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Abstract. The Turaev-Viro invariants are topological invariants of closed 3-manifolds. In this paper, we give a
formula of the Turaev-Viro invariants of all orientable closed Seifert fibered manifolds. Our formula is based on a new
construction of special spines of all orientable closed Seifert fibered manifolds and the “gluing lemma” of topological
quantum field theory. By using our formula, we get sufficient conditions of coincidence of the Turaev-Viro invariants
of orientable closed Seifert fibered manifolds.

1. Introduction

In 1992, Turaev and Viro [13] defined topological invariants of closed 3-manifolds by
using the quantum group Uq(sl(2, C)) at q a root of unity. The Turaev-Viro invariants of
closed 3-manifolds are parameterized by an integer r ≥ 3 called a level. So, we denote by

TV(r)(M) the Turaev-Viro invariant of a closed 3-manifold M at a level r . It is defined by
using a triangulation of M . We take an arbitrary triangulation TM of M , and we consider
a map σ : {edges of TM} → {0, 1, . . . , r − 2} called a coloring of TM . For a coloring σ ,

a complex number 6j (r)(τ, σ ) is assigned to each tetrahedron τ of TM by the function “6j -
symbol”. Then, roughly speaking, the Turaev-Viro invariant of M at a level r is defined by

(normalization) ×
∑

σ∈{coloring}

( ∏
τ∈TM

6j (r) ( τ , σ )

)
.

It does not depend on the choice of triangulation of M . Kauffman [3] defined a state sum
type invariant of closed 3-manifolds by using special spines, and Piunikhin [9] showed that
the Kauffman invariant coincides with the Turaev-Viro invariant. So, we call the Kauffman
invariant as the Turaev-Viro invariant1.

In this paper, we give a formula of the Turaev-Viro invariants of all orientable closed
Seifert fibered manifolds [7]. In [10], a formula of the Turaev-Viro invariants of all closed
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1Kauffman said in [3] that “Kauffman invariant is our version of the Turaev-Viro invariant”.
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Seifert fibered manifolds is given. It is based on the surgery presentation of 3-manifold.
Our formula is based on a new construction of special spines of all orientable closed Seifert
fibered manifolds shown in [11]. The outline of the construction is as follows. We define five
2-dimensional polyhedra Pφ , PL, PR , PJ and PW with non-empty boundaries embedded in

compact oriented 3-manifolds D2×S1, S1×S1 ×[0, 1], S1 ×S1×[0, 1], (T 2 − Int(D2)
)×S1

and
(
S2 − �3

i=1Int(D2
i )
)× S1 respectively. Then, any orientable closed Seifert fibered mani-

fold and its special spine can be obtained by gluing these compact manifolds with polyhedra.
These pairs of a manifold and a polyhedron can be regarded as cobordisms between closed
surfaces in which 3-regular graphs are embedded. By a similar method shown in [13], we
assign to each boundary component Σ of these cobordisms a vector space V (Σ), and assign
to each cobordism W a C-linear map ZW by using the Turaev-Viro invariants of compact 3-
manifolds. When we restrict ourselves to these cobordisms the assignment satisfies an axiom
of (2 + 1)-dimensional topological quantum field theory by Atiyah [1]. It induces the “gluing
lemma” to calculate the invariant. Thus, we have a formula of the Turaev-Viro invariants of
all orientable closed Seifert fibered manifolds.

Our formula gives sufficient conditions of coincidence of the Turaev-Viro invariants of
orientable closed Seifert fibered manifolds. They are related to the continued fraction of
βi/αi , where αi and βi are indices of the Seifert presentation of M := S(Fg , b; (α1, β1), (α2,

β2), . . . , (αn, βn)). Also, we make a computer program by Mathematica to calculate the

Turaev-Viro invariant T V (r)(M). The input of our program is a level r , the genus g of base
space of M , the obstruction class b and the indices (αi, βi).

This paper is organized as follows. In Section 2, we introduce the definition of special
spines and the Turaev-Viro invariants of closed 3-manifolds. In Section 3, we define DS-
spines and linear maps obtained from DS-spines by using the Turaev-Viro invariants of com-
pact 3-manifolds. In Section 4, we consider linear maps Zφ , ZL, ZR, ZJ and ZW(n) obtained
from DS-spines Pφ , PL, PR , PJ and PW(n). We note that a special spine of any orientable
closed Seifert fibered manifold can be obtained by gluing these DS-spines. In Section 5, we

give a formula of the Turaev-Viro invariant T V (r)(M) at the level r of all orientable closed
Seifert fibered manifolds by using presentation matrices of the linear maps Zφ , ZL, ZR, ZJ

and ZW(n).

2. The Turaev-Viro invariants

For an integer r ≥ 3, the Turaev-Viro invariant T V (r)(M) of 3-manifold M at a level
r [13] is originally defined by using a triangulation of M . In this section, we describe a
definition of the invariant in terms of special spines of 3-manifolds.

2.1. The Special spine. A 2-dimensional polyhedron P is called simple if each point
x in P has a regular neighborhood N(x) which is homeomorphic either to (i), (ii) or (iii)
shown in Figure 1. A simple polyhedron has a natural stratification. A simple polyhedron P

is called special if each i-stratum of P is an open i-cell, where i = 1, 2. We call a 0-cell, a
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FIGURE 1. Neighborhood of a point of simple polyhedron.

FIGURE 2. M-move and L-move of special spines.

1-cell and a 2-cell of P as a vertex, an edge and a face of P , and denote by V (P), E(P) and
F(P) the set of all vertices, edges and faces of P respectively.

Let M be a compact connected 3-manifold and P be a simple polyhedron which is em-
bedded in M . When ∂M is non-empty, P is called a spine of M if M collapses to P . When

∂M is empty, that is M is closed, P is called a spine of M if M − Int(B3) collapses to P ,
where B3 is a 3-ball in the interior of M .

THEOREM 2.1 (Casler[2]). Any compact 3-manifold possesses a special spine.

THEOREM 2.2 (Matveev[6], Piergallini[8]). Any two special spines of a closed 3-

manifold can be transformed one to another by a sequence of moves M±1 and L±1 shown
in Figure 2 with intermediate results also being special spines.

2.2. The Turaev-Viro invariants for closed 3-manifolds. Let M be a closed 3-
manifold. Then, the Turaev-Viro invariant of M at a level r , denoted by TV(r)(M), is defined
by the following three steps.

Step 1 Take a special spine P of M .

By a coloring of P , we mean an arbitrary mapping σ : F(P) → {0, 1, 2, . . . , r − 2}. We
call three integers a, b, c ∈ {0, 1, . . . , r − 2} form r-admissible if the following conditions
hold.

a + b + c ≡ 0 (mod 2) , a + b + c ≤ 2r − 4 , −a + b + c ≥ 0 ,

a − b + c ≥ 0 , a + b − c ≥ 0 .

A coloring σ is called r-admissible if for any edge e ∈ E(P), three integers assigned to

faces which are adjacent to the edge e form r-admissible. We denote by Adm(r)(P ) the set of
all r-admissble colorings of P .
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Step 2 Let σ ∈ Adm(r)(P ) be an r-admissible coloring. Then, we assign a complex

number to each face f , edge e and vertex v of P as follows.

