Structure Jacobi Operator of Real Hypersurfaces with Constant Scalar Curvature in a Nonflat Complex Space Form

U-Hang KI, Setsuo NAGAI and Ryoichi TAKAGI

Kyungpook National University, Toyama University and Chiba University

(Communicated by Y. Maeda)

Abstract

Let M be a real hypersurface with almost contact metric structure (ϕ, ξ, η, g) in a nonflat complex space form $M_{n}(c)$. We denote by S be the Ricci tensor of M. In the present paper we investigate real hypersurfaces with constant scalar curvature of $M_{n}(c)$ whose structure Jacobi operator R_{ξ} commute with both ϕ and S. We characterize Hopf hypersurfaces of $M_{n}(c)$.

Introduction

An n-dimensional complex space form $M_{n}(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c. As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_{n} \mathbf{C}$, a complex Euclidean space \mathbf{C}_{n} or a complex hyperbolic space $H_{n} \mathbf{C}$ according as $c>0, c=0$ or $c<0$.

Let M be a real hypersurface of $M_{n}(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the complex structure J and the Kaehlerian metric of $M_{n}(c)$. This structure plays an important role in the study of the geometry of a real hypersurface. The structure vector ξ is said to be principal if $A \xi=\alpha \xi$ is satisfied, where A is the shape operator of M and $\alpha=\eta(A \xi)$. A real hypersurface is said to be a Hopf hypersurface if the structure vector field ξ of M is principal.

In a complex projective space $P_{n} \mathbf{C}$, Hopf hypersurfaces with constant principal curvatures are just the homogeneous real hypersurfaces ([7]). Further, Hopf hypersurfaces with constant principal curvatures in a nonflat complex space forms were completely classified as follows:

ThEOREM T ([9]). Let M be a homogeneous real hypersurface of $P_{n} \mathbf{C}$. Then M is a tube of radius r over one of the following Kaehlerian submanifolds:
$\left(\mathrm{A}_{1}\right)$ a hyperplane $P_{n-1} \mathbf{C}$, where $0<r<\frac{\pi}{2}$,
(A_{2}) a totally geodesic $P_{k} \mathbf{C}(1 \leq k \leq n-2)$, where $0<r<\frac{\pi}{2}$,
(B) a complex quadric Q_{n-1}, where $0<r<\frac{\pi}{4}$,

[^0](C) $\quad P_{1} \mathbf{C} \times P_{(n-1) / 2} \mathbf{C}$, where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,
(D) a complex Grassmann $G_{2,5} \mathbf{C}$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) a Hermitian symmetric space $\operatorname{SO}(10) / U(5)$, where $0<r<\frac{\pi}{4}$ and $n=15$.

THEOREM B ([1]). Let M be a real hypersurface of $H_{n} \mathbf{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a self-tube, that is, a horosphere,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere or 2 tube over 2 hyperplane $H_{n-1}(\mathbf{C})$,
$\left(\mathrm{A}_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbf{C}(1 \leq k \leq n-2)$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbf{R}$.

We denote by S and R_{ξ} be the Ricci tensor and the structure Jacobi operator with respect to the structure vector field ξ of M respectively. Then it is a very important problem to investigate real hypersurfaces satisfying $R_{\xi} S=S R_{\xi}$ in $M_{n}(c)$. From this point of view, Kim, Lee and one of the present authors ([4]) was recently proved the following:

THEOREM KKL ([4]). Let M be a real hypersurface in a nonflat complex space form $M_{n}(c)$. If it satisfies $R_{\xi} \phi=\phi R_{\xi}, R_{\xi} S=S R_{\xi}$ and $g(S \xi, \xi)=$ const., then M is a Hopf hypersurface. Further, M is locally congruent to one of $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ type if $c>0$, or $\left(\mathrm{A}_{0}\right)$, $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ type if $c<0$ provided that $\eta(A \xi) \neq 0$.

Further, the present authors ([5]) have been also proved the following:
ThEOREM KNT ([5]). Let M be a real hypersurface with $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $R_{\xi} S=S R_{\xi}$ in $M_{n}(c), c \neq 0$. If $(\rho-\lambda)^{2}-\frac{c}{4} \neq 0$, then M is a Hopf hypersurface (for the definitions of ρ and λ see section 2).

