic (or Kähler) quotient

M(λ1, . . . , λn) : = Φ−1(0)/G

= {(x1, . . . , xn) ∈ Oλ1 × · · · × Oλn | x1 + · · · + xn = 0}/G .

We often set λ = (λ1, . . . , λn) for brevity, and write M(λ1, . . . , λn) as M(λ) or simply as
M. We assume that

(a0) Φ−1(0) 
= ∅,
(a1) 0 is a regular value of the moment map Φ, and M(λ) is a smooth manifold.

Then there exist a natural symplectic structure ωM(λ) and a compatible complex structure on
M(λ), induced from Oλ1 × · · · × Oλn , which make M(λ) a Kähler manifold.
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In the following, we suppose λ1, . . . , λn ∈ Λ+. Let Lλi be the G-equivariant holomor-
phic line bundle over Oλi as in Section 2.2 and let

L(λi) := (pr∗i Lλi |Φ−1(0))/G , L(λ) := (Lλ1 � · · · � Lλn |Φ−1(0))/G ,

where pri : Oλ1 ×· · ·×Oλn → Oλi is the i-th projection and Lλ1 �· · · �Lλn = ⊗n
i=1 pr∗i Lλi .

By (a1), the isotropy subgroup at each point in Φ−1(0) is a finite group. Since its action
on pr∗i Lλi , Lλ1 � · · · � Lλn may not be trivial, L(λi) and L(λ) are orbifold holomorphic line
bundles over M(λ), in general. We assume that

(a2) L(λi) is a genuine holomorphic line bundle over M(λ) for all i = 1, . . . , n.
Then we have L(λ) = L(λ1) ⊗ · · · ⊗ L(λn) and c1(L(λ)) = c1(L(λ1)) + · · · + c1(L(λn)) =
[ωM(λ)].

REMARK 2.3. (1) It seems to be interesting to describe completely in terms of λ =
(λ1, . . . , λn) the necessary and sufficient condition in order that the assumptions (a0)–(a2) for
M(λ) and L(λ) hold. Although we do not pursue this problem in this paper, we will give
certain conditions on λ in Section 2.5, which are closely related to (a1) and (a2).

(2) It would be also an interesting problem, to see how the topology of (M(λ), ωM(λ))

changes as λ varies. We will not discuss it in this paper, either. But in connection with it, we
mention that the Lemma 2.1 in [26] by the second author is incorrect, where the change of
[ωM(λ)] under small deformation of λ is considered in the case G = SU(2). He would like
to thank J-C. Hausmann for noticing it to him. We refer to [9] for a correct argument.

Now, in general, define χ(M,L) := ∑
(−1)iH i(M,L) as a virtual vector space for

a compact complex manifold M and a holomorphic line bundle L over M . Our aim
is to study the characteristic number dimC χ(M(λ),L(λ)) and the symplectic volume

vol(M(λ)) = ∫
M(λ)

(ωM(λ))
d

d ! of M(λ), where d = d(λ) is the complex dimension of

M(λ), that is, d(λ) = 1
2

∑n
i=1 dimR G/Gλi − dimR G. The volume vol(M(λ)) is particu-

larly interesting, since it contains much information on the cohomology intersection pairings∫
M

c1(L(λ1))
d1 · · · c1(L(λn))

dn (d1 + · · · + dn = d).

REMARK 2.4. (1) As in Remark 2.2, M(kλ) = M(λ) as manifolds and ωM(kλ) =
kωM(λ) for k ∈ R>0 and λ ∈ t∗+. In particular, it follows that vol(M(kλ)) = kd · vol(M(λ)).

In the case k ∈ Z>0 and λ ∈ Λ+, we have L(kλ) ∼= L(λ)⊗k .
(2) Even if λ ∈ (Λ+)n does not satisfy (a2), cλ does satisfy (a2) for some positive

integer c. Hence, as far as the symplectic volume vol(M(λ)) is concerned, we can assume
(a2) without loss of generality.

PROPOSITION 2.5. Suppose that λ = (λ1, . . . , λn) ∈ (Λ+)n satisfies (a0), (a1), and
(a2). Then we have

(1) χ(M(λ),L(λ)) = (Vλ1 ⊗ · · · ⊗ Vλn)
G,

(2) vol(M(λ)) = limk→∞ 1
kd · dimC(Vkλ1 ⊗ · · · ⊗ Vkλn)

G,



8 TARO SUZUKI AND TATSURU TAKAKURA

where for a representation V of G define V G := {v ∈ V | g · v = v (∀g ∈ G)}. In (2) k runs
over positive integers while going to infinity.

PROOF. (1) In general, if a group G acts holomorphically on X and L is G-
equivariant, we can regard χ(X,L) as a virtual representation of G. The theorem of
Guillemin-Sternberg and its generalization (see, e.g. [6], [21]) tells us in our situation that

χ(M(λ),L(λ)) = χ(Oλ1 × · · · × Oλn, Lλ1 � · · · � Lλn)
G.

By the multiplicative property of χ (see the appendix in [10]）and the Borel-Weil theorem,
we have

RHS = (χ(Oλ1, Lλ1) ⊗ · · · ⊗ χ(Oλn, Lλn))
G = (Vλ1 ⊗ · · · ⊗ Vλn)

G .

(2) By the Hirzebruch-Riemann-Roch theorem, we have

dimC χ(M,L) =
∫

M

ch(L)td(M) =
∫

M

ec1(L)td(M)

for a compact complex manifold M and a holomorphic line bundle L over M , where ch(L) is
the Chern character of L and td(M) is the Todd class of M . It follows that

lim
k→∞

1

kd
· dimC χ(M,L⊗k) = lim

k→∞

∫
M

ekc1(L)

kd
td(M) =

∫
M

c1(L)d

d! .

Hence we have

vol(M(λ)) = lim
k→∞

1

kd
· dimC χ(M(λ),L(λ)⊗k) .

Now, it follows from Remark 2.3 and (1) that

χ(M(λ),L(λ)⊗k) = χ(M(kλ),L(kλ)) = (Vkλ1 ⊗ · · · ⊗ Vkλn)
G .