∆(r) : {face of P } � �−→ ∆(r)(f, σ ) := δ(r)(i1) ∈ C ,

Θ(r) : {edge of P } � �−→ Θ(r)(e, σ ) := θ(r)(i1, i2, i3) ∈ C ,

TET(r) : {vertex of P } � �−→ TET(r)(v, σ ) := Tet(r)
[

i1 i2 i5

i3 i4 i6

]
∈ C ,

where the functions δ, θ and Tet are shown in Section 5.2 and ik ∈ {0, 1, . . . , r − 2} (k =
1, . . . , 6).

Step 3 The Turaev-Viro invariant T V (r)(M) of M at a level r is defined by

T V (r)(M) :=
∑

σ∈Adm(r)(P )

∏
v∈V (P ) TET(r)(v, σ )

∏
f ∈F(P ) ∆(r)(f, σ )∏

e∈E(P ) Θ(r)(e, σ )
.

The topological invariance comes from the following equations [13].

r−2∑
c=0

{
d i c

b i a

}{
i d a′
j b c

}
=
{

0 a = a′ ,
1 otherwise ,

(1)

r−2∑
m=0

{
a i m

d e j

}{
b c l

d m i

}{
b l k

e a m

}
=
{

b c k

j a i

}{
k c l

d e j

}
,(2)

where { } is called 6j-symbol defined by

{
a b i

c d j

}
:=

Tet

[
a b i

c d j

]
δ(i)

θ(a, i, d)θ(b, i, c)
. These equa-

tions are corresponding to invariance under an M-move and an L-move for special spines
respectively shown in Figure 3. (for detail see [13])

FIGURE 3. (1) L-move and (2) M-move.
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3. DS-spines and linear maps obtained from DS-spines

In this section, we define DS-spines of compact 3-manifolds with non-empty boundaries,
and assign a C-linear map to a DS-spine by using the Turaev-Viro invariants of compact 3-
manifolds. We will show that the assignment satisfies an axiom of topological quantum field
theory [1] under some conditions in Section 5.1.

A 2-dimentional polyhedron P is called simple polyhedron with non-empty boundary
if each point x in P has a regular neighborhood N(x) which is homeomorphic either to (i),
(ii), (iii), (iv) or (v) shown in Figure 4. The set {x | x ∈ P such that N(x) ∼= (iv) or (v)} is
called the boundary of P , denoted by ∂P . A simple polyhedron with non-empty boundary ha
a natural stratification. A simple polyhedron with non-empty boundary P is called special if
each i-stratum of P is an open i-cell for i = 1, 2.

Let Σ be a closed surface and G be a 3-regular graph. Then, for an embedding ϕ : G →
Σ , the surface Σ is called completely marked by ϕ(G) [13] if each component of Σ − ϕ(G)

is homeomorphic to an open 2-disc.

DEFINITION 3.1. Let M be a compact 3-manifold with non-empty boundary and P be
a simple polyhedron with non-empty boundary. Then, P is a DS-spine of M if P is properly
embedded in M , that is, (∂P, P ) ⊂ (∂M,M) and ∂M is completely marked by ∂P and
M − Int(B3) collapses to P ∪ ∂M , where B3 is a 3-ball in the interior of M .

We can prove the following proposition by using the method called “arch construction”
shown in [5].

PROPOSITION 3.2. For a compact 3-manifold M such that ∂M is completely marked
by ϕ(G), there exists a special DS-spine P of M such that ϕ(G) = P ∩ ∂M . We call such P

as a special DS-spine of (M,G, ϕ).

Now, we assign a C-linear map to a DS-spine by using a similar method shown in [13].
Let Σ be a connected oriented closed surface and G be a connected directed and labeled 3-
regular graph, that is, all edges of G have orientations and different “names”, and ϕ : G ↪→ Σ

be an embedding such that Σ is completely marked by ϕ(|G|), where |G| is the underling
space of the graph G.

Let us consider such objects Γ = (Σ,G, ϕ) and Γ ′ = (Σ ′,G′, ϕ′), and an orientation
preserving homeomorphism h : Σ → Σ ′. We suppose that G = G′. Then, Γ and Γ ′ are

h-equivalent, denoted by Γ
h≈ Γ ′, if ϕ′ · id = h · ϕ, where id : G → G′ is the identity map

FIGURE 4. Neighborhood of a point of simple polyhedron with non-empty boundary.
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on G = G′. Γ and Γ ′ are h-quasi-equivalent, denoted by Γ
h∼ Γ ′, if h · ϕ(|G|) = ϕ′(|G′|).

We note that when two objects Γ and Γ ′ are h-quasi-equivalent, there exists a canonical

isomorphism ĥ : G → G′ such that ϕ′ · ĥ = h · ϕ.

DEFINITION 3.3. A pair of compact oriented 3-manifold M and 2-dimensional poly-
hedron P is a cobordism between Γ = (Σ,G, ϕ) and Γ ′ = (Σ ′,G′, ϕ′) if ∂M = Σ � (−Σ ′)
and P is a special DS-spine of

(
M,G � G′, ϕ � ϕ′), where −Σ ′ means Σ ′ with the opposite

orientation and ϕ � ϕ′ is the embedding of G � G′ defined by ϕ and ϕ′. We denote such a
cobordism by W = (M,P ; Γ,Γ ′), or briefly W = (M,P ).

NOTATION 3.4. For two objects Γ = (Σ,G, ϕ) and Γ ′ = (Σ ′,G′, ϕ′), Hom1(Γ, Γ ′)
is the set of all cobordisms between Γ and Γ ′. Hom2(Γ, Γ ′) is the set of all orientation

preserving homeomorphisms h : Σ → Σ ′ such that Γ
h∼ Γ ′.

The identity cobordism on Γ = (Σ,G, ϕ) is given by W = (Σ × [0, 1], ϕ(G) ×
[0, 1]; Γ,Γ ). For two cobordisms W1 = (M1, P1 ; Γ,Γ ′) and W2 = (M2, P2 ; Γ ′, Γ ′′),
the composition of W1 and W2 is defined by W2 · W1 := (M1 ∪id M2, P1 ∪id P2 ; Γ, Γ ′′).
Two cobordisms W = (M,P ; Γ1, Γ2) and W ′ = (M ′, P ′ ; Γ ′

1, Γ
′

2) are equivalent if there

exists an orientation preserving homeomorphism H : M → M ′ such that Γi
hi∼ Γ ′

i , where
hi := H |Σi for i = 1, 2.

For each level r ≥ 3, we will assign a C-vector space V (r)(Γ ) to an object Γ =
(Σ,G, ϕ), assign a C-linear map Z

(r)
W to a cobordism W(M,P ; Γ,Γ ′) ∈ Hom1(Γ, Γ ′),

assign a C-linear map h
(r)∗ to a homeomorphism h ∈ Hom2(Γ, Γ ′). For simplicity, we denote

V (Γ ), ZW and h∗ instead of V (r)(Γ ), Z
(r)
W and h

(r)∗ .
At first, we define a vector space V (Γ ). A level r ≥ 3 is fixed. Let G be a 3-regular

graph. By a coloring of G, we mean an arbitrary mapping τ : E(G) → {0, 1, 2, . . . , r − 2}.
A coloring τ is called r-admissible if for any vertex v of G, three integers of edges adjacent to

the vertex v form r-admissible. We denote by Adm(r)(G) the set of all r-admissble colorings

of G. For simplicity, we denote Adm(G) instead of Adm(r)(G).