The main purpose of this paper is to establish the following theorem:
THEOREM 3.2. Let M be a real hypersurface in a nonflat complex space form $M_{n}(c)$ which satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $R_{\xi} S=S R_{\xi}$. If the scalar curvature of M is constant, then M is a Hopf hypersurface. Further, M is locally congruent to one of $\left(\mathrm{A}_{1}\right)$, $\left(\mathrm{A}_{2}\right)$ type if $c>0$, or $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ type if $c<0$ provided that $\eta(A \xi) \neq 0$.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces supposed to be orientable.

The authors would like to express their sincere gratitude to the referee for his valuable suggestions and comments.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form $M_{n}(c)$, and N be a unit normal vector field of M. By $\tilde{\nabla}$ we denote the Levi-Civita connection with respect to the Fubini-Study metric \tilde{g} of $M_{n}(c)$. Then the Gauss and Weingarten formulas are given
respectively by

$$
\tilde{\nabla}_{Y} X=\nabla_{Y} X+g(A Y, X) N, \quad \tilde{\nabla}_{X} N=-A X,
$$

for any vector fields X and Y on M, where g denoted the Riemannian metric of M induced from \tilde{g} and A is the shape operator of M in $M_{n}(c)$. For any vector field X tangent to M, we put

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi .
$$

Then we may see that the aggregate (ϕ, ξ, η, g) is an

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \\
\eta(\xi)=1, \quad \phi \xi=0, \quad \eta(X)=g(X, \xi)
\end{gathered}
$$

for any vector fields X and Y on M.
Since J is parallel, we find from the Gauss and Weingarten formulas the following:

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X \tag{1.1}
\end{equation*}
$$

The ambient space being of constant holomorphic sectional curvature c, we obtain the following Gauss and Codazzi equations respectively:

$$
\begin{align*}
R(X, Y) Z= & \frac{c}{4}\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{1.2}\\
& -2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X-g(A X, Z) A Y \\
\left(\nabla_{X} A\right) Y- & \left(\nabla_{Y} A\right) X=\frac{c}{4}\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{1.3}
\end{align*}
$$

for any vector fields X, Y and Z on M, where R denotes Riemann-Christoffel curvature tensor of M.

Notation. In the sequel, we denote by $\alpha=\eta(A \xi), \beta=\eta\left(A^{2} \xi\right), \gamma=\eta\left(A^{3} \xi\right), h_{(2)}=$ $\operatorname{Tr}^{t} A A$ and $h=\operatorname{Tr} A$, and for a function f we denote by ∇f the gradient vector field of f.

Putting $U=\nabla_{\xi} \xi$, we see that U is orthogonal to ξ. Thus we have

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{1.4}
\end{equation*}
$$

which leads to $g(U, U)=\beta-\alpha^{2}$.
From (1.2) the Ricci tensor S of type $(1,1)$ on M is given by

$$
\begin{equation*}
S=\frac{c}{4}\{(2 n+1) I-3 \eta \otimes \xi\}+h A-A^{2}, \tag{1.5}
\end{equation*}
$$

where I is the identity tensor, which shows that

$$
\begin{equation*}
S \xi=\frac{c}{2}(n-1) \xi+h A \xi-A^{2} \xi \tag{1.6}
\end{equation*}
$$

If we put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{1.7}
\end{equation*}
$$

where W is a unit vector field orthogonal to ξ. Then we have $U=\mu \phi W$. So we verify that W is also orthogonal to U. Further we have

$$
\begin{equation*}
\mu^{2}=\beta-\alpha^{2} \tag{1.8}
\end{equation*}
$$

Therefore, we easily see that ξ is a principal curvature vector, that is, $A \xi=\alpha \xi$ if and only if $\beta-\alpha^{2}=0$ or $\mu=0$.

From the definition of U, and (1.1) and (1.7), we verify that

$$
\begin{equation*}
g\left(\nabla_{X} \xi, U\right)=\mu g(A W, X) . \tag{1.9}
\end{equation*}
$$

Differentiating (1.4) covariantly along M and making use of (1.1), we find

$$
\begin{align*}
& \eta(X) g(A U+\nabla \alpha, Y)+g\left(\phi X, \nabla_{Y} U\right) \\
& \quad=g\left(\left(\nabla_{Y} A\right) X, \xi\right)-g(A \phi A X, Y)+\alpha g(A \phi X, Y), \tag{1.10}
\end{align*}
$$

which enables us to obtain

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{1.11}
\end{equation*}
$$

because of (1.3) and (1.9). Since W is orthogonal to U, we verify, using (1.1), that

$$
\begin{equation*}
\mu g\left(\nabla_{X} W, \xi\right)=g(A U, X) \tag{1.12}
\end{equation*}
$$