This completes the proof of (2). �

REMARK 2.6. More generally, for a Lie subgroup U of G such that T ⊂ U ⊂ G, we
may consider the corresponding invariants for the symplectic quotient of Oλ1 × · · · ×Oλn by

the action of U . In this case, we should study dimC
(
Vλ1 ⊗ · · · ⊗ Vλn

)U and its asymptotic
behavior.

2.4. Combinatorial Interpretation

DEFINITION 2.7. For λ1, . . . , λn ∈ Λ+, define

Q(λ1, . . . , λn) := dimC
(
Vλ1 ⊗ · · · ⊗ Vλn

)G
,

V(λ1, . . . , λn) := lim
k→∞

1

kd
· dimC(Vkλ1 ⊗ · · · ⊗ Vkλn)

G ,

where d = d(λ1, . . . , λn) := 1
2

∑n
i=1 dimR G/Gλi − dimR G.
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Our purpose hereafter is to express these quantities as concrete as possible, and in par-
ticular to give an explicit formula for V(λ1, . . . , λn). The assumptions on λ1, . . . , λn will
be discussed in Section 2.5. Here, we prove a proposition that describes Q(λ1, . . . , λn) =
dimC

(
Vλ1 ⊗ · · · ⊗ Vλn

)SU(3) in a combinatorial fashion.
For λ = (l − m)ω1 + mω2 ∈ Λ+, define

Dλ(x, y, z) :=
∣∣∣∣∣∣
xl+2 xm+1 1
yl+2 ym+1 1
zl+2 zm+1 1

∣∣∣∣∣∣ , D0(x, y, z) := (x − y)(x − z)(y − z) .

Recall that the character χλ of the irreducible representation Vλ of G = SU(3) is given by

χλ(t) = Dλ(x, y, z)

D0(x, y, z)
,

for t = diag(x, y, z) ∈ T .

PROPOSITION 2.8. Let λ = (λ1, . . . , λn) ∈ (Λ+)n. We write λi = (li −mi)ω1+miω2

(i = 1, . . . , n) and let L = l1 + · · · + ln and M = m1 + · · · + mn. Then Q(λ) =
dimC

(
Vλ1 ⊗ · · · ⊗ Vλn

)SU(3)
is equal to the coefficient of x

L+M+6
3 y

L+M+6
3 z

L+M+6
3 in the poly-

nomial

Fλ(x, y, z) := −1

6
Dλ1(x, y, z) · · ·Dλn(x, y, z) · D0(x, y, z)−n+2 .

PROOF. Denote by dµG, dµT the normalized invariant measures on G, T , respectively.
By the Weyl integration formula, we obtain

dimC
(
Vλ1 ⊗ · · · ⊗ Vλn

)G =
∫

G

χλ1(g) · · · χλn(g)dµG

= 1

6

∫
T

χλ1(t) · · · χλn(t)|D0(t)|2dµT

= −1

6

∫
T

χλ1(t) · · · χλn(t)D0(t)
2dµT .

Now if we write an element of T as t = diag(t1, t
−1
1 t2, t

−1
2 ), then dµT = dt1

2π
√−1t1

dt2
2π

√−1t2
.

Hence the above integral equals the coefficient of t0
1 t0

2 , that is, the constant term in

Fλ(t1, t
−1
1 t2, t

−1
2 ).

On the other hand, Fλ(x, y, z) is a homogeneous polynomial of x, y, z of degree L +
M + 6. By substituting x = t1, y = t−1

1 t2, z = t−1
2 into xaybzc, we have

xaybzc = ta−b
1 tb−c

2 ,

which coincides with t0
1 t0

2 if and only if a = b = c = L+M+6
3 . �



10 TARO SUZUKI AND TATSURU TAKAKURA

REMARK 2.9. (1) If L + M /∈ 3Z, then dimC
(
Vλ1 ⊗ · · · ⊗ Vλn

)SU(3) = 0.

(2) Similarly, dimC(Vλ1 ⊗ · · · ⊗ Vλn)
T is equal to the coefficient of x

L+M+6
3 y

L+M+6
3

z
L+M+6

3 in Dλ1(x, y, z) · · ·Dλn(x, y, z) · D0(x, y, z)−n.

See Sections 4 and 5, for the more explicit description of Q(λ1, . . . , λn), which is a
complicated alternating sum of products of several binomial coefficients.

2.5. Assumptions on the weights. Let λi = (li−mi)ω1+miω2 ∈ Λ+ (i = 1, . . . , n).
For further investigations of Q(λ1, . . . , λn) and V(λ1, . . . , λn), we restrict ourselves to the
following two cases.

Case 1. n ≥ 3 and li > mi > 0 for all i = 1, . . . , n.
Case 2. n ≥ 5 and li > mi = 0 for all i = 1, . . . , n.

In Case 1 we have Oλi
∼= G/T and d(λ1, . . . , λn) = 3n − 8, while in case Case 2 we have

Oλi
∼= P2(C) and d(λ1, . . . , λn) = 2n − 8.
Moreover, we introduce the following assumptions (A1) and (A2) on λ1, . . . , λn ∈ Λ+,

which are closely related to (a1) and (a2) in Seciton 2.3. Recall that we set

Ω1 = 2π
√−1

3


2 0 0

0 −1 0
0 0 −1


 .

(A1) 〈w1λ1 + · · · + wnλn,Ω1〉 
= 0 for any w1, . . . , wn ∈ W .
(A2) λ1, . . . , λn ∈ 3Λ+ = 3Z≥0ω1 + 3Z≥0ω2.

REMARK 2.10. (1) In this paper, we do not discuss the condition (a0) that guaran-
tees that M(λ) 
= ∅. Hence in the following, Q(λ1, . . . , λn) and V(λ1, . . . , λn) might become
0.

(2) Actually, we could do without assuming (A1), to obtain the final formula for
V(λ1, . . . , λn) (see Remark 4.7 and 5.8).

(3) The condition that

w1λ1 + · · · + wnλn 
= 0 for any w1, . . . , wn ∈ W ,

which is weaker than (A1), follows from (a1). In fact, if w1λ1 + · · · + wnλn = 0, then the
isotropy subgroup at (w1λ1, . . . , wnλn) ∈ Φ−1(0) contains T and is not a finite group. Thus
0 is not a regular value of the moment map Φ.