DEFINITION 3.5. For an object Γ = (Σ,G, ϕ), the vector space V (r)(Γ ) is freely

spanned by Adm(r)(G) over C. In the case where Σ is the empty surface ∅, we define

V (r)(∅) := C.

Since the vector space V (Γ ) is spanned by Adm(G), we denote V (G) instead of V (Γ ).
Now, we define a C-linear map ZW for a cobordism W = (M,P ; Γ,Γ ′). Before defin-

ing the linear map, we prepare a notation Z(r)(P, τ (∂P )). Let P be a special polyhedron with

non-empty boundary. For a coloring τ ∈ Adm(∂P ), the complex number Z(r)(P, τ (∂P )) is
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defined by

C(r)(∂P, τ )
∑

σ∈Adm(r)(P ,τ )

∏
v∈V (P )−V (∂P ) TET(r)(v, σ )

∏
f∈F(P ) ∆(r)(f, σ )∏

e∈E(P )−E(∂P ) Θ(r)(e, σ )
,

where

C(r)(∂P, τ ) :=
∏

v∈V (∂P )

√
θ(r)

(
τ (ev), τ (e′

v), τ (e′′
v )
)

∏
e∈E(∂P )

√
δ(r) (τ (e))

,

ev , e′
v and e′′

v are three edges adjacent to the vertex v, and Adm(r)(P, τ ) := {σ ∈
Adm(r)(P ) such that σ |∂P = τ }.

DEFINITION 3.6. For a cobordism W = (M,P ; Γ,Γ ′) between two objects Γ =
(Σ,G, ϕ) and Γ ′ = (Σ ′,G′, ϕ′), the linear map Z

(r)
W : V (r)(G) → V (r)(G′) is defined by

the following equation.

Z
(r)
W (τ) :=

∑
τ ′∈Adm(r)(G′)

Z(r)
(
P, τ(G) � τ ′(G′)

)
τ ′ ,

where τ ∈ Adm(r)(G).

At last, we define a C-linear map f∗ for a homeomorphism f ∈ Hom2(Γ, Γ ′).

DEFINITION 3.7. For a homeomorphism f ∈ Hom2(Γ, Γ ′), the linear map f
(r)∗ :

V (r)(G) → V (r)(G′) is defined by the following equation.

f∗(τ ) :=
∑

τ ′∈Adm(r)(G′)
Z(r)

(
ϕ′(G′) × [0, 1], f̂ (τ )(G′) � τ ′(G′)

)
τ ′ ,

where τ ∈ Adm(r)(G) and f̂ (τ ) is the coloring of G′ defined by f̂ (τ )(e) = τ
(
f −1(e)

)
for

an edge e ∈ E(G′).

We note that the assignments Γ �→ V (Γ ), W �→ ZW and f �→ f∗ do not necessarily
satisfy the axiom of topological quantum field theory. But, the axiom is satisfied under the

condition that the gluing maps between cobordisms keep the property that M − Int(B3) col-
lapses to P ∪ ∂M . Since the special spine defined in [11] satisfies the condition, we apply
the axiom to these cobordisms and get a formula of the Turaev-Viro invariants of orientable
closed Seifert fibered manifolds in Section 5.

4. Linear maps obtained by cobordisms yielding a special spine of any orientable
closed Seifert fibered manifold

In [11], we define five special DS-spines Pφ , PL, PR PJ and PW(n) of the compact fibered

3-manifolds V := D2 × S1, U := S1 × S1 × [0, 1], U , J := (S1 × S1 − Int(D2)
)× S1 and
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FIGURE 5. theta curve θ .

W(n) := (S2 −∐n
i=1 Int(D2

i )
)×S1 respectively. Then, we showed that any orientable closed

Seifert fibered manifold and its special spine can be obtained by gluing these compact fibered
manifolds equipped with special DS-spines.

These special DS-spines have the following property. Each component of the boundaries
of them is the directed labeled theta-curve θ shown in Figure 5. So, we can regard these
compact 3-manifolds with special DS-spines as cobordisms in the following way. The pair
Wφ := (V , Pφ) is regarded as a cobordism from the empty surface ∅ to the object Γ =
(T 2, θ, ϕφ). For X = L,R, the pair WX := (U, PX) is regarded as a cobordism from Γ

(0)
X =

(T 2, θ, ϕ
(0)
X ) to Γ

(1)
X = (T 2, θ, ϕ

(1)
X ). The pair WJ := (J, PJ ) is regarded as the cobordism

from the empty surface ∅ to the object Γ := (T 2, θ, ϕJ ). The pair WW(n) := (W(n), PW(n)) is

regarded as a cobordism from the empty surface ∅ to
∐n

i=1 Γ
(i)
W , where Γ

(i)
W := (T 2, θi, ϕW ).

In this section, we consider linear maps Z
(r)
φ , Z

(r)
L , Z

(r)
R Z

(r)
J and Z

(r)
W(n) obtained by

applying Definition 3.6 to the cobordisms Wφ := (V , Pφ), WL := (U, PL), WR := (U, PR),
WJ := (J, PJ ) and ZW(n) := (W(n), PW(n)). By definition, domains and ranges of these
linear maps are as follows.

Z
(r)
φ : C → V (r)(θ) , Z

(r)
L : V (r)(θ) → V (r)(θ) Z

(r)
R : V (r)(θ) → V (r)(θ)

Z
(r)
J : C → V (r)(θ) , Z

(r)
W(n) : C → V (r)(�n

i=1θi) .

Throughout this section, a level r ≥ 3 is fixed. For simplicity, we sometimes omit the charac-
ter “r”.

In Section 4.1, we give an order to the basis Adm(θ) of the vector space V (θ). In Section
4.2 and Section 4.3, we calculate presentation matrices of the linear maps Zφ , ZL, ZR and
ZJ with respect to an ordered basis. In Section 4.4, we give an order to a basis of the vector
space V (�n

i=1θ) and calculate presentation matrix of the linear map ZW(n).

4.1. An order of the element of V (r)(θ). We give an order to the basis Adm(r)(θ) of

the vector space V (r)(θ) as follows. By adm(r), we mean the set of all ordered triple integers
which form r-admissible.

EXAMPLE 4.1 (r = 3). adm(3) := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} .

We give the dictionary-order to the set adm(r), and denote by µ
(r)
i the i-th element of

adm(r), and denote by a
(r)
i , b

(r)
i and c

(r)
i the first, the second and the third element of µ

(r)
i .
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EXAMPLE 4.2 (r = 3).

µ
(3)
1 = (0, 0, 0) , a

(3)
1 = 0 , b

(3)
1 = 0 , c

(3)
1 = 0 ,

µ
(3)
2 = (0, 1, 1) , a

(3)
2 = 0 , b

(3)
2 = 1 , c

(3)
2 = 1 ,

µ
(3)
3 = (1, 0, 1) , a

(3)
3 = 1 , b

(3)
3 = 0 , c

(3)
3 = 1 ,

µ
(3)
4 = (1, 1, 0) , a

(3)
4 = 1 , b

(3)
4 = 1 , c

(3)
4 = 0 .

Then, we define an order to the set Adm(r)(θ) as follows.

DEFINITION 4.3. τ ∈ Adm(r)(θ) is the i-th element if τ (α) = a
(r)
i , τ (β) = b

(r)
i and

τ (γ ) = c
(r)
i , where α, β and γ are edges of the theta-curve θ .