Because of (1.1), (1.9) and (1.10), it is seen that

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha \tag{1.13}
\end{equation*}
$$

2. Real hypersurfaces satisfying $R_{\xi} \phi=\phi R_{\xi}$ and $R_{\xi} S=S R_{\xi}$

Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0$. Then the structure Jacobi operator R_{ξ} with respect to ξ is given by

$$
\begin{equation*}
R_{\xi} X=R(X, \xi) \xi=\frac{c}{4}(X-\eta(X) \xi)+\alpha A X-\eta(A X) A \xi \tag{2.1}
\end{equation*}
$$

for any vector X on M , where we have used (1.2).
Now, suppose that $R_{\xi} \phi=\phi R_{\xi}$. Then above equation implies that

$$
\begin{equation*}
\alpha(\phi A X-A \phi X)=g(A \xi, X) U+g(U, X) A \xi \tag{2.2}
\end{equation*}
$$

We set Ω be a set of points such that $\mu(p) \neq 0$ at $p \in M$ and suppose that $\Omega \neq \emptyset$. In what follows we discuss our arguments on the open subset Ω of M unless otherwise stated. Then, it is, using (2.2), clear that $\alpha \neq 0$ on Ω. So a function λ given by $\beta=\alpha \lambda$ is defined. Therefore, replacing X by U in (2.1) and taking account of (1.4), we find

$$
\begin{equation*}
\phi A U=\lambda A \xi-A^{2} \xi \tag{2.3}
\end{equation*}
$$

Further, we assume that $R_{\xi} S=S R_{\xi}$. Then we see from (1.6) and (2.1) that

$$
\begin{aligned}
g\left(A^{3} \xi, Y\right) & g(A \xi, X)-g\left(A^{3} \xi, X\right) g(A \xi, Y) \\
= & g\left(A^{2} \xi, Y\right) g\left(h A \xi-\frac{c}{4} \xi, X\right)-g\left(A^{2} \xi, X\right) g\left(h A \xi-\frac{c}{4} \xi, Y\right) \\
& +\frac{c}{4} h\{g(A \xi, Y) \eta(X)-g(A \xi, X) \eta(Y)\}
\end{aligned}
$$

which shows that

$$
\begin{equation*}
\alpha A^{3} \xi=\left(\alpha h-\frac{c}{4}\right) A^{2} \xi+\left(\gamma-\beta h+\frac{c}{4} h\right) A \xi+\frac{c}{4}(\beta-h \alpha) \xi . \tag{2.4}
\end{equation*}
$$

Combining above two equations and using (1.7), we obtain

$$
\mu\left\{g\left(A^{2} \xi, Y\right) w(X)-g\left(A^{2} \xi, X\right) w(Y)\right\}=\beta\{\eta(Y) g(A \xi, X)-\eta(X) g(A \xi, Y)\}
$$

where an 1-form w is defined by $w(X)=g(W, X)$. Putting $Y=A \xi$ in this, we find

$$
\begin{equation*}
A^{2} \xi=\rho A \xi+(\beta-\rho \alpha) \xi \tag{2.5}
\end{equation*}
$$

where we have put $\mu^{2} \rho=\gamma-\beta \alpha$ and $\mu^{2}(\beta-\rho \alpha)=\left(\beta^{2}-\alpha \gamma\right)$ on Ω, which implies

$$
A^{3} \xi=\left(\rho^{2}-\beta-\rho \alpha\right) A \xi+\rho(\beta-\rho \alpha) \xi
$$

Comparing this with (2.4), we verify that

$$
\begin{equation*}
\mu(h-\rho)\left(\beta-\rho \alpha-\frac{c}{4}\right)=0 . \tag{2.6}
\end{equation*}
$$

REMARK 2.1. $h-\rho=0$ on Ω.
In fact, if not, then we see from (2.6) that $\beta=\rho \alpha+\frac{c}{4}$ on a non empty open set $\Omega^{\prime}=$ $\{x \in \Omega \mid(h-\rho)(x) \neq 0\}$. Hence, (2.5) turns out to be $A^{2} \xi=\rho A \xi+\frac{c}{4} \xi$, which connected to (2.1) implies that $R_{\xi} A=A R_{\xi}$. Thus, by Corollary 4.2 of [4], it is seen that $\Omega^{\prime}=\emptyset$. Hence $h=\rho$ on Ω is proved. In what follows $h=\rho$ is satisfied everywhere.