(4) If the isotropy subgroup at each point in Φ−1(0) is the center Z(G) ∼= Z/3Z of
G = SU(3), (A2) implies (a2). As we noted in Remark 2.4(3), as far as the symplectic
volume vol(M(λ)) is concerned, we may assume (A2) without loss of generality.

(5) Even if we replace (A2) with a weaker assumption such as
• li + mi ∈ 3Z>0 for all i = 1, . . . , n, or
• L + M ∈ 3Z>0,

the arguments in Section 4 and 5 will work as well.
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Before closing this section, we translate the condition (A1) into a more concrete form.
Let L = l1 + · · · + ln, M = m1 + · · · + mn. For a subset I of {1, . . . , n}, let us denote

lI =
∑
i∈I

li , mI =
∑
i∈I

mi .

Moreover, for two disjoint subsets I, J of {1, . . . , n}, we write

lI,J = lI + lJ =
∑

i∈I∪J

li , mI,J = mI + mJ =
∑

i∈I∪J

mi ,

for brevity.

DEFINITION 2.11. A sequence (I1, . . . , Ip) of p-subsets I1, . . . , Ip in {1, . . . , n} is
called a p-partition of {1, . . . , n}, if I1 ∪ · · · ∪ Ip = {1, . . . , n} and Ij ∩ Ik = ∅ (j 
= k).

LEMMA 2.12. Let λi = (li − mi)ω1 + miω2 ∈ Λ+ (i = 1, . . . , n). The condition
(A1) means that

lJ1 + mJ2 
= L + M

3

for any pair (J1, J2) of two disjoint subsets of {1, . . . , n}. It is also equivalent to the condition
that

lI1,I2 + mI4,I5 
= L + M

3
and lI3,I4 + mI6,I1 
= L + M

3
and lI5,I6 + mI2,I3 
= L + M

3

for every 6-partition (I1, . . . , I6) of {1, . . . , n}.
PROOF. Recall that under the identification t∗ ∼= t, λ = (l − m)ω1 + mω2 becomes

λ = 2π
√−1


l − l+m

3 0 0
0 m − l+m

3 0
0 0 0 − l+m

3




and the action of the Weyl group W is given by the permutation of the diagonal entries. Let s1

(resp. s2) be the transposition between (1, 1) and (2, 2) entries (resp. (2, 2) and (3, 3) entries).
We enumerate all elements in W as follows:

σ1 = id , σ2 = s2 , σ3 = s1 ◦ s2 , σ4 = s1 , σ5 = s2 ◦ s1 , σ6 = s1 ◦ s2 ◦ s1 .

Given w1, . . . , wn ∈ W , let Ij = {i ∈ {1, . . . , n} | wi = σj } for j = 1, . . . , 6. Then
(I1, . . . , I6) is a 6-partition of {1, . . . , n} and we observe

w1λ1 + · · · + wnλn

= 2π
√−1


lI1,I2 + mI4,I5 − L+M

3 0 0
0 lI3,I4 + mI6,I1 − L+M

3 0
0 0 lI5,I6 + mI2,I3 − L+M

3


 ,
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〈w1λ1 + · · · + wnλn,Ω1〉 = lI1,I2 + mI4,I5 − L + M

3
.

It follows from (A1) that lI1,I2 + mI4,I5 
= L+M
3 . Since (I1 ∪ I2, I4 ∪ I5) represents any

pair of disjoint two subsets of {1, . . . , n}, we obtain the first statement. The second one is
obvious. �

REMARK 2.13. It follows from the proof that a 6-partition (I1, . . . , I6) of {1, . . . , n}
corresponds to an n-tuple (w1, . . . , wn) in the Weyl group W , which in turn corresponds to a
fixed point for the action of T on Oλ1 × · · · × Oλn (see Section 2.2).

3. A lemma

In this section, we prove a lemma on the asymptotic behavior of a certain sum consisting
of products of three binomial coefficients.

Let p, q, r ∈ Z>0, u, v,w ∈ Z, and α, β ∈ Z≥0. If β ≥ α, define

A := lim
k→∞

1

kp+q+r+1

kα+v∑
j=0

(
j + u

p

)(
kα − j + v

q

)(
kβ − j + w

r

)

and if α ≥ β, define

B := lim
k→∞

1

kp+q+r+1

kβ+w∑
j=0

(
j + u

p

)(
kα − j + v

q

)(
kβ − j + w

r

)
.

LEMMA 3.1. (1) If β > α > 0, then we have

A = 1

p!q!r!
∫ α

0
xp(α − x)q(β − x)rdx

= 1

(p + q + r + 1)!
r∑

c=0

(
p + q + r + 1

c

)(
q + r − c

q

)
αp+q+r+1−c(β − α)c .

(2) If α > β > 0, then we have

B = 1

p!q!r!
∫ β

0
xp(α − x)q(β − x)rdx

= 1

(p + q + r + 1)!
q∑

c=0

(
p + q + r + 1

c

)(
q + r − c

r

)
(α − β)cβp+q+r+1−c .

PROOF. (1) For polynomials f (k), g(k) on k, let us write as f (k) ∼ g(k) if the top
degree terms of them are equal. It follows that

αk+v∑
j=0

(
j + u

p

)(
kα − j + v

q

)(
kβ − j + w

r

)
∼

αk+v∑
j=0

jp

p!
(kα − j)q

q!
(kβ − j)r

r!
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= kp+q+r+1

p!q!r!
αk+v∑
j=0

(
j

k

)p (
α − j

k

)q (
β − j

k

)r

· 1

k
,

which implies that

A = 1

p!q!r!
∫ α

0
xp(α − x)q(β − x)rdx .

After expanding the third factor in the integrand as

(β − x)r = (β − α + α − x)r =
r∑

c=0

(
r

c

)
(β − α)c(α − x)r−c ,

the second equality in (1) follows from the following.∫ α

0
xp(α − x)q+r−cdx = αp+q+r+1−c p!(q + r − c)!

(p + q + r + 1 − c)! .

The proof of (2) is similar. �

REMARK 3.2. Let F(a, b; c; z) be the hypergeometric function. Recall that

F(a, b; c; z) = Γ (c)

Γ (b)Γ (c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt ,

if Re c > Re b > 0 (see, e.g. [28]). We can express A and B as certain values of the
hypergeometric function as follows.