4.2. A presentation matrix of the linear map Zφ . We consider the presentation ma-

trix of the linear map Zφ : V (∅) → V (θ) with respect to the ordered basis {τi} = Adm(r)(θ).
It can be regarded as a vector in V (θ) since V (∅) = C.

LEMMA 4.4. The i-th element of the presentation matrix vφ = (φi) of the linear map
Zφ : C → V (θ) with respect to the ordered basis {τi} = Adm(θ) is given by

φi =
r−2∑
k=0

Tet

[
k bi bi

ai bi bi

]
δ(k)

√
δ(ai)

θ(ai, bi, bi)θ(k, bi, bi)
,

where the sum is taken under the condition that three integers k, bi and bi form r-admissible.

PROOF. By definition, we have φi = Z(r)(Pφ, τi(θ)), where the special DS-spine Pφ

is obtained by the φ-diagram [11] shown in Figure 6. The coloring τi assign the integers ai

and bi to the faces fα and fβ , where fα := αQ̄P̄ and fβ := βPĀP̄ γ Q̄ĀQ.
Suppose that an integer k is assigned to the face fA := A. Since Pφ − ∂Pφ has the only

vertex w, and the neighborhood of it is shown in Figure 7, we have

∏
v∈V (Pφ)−V (∂Pφ)

TET(v, τi ) = TET(w, τi) = Tet

[
k bi bi

ai bi bi

]
.

There are three edges A, P and Q in Pφ − ∂Pφ , and there are three faces fA, fα and fβ

in Pφ . So, we get

∏
e∈E(Pφ)−E(∂Pφ)

Θ(e, τi) = Θ(A, τi)Θ(P, τi)Θ(Q, τi) = θ(k, bi, bi)θ(ai, bi, bi)θ(ai, bi, bi) ,

∏
f ∈F(Pφ)

∆(f, τi) = ∆(fA, τi)∆(fα, τi)∆(fβ, τi) = δ(k)δ(ai)δ(bi) .
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Also, we have

∏
v∈V (∂Pφ)

√
θ(τi(ev), τi (e

′
v), τi (e

′′
v)) =

√
θ(τi(ev), τi(e

′
v), τi(e

′′
v))

√
θ(τi(eu), τi(e

′
u), τi(e

′′
u))

=√θ(ai, bi, bi)
√

θ(ai, bi, bi)

= θ(ai, bi , bi) ,∏
e∈E(∂Pφ)

√
δ(τi(e)) =√δ(τi(α))

√
δ(τi(β))

√
δ(τi(γ ))

=√δ(ai)
√

δ(bi)
√

δ(bi) .

Thus, we get

φi = Z(r)(Pφ, τi(θ))

= θ(ai, bi , bi)√
δ(ai)δ(bi)δ(bi)

r−2∑
k=0

Tet

[
k bi bi

ai bi bi

]
δ(k)δ(ai)δ(bi)

θ(k, bi, bi)θ(ai, bi, bi)θ(ai, bi, bi)

=
r−2∑
k=0

Tet

[
k bi bi

ai bi bi

]
δ(k)

√
δ(ai)

θ(ai, bi, bi)θ(k, bi, bi)
,

4.3. Presentation matrices of the linear maps ZL, ZR and ZJ . Let X be L or R.
We consider the presentation matrix MX of the linear map ZX : V (θ) → V (θ) with respect
to the ordered basis {τi} = Adm(θ).

FIGURE 6. φ-diagram. FIGURE 7. Neighborhood of the vertex w.
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LEMMA 4.5. The (i, j)-element of the presentation matrix MX = (Xi,j ) of the linear

map ZX : V (θ) → V (θ) with respect to the ordered basis {τi} = Adm(r)(θ) is given by

Li,j =




Tet

[
ai bi ci

ai aj ci

]√
δ(aj )

√
δ(bi)

θ(ai, aj , ci)θ(ai, bi, ci )
if ai = bj and ci = cj ,

0 otherwise .

Ri,j =




Tet

[
ai bi ci

ai cj ci

]√
δ(cj )

√
δ(bi)

θ(ai, cj , ci )θ(ai, bi , ci)
if ai = aj and ci = bj ,

0 otherwise .

PROOF. By definition, Xi,j = Z(r)
(
PX, τi(θ) � τj (θ

′)
)

is the (i, j)-element of the
presentation matrix of the linear map ZX with respect to the ordered basis {τi} = Adm(θ).

At first, we consider the case X = L. The special DS-spine PL is obtained by the L-
diagram [11] shown in Figure 8. The coloring τi(θ)� τj (θ

′) assigns the integers ai , bi , ci , aj ,

bj and cj to the faces fα := αQ̄Aβ̄ ′BP̄ , fβ := βPQ, fγ := γ Q̄B̄γ̄ ′ĀP̄ , fα′ := α′BA, fα

and fγ respectively. So, in case that ai �= bj or ci �= cj , the coloring τi(θ) � τj (θ
′) doesn’t

rearized, that is, Li,j = 0. In the other case, we have

∏
v∈V (PL)−V (∂PL)

TET(v, τi(θ) � τj (θ
′)) = TET(w, (τi(θ), τj (θ

′))) = Tet

[
ai bi ci

ai aj ci

]
,

∏
f∈F(PL)

∆
(
f, (τi , τj )

)= δ(ai)δ(bi)δ(ci)δ(aj ) ,

FIGURE 8. L-diagram. FIGURE 9. R-diagram.
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e∈E(PL)−E(∂PL)

Θ(e, τi(θ) � τj (θ
′))

= Θ(A, (τj , τi))Θ(B, (τj , τi))Θ(P, (τj , τi ))Θ(Q, (τj , τi ))

= θ(ai, ci, aj )θ(ai, ci , aj )θ(ai, bi , ci)θ(ai, bi, ci ) ,∏
v∈V (∂PL)

√
θ(τ (ev), τ (e

′
v), τ (e

′′
v))

=
√

θ(τj (eu′), τj (e
′
u′), τj (e

′′
u′)) ×

√
θ(τj (ev′), τj (e

′
v′), τj (e

′′
v′))

×√θ(τi(eu), τi(e′
u), τi(e′′

u)) ×√θ(τi(ev), τi (e′
v), τi(e′′

v ))

=
√

θ(aj , ai, ci)

√
θ(aj , ai, ci)

√
θ(ai, bi, ci )

√
θ(ai, bi, ci )

= θ(aj , ai, ci )θ(ai, bi, ci ) ,∏
e∈E(∂PL)

√
δ(τ (e))

=
√

δ(τj (α′))
√

δ(τj (β ′))
√

δ(τj (γ ′))
√

δ(τi(α))
√

δ(τi(β))
√

δ(τi(γ ))

=
√

δ(aj )
√

δ(ai)
√

δ(ci)
√

δ(ai)
√

δ(bi)
√

δ(ci)

=
√

δ(aj )δ(ai)
√

δ(bi)δ(ci) .

So, we get

Li,j = Z(r)(PL, τi(θ) � τj (θ
′))

= θ(aj , ai, ci )θ(ai, bi, ci)√
δ(aj )δ(ai)

√
δ(bi)δ(ci)

Tet

[
ai bi ci

ai aj ci

]
δ(aj )δ(ai)δ(bi)δ(ci)

θ(ai, ci, aj )θ(ai, ci , aj )θ(ai, bi , ci)θ(ai, bi, ci)

=
Tet

[
ai bi ci

ai aj ci

]√
δ(aj )

√
δ(bi)

θ(ai, aj , ci)θ(ai, bi, ci )
.

In the same manner, we can prove the case X = R.

Now, we consider the presentation matrix of the linear map ZJ : V (∅) → V (θ) with

respect to the ordered basis {τi} = Adm(r)(θ). It can be regarded as a vector in V (θ) since
V (∅) = C.

The special DS-spine PJ is obtained by the DS-diagram ∆J [11]. We name faces of DJ

as shown in Figure 10. Then, we have the following Lemma. The proof is similar to Lemma
4.4.
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FIGURE 10. DS-diagram ∆J .

LEMMA 4.6. The l-th element of the presentation matrix vJ = (Jl) of the linear map

ZJ : C → V (θ) with respect to the basis {τi} = Adm(r)(θ) is given by

Jl =
r−2∑

d,e,f,g,h,i,j,k=0

(( 9∏
t=1

Tett

)( 11∏
t=1

δt

)( 18∏
t=1

θt

)−1) ∣∣∣∣ a = a
(r)
l , b = b

(r)
l , c = c

(r)
l ,

where the sum is taken under the condition that the following triple integers are r-admissible
(a, b, c), (d, c, h), (b, g, d), (f, g, i), (e, k, f ), (b, e, i), (b, f, j), (i, j, d), (a, g, h), (f, h, i),

(b, h, k), (e, d, f ), (i, j, k), (a, d, k). The values Teti , δi and θi are given as follows.

Tet1 = Tet

[
e b d

g f i

]
, Tet2 = Tet

[
b c d

h g a

]
, Tet3 = Tet

[
b e f

k j i

]
,

Tet4 = Tet

[
g b f

j i d

]
, Tet5 = Tet

[
b g h

a k d

]
, Tet6 = Tet

[
b h i

f e k

]
,

Tet7 = Tet

[
j b i

e d f

]
, Tet8 = Tet

[
b j k

i h f

]
, Tet9 = Tet

[
b k a

d c h

]
.

δ1 = √δ(a) , δ2 = √δ(b) , δ3 = √δ(c) , δ4 = δ(d) , δ5 = δ(e) , δ6 = δ(f ) ,

δ7 = δ(g) , δ8 = δ(h) , δ9 = δ(i) , δ10 = δ(j) , δ11 = δ(k) .

θ1 = θ(a, b, c) , θ2 = θ(d, c, h) , θ3 = θ(b, g, d) , θ4 = θ(f, g, i) ,

θ5 = θ(e, k, f ) , θ6 = θ(b, e, i) , θ7 = θ(b, f, j) , θ8 = θ(i, j, d) ,

θ9 = θ(a, g, h) , θ10 = θ(b, g, d) , θ11 = θ(f, h, i) , θ12 = θ(b, h, k) ,

θ13 = θ(b, e, i) , θ14 = θ(e, d, f ) , θ15 = θ(i, j, k) , θ16 = θ(b, f, j) ,

θ17 = θ(b, k, h) , θ18 = θ(a, d, k) .

4.4. A presentation matrix of the linear map ZW(n). In this subsection, we con-
sider the linear map ZW(n) which is obtained by the cobordism WW(n) := (MW(n), PW(n)),
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where WW(n) is defined by gluing n − 2 copies of the cobordism WW(3), for detail see

[11]. We note that the manifold MW(n) is homeomorphic to
(
S2 −∐n

i=1 Int(D2
i )
) × S1.

Since we consider a presentation matrix of the linear map ZW(n) : V (∅) → V (
∐n

i=1 θi),

we give an order to a basis of the vector space V (
∐n

i=1 θi). The set
∏n

i=1 Adm(r)(θi) :=
Adm(r)(θ1) × Adm(r)(θ2) × · · · × Adm(r)(θn)︸ ︷︷ ︸

n

is a basis of the vector space V (
∐n

i=1 θ). We

give an order to
∏n

i=1 Adm(r)(θi) by the following.

Step 1. We consider ordered n integers (i1, i2, . . . , in), where ik ∈ {
1, 2, . . . ,

(r−1)r(r+1)
6

}
and denote by N the set of all such elements.

Step 2. We give the dictionary-order to the set N and denote by µj := (j1, j2, . . . , jn)

the j -th element of N .

Note that (r−1)r(r+1)
6 is the number of r-admissible colorings of the theta-curve θ .

DEFINITION 4.7. An element (τj1, τj2 , . . . , τjn ) is the j -th element of∏n
i=1 Adm(r)(θi).

By the element (τ1, τ2, τ3), we define that the integers ai, bi, ci (i = 1, 2, 3) are assigned
to the faces of the DS-diagram ∆W(3) shown in Figure 11. Then, we consider the presentation

matrix of the linear map ZW(n) : V (∅) → V (
∐n

i=1 θi) with respect to the ordered basis∏n
i=1 Adm(r)(θi). It can be regarded as a vector in V (

∐n
i=1 θi) since V (∅) = C. We denote

it by vW(n). The i-th element W(n)i = W(n)(i1,i2,...,in) of the vector vW(n) is given by the
following lemma.

LEMMA 4.8. The element W(n)(i1,i2,...,in) of the presentation matrix vW(n) of the lin-

ear map ZW(n) : C → V (
∐n

i=1 θi) is given by the following.

FIGURE 11. DS-diagram ∆W(3) colored by (τ1, τ2, τ3).
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1. In case n = 3
(a) In case that bi1 = bi2 = bi3 and triple integers (ai1, ci2 , ci3), (ai2, ci3 , ci1),

(ai3, ci1 , ci2) and (b, aij , cij ) (j = 1, 2, 3) are r-admissible.
We put b := bi1 = bi2 = bi3 . Then,

W(3)(i1,i2,i3)
= Z(r)(PW(3), τi1(θ) � τi2(θ) � τi3(θ))

= 1√
δ(b)

( 3∏
i=1

Teti

)( 6∏
i=1

δi

)( 6∏
i=1

θi

)−1

,

where

Tet1 = Tet

[
b ai2 ci3

ci1 ai3 ci2

]
, Tet2 = Tet

[
b ai3 ci1

ci2 ai1 ci3

]
,

Tet3 = Tet

[
b ai1 ci2

ci3 ai2 ci1

]
.

δ1 = √δ(a1) , δ2 = √δ(a2) , δ3 = √δ(a3) , δ4 = √δ(c1) ,

δ5 = √δ(c2) , δ6 = √δ(c3) .

θ1 = θ(b, ai3, ci3) , θ2 = θ(b, ai1, ci1) , θ3 = θ(b, ai2, ci2) , θ4 = θ(ai3, ci1 , ci2) ,

θ5 = θ(ai1, ci2 , ci3) , θ6 = θ(ai2, ci3 , ci1) .

(b) Otherwise

W(3)(i1,i2,i3)
= 0 .

2. In case n > 3

W(n + 1)(i1,i2,...,in+1) =
(r−1)r(r+1)

6∑
j=0

W(n)(i1,i2,...,in−1,j) ×
{

W(3)(j,in,in+1) (n is even) ,

W(3)(j,in,in+1) (n is odd) ,

where c̄ is the conjugation of a complex number c.