A = αp+q+1βr

(p + q + 1)!r! · F

(
−r, p + 1; p + q + 2; α

β

)

B = αqβp+r+1

q!(p + r + 1)! · F

(
−q, p + 1; p + r + 2; β

α

)

Note that F(−r, p + 1; p + q + 2; z) and F(−q, p + 1; p + r + 2; z) are polynomials of z,
called the Jacobi polynomials.

REMARK 3.3. In (1) let us denote

I = 1

p!q!r!
∫ α

0
xp(α − x)q(β − x)rdx ,

J = 1

(p + q + r + 1)!
r∑

c=0

(
p + q + r + 1

c

)(
q + r − c

q

)
αp+q+r+1−c(β − α)c .

If α = 0, then A = I = J = 0. If α = β, then

A = I = J = αp+q+r+1

(p + q + r + 1)!
(

q + r

q

)
,
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where it is supposed that 00 = 1 in J . Thus, the identities in (1) still hold when β ≥ α ≥ 0.
Similarly, the identities in (2) still hold when α ≥ β ≥ 0.

4. Quotient of product of flag manifolds of SU(3)

4.1. Main Theorem 1. In this section we consider Case 1. Namely, let n ≥ 3 be an
integer and let λi = (li − mi)ω1 + miω2 ∈ Λ+ with li > mi > 0 (i = 1, . . . , n) such that the
assumption (A1) and (A2) in Section 2.5 hold. The aim is to obtain an explicit formula for

V(λ1, . . . , λn) = lim
k→∞

1

k3n−8
dimC

(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)
.

In fact, as we will see in Remark 4.7, we could do without assuming (A1) to obtain the final
formula for V(λ1, . . . , λn). However, in order to avoid redundant arguments we keep the
assumption (A1) unless otherwise stated.

Let us begin with the presentation of Q(kλ1, . . . , kλn) = dimC(Vkλ1 ⊗· · ·⊗Vkλn)
SU(3).

LEMMA 4.1. Let λi = (li − mi)ω1 + miω2 ∈ Λ+ (i = 1, . . . , n) be as above and let
L = l1 + · · · + ln, M = m1 + · · · + mn. Then we have

dimC
(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)

= −1

6

∑
I1,...,I6
j1,j2,j3

(−1)|I2|+|I4|+|I6|+j1+j2+j3

(−n + 2

j1

)(−n + 2

j2

)(−n + 2

j3

)
,

where the sum is taken over all 6-partitions (I1, . . . , I6) of {1, . . . , n} and all j1, j2, j3 ∈ Z≥0

such that


k
(
lI1,I2 + mI4,I5 − L+M

3

) + 2|I1| + 2|I2| + |I4| + |I5| + j1 + j2 − 2 = 0 ,

k
(
lI3,I4 + mI6,I1 − L+M

3

) + 2|I3| + 2|I4| + |I6| + |I1| − j1 + j3 − n = 0 ,

k
(
lI5,I6 + mI2,I3 − L+M

3

) + 2|I5| + 2|I6| + |I2| + |I3| − j2 − j3 − 2n + 2 = 0 .

(4.2)

Here, for a subset I of {1, . . . , n}, |I | denotes the cardinality of I .

PROOF. According to Proposition 2.8, dimC
(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)
is equal to the

coefficient of x
k(L+M)+6

3 y
k(L+M)+6

3 z
k(L+M)+6

3 in

Fkλ(x, y, z) = −1

6
Dkλ1(x, y, z) · · ·Dkλn(x, y, z) · D0(x, y, z)−n+2 .

Although Fkλ(x, y, z) is a polynomial on x, y, z, we expand it to a power series on the domain
|x| < |y| < |z|. Since

Dkλi (x, y, z) = xkli+2ykmi+1 − zkmi+1xkli+2 + ykli+2zkmi+1

− xkmi+1ykli+2 + zkli+2xkmi+1 − ykmi+1zkli+2 ,
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we have
n∏

i=1

Dkλi (x, y, z) =
∑

I1,...,I6

∏
i∈I1

(xkli+2ykmi+1)
∏
i∈I2

(−zkmi+1xkli+2)
∏
i∈I3

(ykli+2zkmi+1)

∏
i∈I4

(−xkmi+1ykli+2)
∏
i∈I5

(zkli+2xkmi+1)
∏
i∈I6

(−ykmi+1zkli+2)

=
∑

I1,...,I6

(−1)|I2|+|I4|+|I6|xk(lI1,I2 +mI4,I5 )+2|I1|+2|I2|+|I4|+|I5|

yk(lI3,I4 +mI6,I1 )+2|I3|+2|I4|+|I6|+|I1|

zk(lI5,I6+mI2,I3 )+2|I5|+2|I6|+|I2|+|I3| .

See Section 2.5 for the symbol lI1,I2 etc. Since the binomial theorem shows that

D0(x, y, z)−n+2 = (x − y)−n+2(x − z)−n+2(y − z)−n+2

=
∑

j1,j2,j3

(−1)−3n+6−j1−j2−j3

(−n + 2

j1

)(−n + 2

j2

)(−n + 2

j3

)
xj1+j2y−n+2−j1+j3z−2n+4−j2−j3 ,

where j1, j2, j3 ∈ Z≥0, we see that

Fkλ(x, y, z) = −1

6

∑
I1,...,I6
j1,j2,j3

(−1)|I1|+|I3|+|I5|+j1+j2+j3

(−n + 2

j1

)(−n + 2

j2

)(−n + 2

j3

)

xk(lI1,I2 +mI4,I5 )+2|I1|+2|I2|+|I4|+|I5|+j1+j2

yk(lI3,I4 +mI6,I1 )+2|I3|+2|I4|+|I6|+|I1|−j1+j3−n+2

zk(lI5,I6+mI2,I3 )+2|I5|+2|I6|+|I2|+|I3|−j2−j3−2n+4 .

Note that |I1|+ · · ·+ |I6| = n. By considering the term of x
k(L+M)+6

3 · y k(L+M)+6
3 z

k(L+M)+6
3 , we

obtain (4.2). �

Under the assumption (A1), Lemma 2.12 shows

lI1,I2 + mI4,I5 
= L + M

3
, lI3,I4 + mI6,I1 
= L + M

3
, lI5,I6 + mI2,I3 
= L + M

3

for any 6-partition (I1, . . . , I6). Obviously, we have lI1,I2 + lI3,I4 + lI5,I6 = L and mI4,I5 +
mI6,I1 + mI2,I3 = M .

LEMMA 4.3. Let us fix a sufficiently large k ∈ Z>0. There exist j1, j2, j3 ∈ Z≥0 such
that (4.2) hold if and only if (I1, . . . , I6) satisfies

lI1,I2 + mI4,I5 <
L + M

3
, lI5,I6 + mI2,I3 >

L + M

3
.
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In such a case, j1, j3 are determined by (I1, . . . I6) and j2, while the range of j2 is given as
follows.

(1) If
L + M

3
− lI1,I2 − mI4,I5 < lI5,I6 + mI2,I3 − L + M

3
, i.e. lI3,I4 + mI6,I1 <

L + M

3
,

0 ≤ j2 ≤ k

(
L + M

3
− lI1,I2 − mI4,I5

)
− 2|I1| − 2|I2| − |I4| − |I5| + 2 .

(2) If
L + M

3
− lI1,I2 − mI4,I5 > lI5,I6 + mI2,I3 − L + M

3
, i.e. lI3,I4 + mI6,I1 >

L + M

3
,

0 ≤ j2 ≤ k

(
lI5,I6 + mI2,I3 − L + M

3

)
+ 2|I5| + 2|I6| + |I2| + |I3| − 2n + 2 .

PROOF. It follows from (4.2) that


j1 = k
(

L+M
3 − lI1,I2 − mI4,I5

) − j2 − 2|I1| − 2|I2| − |I4| − |I5| + 2 ,

j3 = k
(
lI5,I6 + mI2,I3 − L+M

3

) − j2 + 2|I5| + 2|I6| + |I2| + |I3| − 2n + 2 .

Hence j1 and j3 are determined by (I1, . . . I6) and j2. The conditions j1 ≥ 0 and j3 ≥ 0
imply that


j2 ≤ k

(
L+M

3 − lI1,I2 − mI4,I5

) − 2|I1| − 2|I2| − |I4| − |I5| + 2 ,

j2 ≤ k
(
lI5,I6 + mI2,I3 − L+M

3

) + 2|I5| + 2|I6| + |I2| + |I3| − 2n + 2 .

There exists j2 ∈ Z≥0 satisfying the above for k � 0, if and only if

L + M

3
− lI1,I2 − mI4,I5 > 0 , lI5,I6 + mI2,I3 − L + M

3
> 0 .

�

Now, for a 6-partition (I1, . . . , I6) which satisfies the condition in Lemma 4.3, define

Ckλ(I1, . . . , I6) : =
∑
j2

(−1)j1+j2+j3

(−n + 2

j1

)(−n + 2

j2

)(−n + 2

j3

)

=
∑
j2

(
j1 + n − 3

n − 3

)(
j2 + n − 3

n − 3

)(
j3 + n − 3

n − 3

)

=
∑
j2

(
j2 + n − 3

n − 3

)

(
k

(
L+M

3 − lI1,I2 − mI4,I5

)
− j2 − 2|I1| − 2|I2| − |I4| − |I5| + n − 1

n − 3

)
(

k
(
lI5,I6 + mI2,I3 − L+M

3

)
− j2 + 2|I5| + 2|I6| + |I2| + |I3| − n − 1

n − 3

)
,
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where the range of j2 is as in Lemma 4.3.
By applying Lemma 3.1 to Ckλ(I1, . . . , I6), we obtain the following.

LEMMA 4.4. (1) If lI3,I4 + mI6,I1 < L+M
3 ,

lim
k→∞

1

k3n−8
· Ckλ(I1, . . . , I6)

= 1

(3n − 8)!
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

)
(

L + M

3
− lI3,I4 − mI6,I1

)c (
L + M

3
− lI1,I2 − mI4,I5

)3n−8−c

.

(2) If lI3,I4 + mI6,I1 > L+M
3 ,

lim
k→∞

1

k3n−8 · Ckλ(I1, . . . , I6)

= 1

(3n − 8)!
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

)
(

lI3,I4 + mI6,I1 − L + M

3

)c (
lI5,I6 + mI2,I3 − L + M

3

)3n−8−c

.

Combining all the results above, we obtain the following explicit formula for

V(λ1, . . . , λn) = lim
k→∞

1

k3n−8
dimC

(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)
.

THEOREM 4.5. Let n ≥ 3 be an integer and let λi = (li − mi)ω1 + miω2 ∈ Λ+ with
li > mi > 0 (i = 1, . . . , n) satisfy (A1) and (A2). For λ = (λ1, . . . , λn), denote by Iλ the set
of all 6-partitions (I1, . . . , I6) such that

lI1,I2 + mI4,I5 <
1

3
(L + M) , lI3,I4 + mI6,I1 <

1

3
(L + M)

and denote by Jλ the set of all (I1, . . . , I6) such that

lI3,I4 + mI6,I1 >
1

3
(L + M) , lI5,I6 + mI2,I3 >

1

3
(L + M) .

Define the functions Aλ on Iλ and Bλ on Jλ as follows.

Aλ(I1, . . . , I6) := −(−1)|I1|+|I3|+|I5|

6(3n − 8)!
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

)
(

L + M

3
− lI3,I4 − mI6,I1

)c (
L + M

3
− lI1,I2 − mI4,I5

)3n−8−c

,
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Bλ(I1, . . . , I6) := −(−1)|I1|+|I3|+|I5|

6(3n − 8)!
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

)
(

lI3,I4 + mI6,I1 − L + M

3

)c (
lI5,I6 + mI2,I3 − L + M

3

)3n−8−c

.