5. The Turaev-Viro invariants for all orientable closed Seifert fibered manifolds

In this section, we give a formula of the Turaev-Viro invariants for all orientable closed
Seifert fibered manifolds. Our formula is obtained by applying the “gluing lemma” shown
in Section 5.1 to special DS-spines yielding a special spine of any orientable closed Seifert
fibered manifold.

5.1. Topological quantum field theory. As mentioned in the previous section, any
orientable closed Seifert fibered manifold and its special spine can be obtained by gluing the
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cobordisms Wφ = (V , Pφ), WL = (U, PL), WR = (U, PR), WJ = (J, PJ ) and WW(3) =
(W(3), PW(3)). We review the definition of gluing maps between these cobordisms [11].
Each connected boundary component of the compact 3-manifolds V , U , J and W(3) is a

torus T 2. So, the gluing map is an orientation preserving homeomorphism f : T 2 → T 2. For

Q,R ∈ {φ,L(0), L(1), R(0), R(1), J,W(3)}, let ΓQ := (T 2, θ, ϕQ) and ΓR := (T 2, θ, ϕR)

be two objects obtained from boundary components of these cobordisms. By definition, the

gluing map f : T 2 → T 2 satisfies ϕR · id = f · ϕQ. Thus, the gluing map f is an element of
Hom2(ΓQ, ΓR). So, we apply Definition 3.7 to f , we have a C-linear map f∗ : V (θ) → V (θ).

When we restrict ourselves to the cobordisms Wφ , WL, WR , WJ and WW(3) and to these
gluing maps, we have the following five properties on the assignments Γ �→ V (Γ ), W �→ ZW

and f �→ f∗. They are called an axiom of (2 + 1)-dimensional topological quantum field
theory (TQFT) as posed by Atiyah [1].

1. (a) Suppose that two cobordisms W1 = (M1, P1; Γ1, Γ2) and W2 =
(M2, P2; Γ2, Γ3) are obtained from a cobordism W = (M,P ; Γ1, Γ3) by cut-
ting along a closed surface Σ2 such that M1∪idΣ2

M2 = M and M1 ∩M2 = Σ2.

Then, we have ZW = ZW2 · ZW1 .
(b) ZidΓ

= idV (Γ ).

2. (a) For three objects Γi = (Σi,Gi, ϕi), i = 1, 2, 3 such that Γ1
f∼ Γ2 and Γ2

g∼
Γ3, the equation (g · f )∗ = g∗ · f∗ holds.

(b) (idΓ )∗ = idV (Γ )

3. Let W = (M,P ; Γ1, Γ2) and W ′ = (M ′, P ′ ; Γ ′
1, Γ

′
2) be two cobordisms. Suppose

that there exists an orientation preserving homeomorphism f : M → M ′ such that

Γi

fi∼ Γ ′
i , i = 1, 2, where f1 := −f |Σ1 : Σ1 → Σ ′

1 and f2 := f |Σ2 : Σ2 → Σ ′
2.

Then, the following diagram is commutative.

V (Γ1)
f1∗−−→ V (Γ ′

1)

ZW

� �Z
W ′

V (Γ2) −−→
f2∗

V (Γ ′
2)

4. For two cobordisms W1 = (M,PM ; Γ1, Γ2) and W2 = (N, PN ; Γ3, Γ4) and a home-
omorphism f ∈ Hom2(Γ2, Γ3), the equation ZW = ZW2

· f∗ · ZW1
holds, where W

is the cobordism (M ∪f N,PM ∪f PN ; Γ1, Γ4).
5. There exists natural isomorphisms. (a) V (Γ1 �Γ2) ∼= V (Γ1) ⊗V (Γ2). (b) V (∅) ∼=

C. (c) V (−Γ ) ∼= V (Γ )∗, where −Γ := (−Σ,G, ϕ), and −Σ means Σ with the
opposite orientation, and V (Γ )∗ is the dual vector space of V (Γ ).

By the axiom, we have the following lemma to calculate invariants called “gluing lemma” [1].
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LEMMA 5.1. Let Z be a (2 + 1)-dimensional TQFT. If a closed 3-manifold M is ob-
tained by gluing two compact 3-manifolds M1 and M2 by an orientation preserving homeo-
morphism f : ∂M1 → ∂M2, then we have

Z(M) = 〈Z(f ) · Z(M1) , Z(M2)〉 ,

where Z(M1) = ZW1(1) and W1 is a cobordism from the empty surface ∅ to ∂M1 and
Z(M2) = ZW2(1) and W2 is a cobordism from ∂M2 to the empty surface ∅, and the nota-
tion 〈 , 〉 is the pairing between the vector space Z(∂M1) and its dual space Z(∂M2)

∗.

By using Lemma 5.1 and the presentation matrices vφ , vL, vR , vJ and vW(n) of the linear
maps Zφ , ZL, ZR , ZJ and ZW(n), we get a formula of the Turaev-Viro invariants for all
orientable closed Seifert fibered manifolds.

5.2. The Turaev-Viro invariants for lens spaces. A level r ≥ 3 is fixed. The vec-

tor v
(r)
φ and the two matrices M

(r)
L and M

(r)
R are given in Lemma 4.4 and Lemma 4.5. For

simplicity, we use the notations vφ , ML and MR instead of v
(r)
φ , M

(r)
L and M

(r)
R respectively.

THEOREM 5.2. For two coprime natural numbers p and q such that 0 < q < p,
the Turaev-Viro invariant of lens space L(p, q) at the level r is obtained by the Hermitian

product of the two vectors v
(r)
p,q = (vi)

n
i=1 and u(r) = (ui)

n
i=1, that is, T V (r) (L(p, q) ) =

〈 v
(r)
p,q , u(r)〉 :=∑n

i=1 viui , where the two vectors u and v are defined by the following.

u(r) := (ML)−1 · vφ ,

v(r)
p,q :=

{
(ML)an · · · (ML)a3 · (MR)a2 · (ML)a1 vφ · (n is odd) ,

(MR)an · · · (ML)a3 · (MR)a2 · (ML)a1 vφ · (n is even) ,

where the natural numbers {ai} are determined by an expansion into continued fraction
q/p = [a1, a2, . . . , an, 1], where we use the following notation.

[k1, k2, . . . , kn−1, kn] := 1

k1 + 1

k2 + 1

. . . + 1

kn

.

PROOF. In [11], we show that a special spine of the lens space L(p, q) can be obtained by
gluing two cobordisms U and V , where

U := Wφ ∪ WL̄, V = V (p, q) :=
{

Wφ ∪ W
a1
L ∪ W

a2
R ∪ W

a3
L ∪ · · · ∪ W

an

L (n is odd) ,

Wφ ∪ W
a1
L ∪ W

a2
R ∪ W

a3
L ∪ · · · ∪ W

an

R (n is even) .

The cobordism U is obtained by gluing Wφ and WL̄ by f : ∂Wφ → ∂WL̄. So, we get
ZU = ZL̄ · f∗ · Zφ : C → V (θ) by the axiom of TQFT shown in Section 5.1. Since f
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identifies edges of the theta-curve θ assigned with the same label, f∗ is the identity map on
V (θ). So, we have ZU = ZL̄ · Zφ . Similarly, for the cobordism V we see that ZV is given by

ZV =
{

(ZL)an · · · (ZL)a3 · (ZR)a2 · (ZL)a1 · Zφ (n is odd) ,

(ZR)an · · · (ZL)a3 · (ZR)a2 · (ZL)a1 · Zφ (n is even) .

Thus, the presentation matrices u(r) and v(r)(p, q) of the linear maps Z
(r)
U and Z

(r)
V with

respect to the basis {µi} = Adm(r)(θ) are given by

u(r) := ML̄ · vφ ,

v(r)(p, q) :=
{

(ML)an · · · (ML)a3 · (MR)a2 · (ML)a1 · vφ (n is odd) ,

(MR)an · · · (ML)a3 · (MR)a2 · (ML)a1 · vφ (n is even) .

By definition of L̄-diagram [11], we have ML̄ = (ML)−1. So, we get u(r) = (ML)−1 ·vφ .
The gluing map f : ∂U → ∂V induces the identity map on V (θ), and oriented lens space
L(p, q) is obtained if one of the orientation of U or V is reversed. Thus, we have L(p, q) ∼=
V ∪f −U . So, we have

T V (r) (L(p, q)) = 〈f∗ · ZV , ZU 〉 = 〈ZV , ZU 〉 .

Thus, the Turaev-Viro invariant of the lens space L(p, q) at the level r is obtained the

Hermitian product of the two vectors v
(r)
p,q and u(r).

REMARK 5.3. By calculation, we know that all elements of the vector vφ and the
matrix ML are real number at the level r = 3, 4, 5. So, all elements of the vector u and v in
Theorem 5.2 are real number at the level r = 3, 4, 5.

5.3. The Turaev-Viro invariants of all orientable closed Seifert fibered man-
ifolds. Let g ≥ 0 and b be integers, and let pi and qi be coprime natural num-
bers such that qi < pi (i = 1, 2, . . . , n). In [11], we define the closed 3-manifold
M(Fg , (1, b), (p1, q1), . . . , (pn, qn)) by gluing cobordisms

∐g
i=1 WJ , W(b) := Wφ ∪ WL ∪

(WR)b ∪WL̄,
∐n

i=1 V (pi, qi) and W(n+g +1), where WL̄ := (D2 ×S1, PL ; Γ
(1)
L , Γ

(0)
L ). It

is an orientable closed Seifert fibered manifold on an orientable closed surface Fg with genus
g which has n singular fibers with indices (αi , βi), where αi = pi and βiqi ≡ 1 (mod pi ).
Oppositely, any orientable closed Seifert fibered manifold has such presentation. (for detail
see [11]).

In this section, we give a formula of the Turaev-Viro invariants of M :=
M(Fg , (1, b), (p1, q1), . . . , (pn, qn)). Our formula shown in Theorem 5.4 is directly obtained
by applying Lemma 5.1 and the axiom of TQFT to these cobordisms.

A level r ≥ 3 is fixed. The vectors and matrices v
(r)
φ , v

(r)
L , v

(r)
R , v

(r)
J and v

(r)
W(n) are given

in Lemma 4.4, Lemma 4.5, Lemma 4.6 and Lemma 4.8. For simplicity, we use the notations

vφ , vL, vR , vJ and vW(n) instead of v
(r)
φ , v

(r)
L , v

(r)
R , v

(r)
J and v

(r)
W(n) respectively.
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THEOREM 5.4. For pairs of coprime natural numbers (pi, qi) such that 0 < qi < pi

(i = 1, 2, . . . , n), an integer b and a natural number g , the Turaev-Viro invariant of the
orientable closed Seifert fibered manifold M := M(Fg , (1, b), (p1, q1), . . . , (pn, qn)) at the

level r is obtained by the Hermite product of the two vectors vW(n+g+1) and vJ
⊗g ⊗vb ⊗v1 ⊗

v2 ⊗ · · · ⊗ vn, that is,

T V (r)(M) = 〈vW(n+g+1) , vJ
⊗g ⊗ vb ⊗ v1 ⊗ v2 ⊗ · · · ⊗ vn〉 ,

where the vector vb is defined by vb := (ML)−1Mb
RMLvφ , and the vector vi := v(r)(pi, qi)

is defined in Theorem 5.2.

5.4. Corollaries of main theorems. In this subsection, we give a sufficient condition
that the values of the Turaev-Viro invariant of two orientable closed Seifert fibered manifolds
coincide when a level r is fixed.

At first, we prepare some notations. Let (p, q) and (p′, q ′) be pairs of coprime natural
numbers such that 0 < q < p and 0 < q ′ < p′ and n ≤ n′, where n and n′ are natural
numbers defined by q/p = [a1, a2, a3, . . . , an, 1] and q ′/p′ = [a′

1, a
′
2, a

′
3, . . . , a

′
n′ , 1]. Then,

for a natural number k ∈ N, we define that (p′, q ′) is obtained from (p, q) by a k-move if
either (1) or (2) holds.

(1) n′ = n and al ≡ a′
l (mod k) for all l (1 ≤ l ≤ n).

(2) n′ = n + 2 and there exists an element al (1 ≤ l ≤ n) such that

a′
i = ai , a′

l = al − m , a′
l+1 = k , a′

l+2 = m , a′
j+2 = aj ,

where m is an arbitrary natural number such that al −m > 0 and i = 1, 2, . . . , l−1
and j = l + 1, l + 2, . . . , n.

Then, we call (p′, q ′) and (p, q) are k-equivalent , denoted by (p, q)
k∼ (p′, q ′) if one of

(p′, q ′) or (p, q) is obtained from the other by a finite sequence of k-moves.

COROLLARY 5.5. For any level r and natural number k such that (M
(r)
L )k =

(M
(r)
R )k = E where E is the unit matrix, the values of the Turaev-Viro invariant of two

lens spaces L(p, q) and L(p′, q ′) at the level r , where 0 < q < p and 0 < q ′ < p′, are
coincident if (p, q) and (p′, q ′) are k-equivalent.

PROOF. For simplicity, we denote ML and MR instead of M
(r)
L and M

(r)
R . By Theo-

rem 5.2, we have T V (r)(L(p, q)) = 〈u , v〉.
For any i ∈ {1, 2, . . . , n} where n is the length of the expansion into continued fraction

of q/p, we get the following equation about the vector v.

v = v(r)
p,q

= MXn

an · · · ML
a3 · MR

a2 · ML
a1 · vφ

= MXn
an · · · MXi

ai−mEMXi

m · · · ML
a3 · MR

a2 · ML
a1 · vφ
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= MXn
an · · · MXi

ai−mMY
kMXi

m · · · ML
a3 · MR

a2 · ML
a1 · vφ ,

where Xi, Y ∈ {L,R}. If Xi = Y , we have v
(r)
p,q = v

(r)

p′,q ′ , where q ′/p′ =
[a1, a2, . . . , ai−1, ai + k, ai+1, . . . , an, 1]. If Xi �= Y , we have v

(r)
p,q = v

(r)

p′,q ′ , where q ′/p′ =
[a1, a2, . . . , ai−1,m, k, ai −m, ai+1, . . . , an, 1]. Thus, when (p′, q ′) is obtained by a 4-move

from (p, q) we have T V (r)(L(p, q)) = 〈u(r) , v
(r)
p,q 〉 = 〈u(r) , v

(r)

p′,q ′ 〉 = T V (r)(L(p′, q ′)).
So, T V (r)(L(p, q)) and T V (r)(L(p′, q ′)) are equal if (p, q) and (p′, q ′) are k-equivalent.