Then we have

V(λ1, . . . , λn) =
∑
Iλ

Aλ(I1, . . . , I6) +
∑
Jλ

Bλ(I1, . . . , I6) . (4.6)

REMARK 4.7. It follows from Remark 3.3 that even if λ1, . . . , λn do not satisfy (A1),
V(λ1, . . . , λn) is given by the same formula (4.6), by replacing the definitions of Iλ and Jλ

with

Iλ =
{
(I1, . . . , I6)

∣∣∣∣ lI1,I2 + mI4,I5 ≤ L + M

3
, lI3,I4 + mI6,I1 ≤ L + M

3

}
,

Jλ =
{
(I1, . . . , I6)

∣∣∣∣ lI3,I4 + mI6,I1 ≤ L + M

3
, lI5,I6 + mI2,I3 ≤ L + M

3

}
.

REMARK 4.8. According to Remark 2.9(2), we obtain in the same manner the corre-
sponding formula for

1

kd ′ · dimC(Vkλ1 ⊗ · · · Vkλn)
T ,

where d ′ = 3n − 2.

Now, Remark 2.4 and Proposition 2.5 tell us that the following hold.

COROLLARY 4.9. Let n ≥ 3 be an integer and let λi = (li − mi)ω1 + miω2 ∈ t∗+
with li , mi ∈ Q and li > mi > 0 (i = 1, . . . , n). Suppose that M(λ1, . . . , λn) satisfies the
assumptions (a0) and (a1) in Section 2.3. Then vol(M(λ1, . . . , λn)) is given by the right hand
side of (4.6).

REMARK 4.10. Although our method has been quite combinatorial, the data appear-
ing in the formula above have geometric meanings, of course. It might be interesting to
consider the meaning of each term in (4.6), in connection with the residue formula in [13] and
with the results in [20].

4.2. Example 1. As a typical example, let us consider the case λi = mi(ω1 + ω2),
where mi ∈ 3Z>0. Since li = 2mi and L = 2M , (A1) means that

2mI1,I2 + mI4,I5 
= M , 2mI3,I4 + mI6,I1 
= M , 2mI5,I6 + mI2,I3 
= M ,

namely,

mI1,I2 
= mI3,I6 , mI3,I4 
= mI2,I5 , mI5,I6 
= mI1,I4
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for any 6-partition (I1, . . . , I6) of {1, . . . , n}. Thus we assume that mI 
= mJ , for any disjoint
subsets I, J ⊂ {1, . . . , n}. Then we have

Iλ = {(I1, . . . , I6) | mI1,I2 < mI3,I6 , mI3,I4 < mI2,I5} ,

Jλ = {(I1, . . . , I6) | mI3,I4 > mI2,I5 , mI5,I6 > mI1,I4}
and

− 6(3n − 8)! · V(λ1, . . . , λn)

=
∑
Iλ

(−1)|I1|+|I3|+|I5|
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

) (
mI2,I5 − mI3,I4

)c (
mI3,I6 − mI1,I2

)3n−8−c

+
∑
Jλ

(−1)|I1|+|I3|+|I5|
n−3∑
c=0

(
3n − 8

c

)(
2n − 6 − c

n − 3

) (
mI3,I4 − mI2,I5

)c (
mI5,I6 − mI1,I4

)3n−8−c
.

Note that (A1) is not satisfied when m1 = · · · = mn. However, the same formula holds by

Remark 4.7, which would be written as a sum over (|I1|, . . . , |I6|) ∈ (Z≥0)
6 (see an analogous

example in Section 5.2).

REMARK 4.11. As we will investigate in [24], there is another formula for
V(λ1, . . . , λn), which is quite different from the one given in Theorem 4.5. For example,
let λi = mi(ω1 + ω2) with mi ∈ 3Z>0 be as above. Then the following holds.

V(λ1, . . . , λn)= 26

π2 ·
(

2M

π

)3n−8 ∑
c,d∈Z≥0

∏n
i=1

(
sin πmi(c+1)

2M
sin πmi(d+1)

2M
sin πmi(c+d+2)

2M

)
((c + 1)(d + 1)(c + d + 2))n−2 .

This corresponds to the so-called Witten’s volume formula in 2-dimensional gauge theory
(see, e.g. [29], [19], [22]). In fact, it is shown in [12] that M(λ1, . . . , λn) is identified with the
moduli space of flat G-connections over the n-punctured sphere, with fixed conjugacy classes
for the holonomies around the punctures. We refer to [15], [27] for the case G = SU(2).

5. Quotient of product of projective planes

5.1. Main Theorem 2. In this section, we study Case 2. Suppose that n ≥ 5 is
an integer and λi = liω1 ∈ Λ+ (i = 1, . . . , n) satisfy (A1) and (A2). Let us consider

dimC
(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)
, where k ∈ Z>0, and

V(λ1, . . . , λn) = lim
k→∞

1

k2n−8 dimC
(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)
.

LEMMA 5.1. Let λi = liω1 ∈ Λ+ (i = 1, . . . , n) be as above and let L = l1+· · ·+ln.
Then we have

dimC
(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)
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= −1

6

∑
I1,I2,I3
j1,j2,j3

(−1)|I2|+j1+j2+j3

(|I1| − n + 2

j1

)(|I2| − n + 2

j2

)(|I3| − n + 2

j3

)
,

where the sum is taken over all 3-partitions (I1, I2, I3) of {1, . . . , n} and all j1, j2, j3 ∈ Z≥0

such that 


k(lI1 − L
3 ) + 2|I1| + j2 + j3 − 2 = 0 ,

k(lI2 − L
3 ) + 2|I2| + |I3| + j1 − j3 − n = 0 ,

k(lI3 − L
3 ) + 2|I3| + |I1| + |I2| − j1 − j2 − 2n + 2 = 0 .

(5.2)

Fix a sufficiently large k ∈ Z>0. Then there exist j1, j2, j3 ∈ Z≥0 as in (5.2) if and only if
(I1, I2, I3) satisfies

lI1 <
L

3
, lI3 >

L

3
.