In case r = 3, 4, 5, we set k = 4, 16, 64 respectively. Then, we have (M
(r)
L )k =

(M
(r)
R )k = E. In case r > 5, the natural number k will be satisfied the following equation.

CONJECTURE 5.6. For any level r ≥ 3, we set k = 4r−2. Then, we have (M
(r)
L )k =

(M
(r)
R )k = E.

We show an example of coincidence of the values of the Turaev-Viro invariant of lens
spaces.

EXAMPLE 5.7 (r = 3).

1

5
= [4, 1] 4−move−→ [8, 1] = 1

9
,

1

5
= [4, 1] 4−move−→ [2, 4, 2, 1] = 13

29
.

So, we have (4, 1)
4∼ (9, 1) and (4, 1)

4∼ (29, 13). Thus, we get

T V (3) (L(4, 1)) = T V (3) (L(9, 1)) = T V (3) (L(29, 13)) .

We get a sufficient condition of coincidence of the values of the Turaev-Viro invariant of
orientable closed Seifert fibered manifolds.

COROLLARY 5.8. For any level r and natural number k such that (M
(r)
L )k =

(M
(r)
R )k = E where E is the unit matrix, the value of the Turaev-Viro invariant of two

orientable closed Seifert fibered manifolds M := M
(
Fg , (1, b), (p1, q1), . . . , (pn, qn)

)
and

M ′ := M
(
Fg , (1, b′), (p′

1, q
′
1), . . . , (p

′
n, q

′
n)
)

at the level r , where 0 < qi < pi and

0 < q ′
i < p′

i for all i = 1, 2, . . . , n, are coincident if two conditions (1) and (2) are hold.

(1) b ≡ b′ (mod k) , (2) (pi, qi)
k∼ (p′

i , q
′
i ) for any i = 1, 2, . . . , n .

PROOF. The proof is similar to Corollary 5.5. By Theorem 5.4, the Turaev-Viro invari-
ant of M is given by the inner product of the two vectors vW(n+g+1) and vJ

⊗g ⊗ vb ⊗ v1 ⊗
v2 ⊗ · · · ⊗ vn. In the proof of Corollary 5.5, we show vpi ,qi = vp′

i ,q
′
i

if (pi, qi)
k∼ (p′

i , q
′
i ).

By the same reason, we have vb = vb′ if b ≡ b′ (mod k) because the vector vb is de-

fined by vb := (ML)−1 (MR)b MLvφ . Thus, the conditions (1) and (2) hold, and we have

T V (r)(M) = T V (r)(M ′).
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At last, we show two examples of calculation of the Turaev-Viro invariant at the level
r = 3.

1. Quaternionic space Q = M (F0, (2, 1), (2, 1), (2, 1)). By definition, we have

v
(3)
1 = v

(3)
2 = v

(3)
3 = v(3)(2, 1) = M

(3)
L v

(3)
φ = (1, 0, 1, 0) and

v
(3)
W(3) = (1, 0, . . . , 0, 1(11), 0, . . . , 0, 1(22), 0, . . . , 0, 1(32), 0 ,

0, . . . , 0, 1(35), 0, . . . , 0, 1(41), 0, . . . , 0, 1(56), 0, . . . , 0, 1(62), 0, 0) ,

where 1(i) means that the i-th element of the vector v
(3)
W(3) is 1. So, we get

T V (3)(Q) = 〈v(3)
W(3) , v

(3)
1 ⊗ v

(3)
2 ⊗ v

(3)
3 〉 = 4 .

2. Brieskorn manifold M = Σ(2, 3, 5) = M(F0, (2, 1), (3, 1), (5, 1))

We have the following equations.

v
(3)
1 = v(3)(2, 1) = M

(3)
L vφ = (1, 0, 1, 0) ,

v
(3)
2 = v(3)(3, 1) = (M

(3)
L )2vφ = (1, 1, 0, 0) ,

v
(3)
3 = v(3)(5, 1) = (M

(3)
L )4vφ = (1,−1, 0, 0) .

Thus, we get T V (3)(M) = 〈v(3)
W(3), v

(3)
1 ⊗ v

(3)
2 ⊗ v

(3)
3 〉 = 1.

6. Appendix

6.1. The vector vφ and the matrices ML and MR

6.1.1. r = 3

vφ =




1
−1
0
0


 , ML =




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1


 , MR =




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0


 .

6.1.2. r = 4

vφ = (1,−√
2, 1, 0, 0, 0, 0, 0, 0, 0)T ,
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where T means the transposition.

ML =




1 · · · · · · · · ·
· · · 1 · · · · · ·
· · · · · · · 1 · ·
· − 1√

2
· · · · · · − 1√

2
·

· · · · 1 · · · · ·
· · · · · −1 · · · ·
· − 1√

2
· · · · · · 1√

2
·

· · 1 · · · · · · ·
· · · · · · −1 · · ·
· · · · · · · · · 1




,

MR =




1 · · · · · · · · ·
· 1 · · · · · · · ·
· · 1 · · · · · · ·
· · · · − 1√

2
− 1√

2
· · · ·

· · · 1 · · · · · ·
· · · · · · −1 · · ·
· · · · − 1√

2
1√
2

· · · ·
· · · · · · · · · 1
· · · · · · · · −1 ·
· · · · · · · 1 · ·




.

where · means 0.

6.1.3. r = 5

We put a = 5 − √
5

5 + √
5

.

vφ = (1,−1 − a1/2, 1 + a1/2,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

where T means the transposition.
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6.2. The functions δ, θ and Tet. For each level r ≥ 3, the functions δ, θ and Tet are
defined as follows [4].

• The function δ : C(r) → C, where C(r) := {0, 1, 2, . . . , r − 2}.
δn+1 = dδn − δn−1 ,

δ0 := 1 , d := −A2 − A−2 ,

δ−1 := 0 , A := eiπ/2r .

• The function θ : {(a, b, c) | a, b, c ∈ C(r), (a, b, c) is r-admissible triple} → C.

θ(a, b, c) := (−1)m+n+p[m + n + p + 1]![n]![m]![p]!
[m + n]![n + p]![p + m]! ,

m := (a + b − c)/2 ,

n := (−a + b + c)/2 ,

p := (a − b + c)/2 ,

[n] := (−1)n−1δn−1 ,

[n]! := [n][n − 1] · · · [2][1] ,

[0]! := 1

• The function Tet :

(a, b, c, d, e, f )

∣∣∣∣∣∣
a, b, c, d, e, f ∈ C(r),

(b, c, e), (a, b, f ), (c, d, f ), (a, d, e)

are r-admissible triples


→ C.

Tet

[
a b e

c d f

]
:= τ !

ε!
∑

m≤s≤M

(−1)s[s + 1]!∏
i[s − ai]!∏j [bj − s]! .

τ ! :=∏i,j [bj − ai]! , b1 := (a + b + c + d)/2 ,

ε! := [a]![b]![c]![d]![e]![f ]! , b2 := (a + c + e + f )/2 ,

a1 := (a + b + e)/2 , b3 := (b + e + d + f )/2 ,

a2 := (a + d + f )/2 , m := max{ai} ,

a3 := (b + c + d)/2 , M := min{bi} ,

a4 := (c + d + e)/2 .
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