PROOF. As in the preceding section, we consider the coefficient of x
kL+6

3 · y kL+6
3 · z kL+6

3

in

Fkλ(x, y, z) = −1

6
Dkλ1(x, y, z) · · ·Dkλn(x, y, z) · D0(x, y, z)−n+2 .

Since

Dkλi (x, y, z) = xkli+2y − zxkli+2 + ykli+2z − xykli+2 + zkli+2x − yzkli+2

= xkli+2(y − z) − ykli+2(x − z) + zkli+2(x − y) ,

we have
n∏

i=1

Dkλi (x, y, z) =
∑

I1,I2,I3

∏
i∈I1

(xkli+2(y − z))
∏
i∈I2

(−ykli+2(x − z))
∏
i∈I3

(zkli+2(x − y))

=
∑

I1,I2,I3

(−1)|I2|xklI1+2|I1|yklI2+2|I2|zklI3+2|I3|(x−y)|I3|(x−z)|I2|(y−z)|I1| .

By expanding D0(x, y, z)−n+2 = (x − y)−n+2(x − z)−n+2(y − z)−n+2 to a power series on
the domain |x| < |y| < |z|, we obtain

Fkλ(x, y, z) = −1

6

∑
I1,I2,I3

(−1)|I2|xklI1+2|I1|yklI2+2|I2|zklI3+2|I3|

(x − y)|I3|−n+2(x − z)|I2|−n+2(y − z)|I1|−n+2

= −1

6

∑
I1,I2,I3
j1,j2,j3

(−1)|I2|+j1+j2+j3

(|I3| − n + 2

j3

)(|I2| − n + 2

j2

)(|I1| − n + 2

j1

)

xklI1+2|I1|+j2+j3yklI2+2|I2|+|I3|+j1−j3−n+2zklI3+2|I3|+|I1|+|I2|−j1−j2−2n+4 .
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Now the lemma follows in the same way with the proofs of Lemma 4.1 and 4.3. �

For a 3-partition (I1, I2, I3) of {1, . . . , n} with the condition in Lemma 5.1, define

Ckλ(I1, I2, I3) : =
∑

j1,j2,j3

(−1)j1+j2+j3

(|I1| − n + 2

j1

)(|I2| − n + 2

j2

)(|I3| − n + 2

j3

)
,

where the sum is taken over all j1, j2, j3 ∈ Z≥0 satisfying (5.2). We divide the investigations
into the following two cases.

( I ) The case that |I1| ≤ n − 3, |I2| ≤ n − 3, and |I3| ≤ n − 3.
(II) Otherwise.
( I ) If |I1| ≤ n − 3, |I2| ≤ n − 3, |I3| ≤ n − 3, it follows from (5.2) that{

j1 = k
(
lI3 − L

3

) − j2 + 2|I3| + |I1| + |I2| − 2n + 2 ,

j3 = k
(

L
3 − lI1

) − j2 − 2|I1| + 2 .

The range of j2 is given as follows.

(1) If
L

3
− lI1 < lI3 − L

3
, i.e. lI2 <

L

3
, then 0 ≤ j2 ≤ k

(
L

3
− lI1

)
− 2|I1| + 2.

(2) If
L

3
− lI1 > lI3 − L

3
, i.e. lI2 >

L

3
, then

0 ≤ j2 ≤ k

(
lI3 − L

3

)
+ 2|I3| + |I1| + |I2| − 2n + 2

From
(|I |−n+2

j

) = (−1)j
(
n−|I |−3+j
n−|I |−3

)
, we observe that

Ckλ(I1, I2, I3) =
∑
j2

(
n − |I2| − 3 + j2

n − |I2| − 3

)(
n − |I3| − 3 + j3

n − |I3| − 3

)(
n − |I1| − 3 + j1

n − |I1| − 3

)

=
∑
j2

(
j2 + n − |I2| − 3

n − |I2| − 3

)
(

k
(

L
3 − lI1

) − j2 − 2|I1| − |I3| + n − 1

n − |I3| − 3

)
(

k
(
lI3 − L

3

) − j2 + 2|I3| + |I2| − n − 1

n − |I1| − 3

)
.

According to Lemma 3.1, we conclude the following lemma.

LEMMA 5.3. Let |I1| ≤ n − 3, |I2| ≤ n − 3, and |I3| ≤ n − 3.

(1) If lI2 <
L

3
,

lim
k→∞

1

k2n−8 · Ckλ(I1, I2, I3)
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= 1

(2n − 8)!
n−|I1|−3∑

c=0

(
2n − 8

c

)(
n + |I2| − 6 − c

|I1| + |I2| − 3

) (
L

3
− lI2

)c (
L

3
− lI1

)2n−8−c

.

(2) If lI2 >
L

3
,

lim
k→∞

1

k2n−8 · Ckλ(I1, I2, I3)

= 1

(2n − 8)!
n−|I3|−3∑

c=0

(
2n − 8

c

)(
n + |I2| − 6 − c

|I2| + |I3| − 3

) (
lI2 − L

3

)c (
lI3 − L

3

)2n−8−c

.

(II) When some of |I1|, |I2|, or |I3| are greater than n − 3, then the sum

Ckλ(I1, I2, I3) =
∑

j1,j2,j3

(−1)j1+j2+j3

(|I1| − n + 2

j1

)(|I2| − n + 2

j2

)(|I3| − n + 2

j3

)

consists of a finite number of terms. Thus, we are not able to apply Lemma 3.1 directly.
Nevertheless, we can verify the following.

PROPOSITION 5.4. Also in the case where |I1|, |I2|, |I3| is greater than n − 3,

lim
k→∞

1

k2n−8 · Ckλ(I1, I2, I3)

is given by the formula in Lemma 5.3.

PROOF. For brevity, let us investigate only the case |I1| = 0, |I2| = n−1, and |I3| = 1,
which seems to be the most complicated one. In this case, we see

Ckλ(I1, I2, I3) =
1∑

j2=0

(−1)j1+j2+j3

(−n + 2

j1

)(
1

j2

)(−n + 3

j3

)

=
1∑

j2=0

(−1)j2

(
n − 3 + j1

n − 3

)(
1

j2

)(
n − 4 + j3

n − 4

)
.

It follows from (5.2) that j1 = k

(
lI3 − L

3

)
− j2 − n + 3, and j3 = k · L

3
− j2 + 2. Note

also that lI1 = 0. Therefore, we obtain

Ckλ(I1, I2, I3) =
(

k(lI3 − L
3 )

n − 3

)(
k · L

3 + n − 2

n − 4

)
−

(
k(lI3 − L

3 ) − 1

n − 3

)(
k · L

3 + n − 3

n − 4

)

=
(

k(lI3 − L
3 )

n − 3

)(
k · L

3 + n − 2

n − 4

)

(n − 3)(k · L
3 + n − 2) + (n − 4)k(lI3 − L

3 ) − (n − 3)(n − 4)

k(lI3 − L
3 )(k · L

3 + n − 2)
,
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which implies that

lim
k→∞

1

k2n−8
· Ckλ(I1, I2, I3) = (lI3 − L

3 )n−4

(n − 4)!
(L

3 )n−4

(n − 4)! + (lI3 − L
3 )n−3

(n − 3)!
(L

3 )n−5

(n − 5)! .

On the other hand, Lemma 5.5 below shows that the right hand sides of (1) and (2) in Lemma
5.3

1

(2n − 8)!
n−3∑
c=0

(
2n − 8

c

)(
2n − 7 − c

n − 4

) (
L

3
− lI2

)c (
L

3

)2n−8−c

1

(2n − 8)!
n−4∑
c=0

(
2n − 8

c

)(
2n − 7 − c

n − 3

) (
lI2 − L

3

)c (
lI3 − L

3

)2n−8−c

are both equal to
(lI3− L

3 )n−4

(n−4)!
( L

3 )n−4

(n−4)! + (lI3− L
3 )n−3

(n−3)!
( L

3 )n−5

(n−5)! . �

LEMMA 5.5. For p, q ∈ Z>0, we have

1

(p + q)!
p+1∑
c=0

(
p + q

c

)(
p + q + 1 − c

q

)
xcyp+q−c = (x + y)pyq

p!q! + (x + y)p+1yq−1

(p + 1)!(q − 1)! .

PROOF.

LHS = 1

(p + 1)!q!
p+1∑
c=0

(p + q + 1 − c)

(
p + 1

c

)
xcyp+q−c

= 1

(p + 1)!q!
d

dy
((x + y)p+1yq) = (x + y)pyq

p!q! + (x + y)p+1yq−1

(p + 1)!(q − 1)! .

�

Thus, our explicit formula for

V(λ1, . . . , λn) = lim
k→∞

1

k2n−8
dimC

(
Vkλ1 ⊗ · · · ⊗ Vkλn

)SU(3)

is given as follows.

THEOREM 5.6. Let n ≥ 5 be an integer and suppose that λi = liω1 ∈ Λ+ (i =
1, . . . , n) satisfy (A1) and (A2). For λ = (λ1, . . . , λn), denote by Iλ the set of all 3-partitions
(I1, I2, I3) of {1, . . . , n} such that

lI1 <
L

3
, lI2 <

L

3
,

and denote by Jλ the set of all (I1, I2, I3) such that

lI2 >
L

3
, lI3 >

L

3
.
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Define the function Aλ on Iλ and Bλ on Jλ as follows.

Aλ(I1, I2, I3) := −(−1)|I2|
6(2n−8)!

n−|I1|−3∑
c=0

(
2n − 8

c

)(
n + |I2| − 6 − c

|I1|+|I2| − 3

) (
L

3
− lI2

)c (
L

3
− lI1

)2n−8−c

,

Bλ(I1, I2, I3) := −(−1)|I2|
6(2n − 8)!

n−|I3|−3∑
c=0

(
2n − 8

c

)(
n + |I2| − 6 − c

|I2|+|I3| − 3

) (
lI2 − L

3

)c (
lI3 − L

3

)2n−8−c

.

Then we have

V(λ1, . . . , λn) =
∑
Iλ

Aλ(I1, I2, I3) +
∑
Jλ

Bλ(I1, I2, I3) . (5.7)

REMARK 5.8. As in the preceding section, it follows from Remark 3.3 that even if
λ1, . . . , λn do not satisfy (A1), V(λ1, . . . , λn) is given by the same formula (5.7) by replacing
the definitions of Iλ and Jλ with

Iλ =
{
(I1, I2, I3)

∣∣∣∣ lI1 ≤ L

3
, lI2 ≤ L

3

}

Jλ =
{
(I1, I2, I3)

∣∣∣∣ lI2 ≥ L

3
, lI3 ≥ L

3

}
.

By the same reason with Corollary 4.9, we observe the following.

COROLLARY 5.9. Let n ≥ 5 be an integer and let λi = liω1 ∈ t∗+ with li ∈ Q>0

(i = 1, . . . , n). Suppose thatM(λ1, . . . , λn) satisfies (a0) and (a1), then vol(M(λ1, . . . , λn))

is given by the right hand side of (5.7).

REMARK 5.10. In Case 2, it is known that M(λ) is identified with the symplectic
quotient for the Grassmann manifold Gr(3, n) of 3-dimensional subspaces in Cn, by an action
of the n-dimensional torus U(1)n (see, e.g. [8], [5]). It seems to be interesting to investigate
the relation between this fact and our result.

5.2. Example 2. As a typical example, let us consider the case λ1 = · · · = λn = lω1,
where l ∈ 3Z>0. Since L = ln, (A1) means that

|I1| 
= n

3
, |I2| 
= n

3
, |I3| 
= n

3

for any 3-partition (I1, I2, I3) of {1, . . . , n}. Thus we assume that n 
≡ 0 (mod 3).
By setting |I1| = i1, |I2| = i2, |I3| = i3, we can express V(λ1, . . . , λn) as a sum over

(i1, i2, i3) ∈ (Z≥0)
3 as follows.

−6(2n − 8)!
l2n−8

· V(λ1, . . . , λn)

=
∑

i1<
n
3 ,i2< n

3
i1+i2+i3=n

n−i1−3∑
c=0

(−1)i2n!
i1!i2!i3!

(
2n − 8

c

)(
n + i2 − 6 − c

i1 + i2 − 3

) (n

3
− i2

)c (n

3
− i1

)2n−8−c
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+
∑

i2>
n
3 ,i3>

n
3

i1+i2+i3=n

n−i3−3∑
c=0

(−1)i2n!
i1!i2!i3!

(
2n − 8

c

)(
n + i2 − 6 − c

i2 + i3 − 3

) (
i2 − n

3

)c (
i3 − n

3

)2n−8−c
.

This formula is obtained also in [20] by a completely different method.
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