Since we have $\beta=\alpha \lambda$, (2.5) becomes

$$
\begin{equation*}
A^{2} \xi=h A \xi+\alpha(\lambda-h) \xi \tag{2.7}
\end{equation*}
$$

Thus, (2.3) implies that

$$
\begin{equation*}
A U=(h-\lambda) U . \tag{2.8}
\end{equation*}
$$

We also have by (1.7) and (2.7)

$$
\begin{equation*}
A W=\mu \xi+(h-\alpha) W \tag{2.9}
\end{equation*}
$$

because of $\mu \neq 0$.

Differentiating (2.7) covariantly along Ω and making use of (1.1), we find

$$
\begin{align*}
& g\left(\left(\nabla_{X} A\right) A \xi, Y\right)+g\left(A\left(\nabla_{X} A\right) \xi, Y\right)+g\left(A^{2} \phi A X, Y\right) \\
&-h g(A \phi A X, Y) \tag{2.10}\\
&=(X h) g(A \xi, Y)+h g\left(\left(\nabla_{X} A\right) \xi, Y\right) \\
&+X(\alpha \lambda-\alpha h) \eta(Y)+\alpha(\lambda-h) g(\phi A X, Y)
\end{align*}
$$

for any vectors X and Y on M, which together with (1.3) and (1.11) yields

$$
\left(\nabla_{\xi} A\right) A \xi=h A U-\frac{c}{4} U+\frac{1}{2} \nabla \beta
$$

Putting $X=\xi$ in (2.10) and taking account of (1.11), (2.8) and above equation, we obtain

$$
\begin{align*}
\frac{1}{2} \nabla \beta= & -A \nabla \alpha+h \nabla \alpha+(\xi h) A \xi+\xi(\alpha \lambda-\alpha h) \xi \\
& -\left\{(h-\lambda)(h+\alpha-3 \lambda)-\frac{c}{4}\right\} U, \tag{2.11}
\end{align*}
$$

which connected to $\beta=\alpha \lambda$ implies that

$$
\begin{equation*}
\alpha(\xi \lambda)=(2 \alpha-\lambda) \xi \alpha+2 \mu W \alpha \tag{2.12}
\end{equation*}
$$

Because of (2.9) and (2.11), we also have

$$
\begin{equation*}
\alpha W \lambda=(2 \alpha-\lambda) W \alpha+2 \mu(\xi h-\xi \alpha) . \tag{2.13}
\end{equation*}
$$

If we take account of (2.7) and (2.8), then (2.11) implies that

$$
\begin{align*}
\frac{1}{2}(A \nabla \beta-h \nabla \beta)= & -A^{2} \nabla \alpha+2 h A \nabla \alpha-h^{2} \nabla \alpha+(\xi \sigma) A \xi \\
& +(\sigma \xi h-h \xi \sigma) \xi+\lambda\left\{(h-\lambda)(h+\alpha-3 \lambda)-\frac{c}{4}\right\} U \tag{2.14}
\end{align*}
$$

where we have put $\sigma=\alpha(\lambda-h)$.
Now, differentiating (2.9) covariantly along Ω, we find

$$
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi+X(h-\alpha) W+(h-\alpha) \nabla_{X} W,
$$

which together with (1.3), (1.12) and (2.8) yields

$$
\begin{equation*}
\mu\left(\nabla_{W} A\right) \xi=\left\{(h-\lambda)(h-2 \alpha)-\frac{c}{2}\right\} U+\frac{1}{2} \nabla \beta-\alpha \nabla \alpha \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{W} A\right) W=-2(h-\lambda) U+\nabla h-\nabla \alpha, \tag{2.16}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
W \mu=\xi h-\xi \alpha . \tag{2.17}
\end{equation*}
$$

If we replace X by $A \xi$ in (2.10) and make use of (1.3), (1.7), (1.11), (2.7), (2.8) and the last two equations, we obtain

$$
\begin{aligned}
& \frac{1}{2}(A \nabla \beta-h \nabla \beta)+\alpha^{2} \nabla \lambda+\mu^{2} \nabla h \\
& \quad=g(A \xi, \nabla h) A \xi+g(A \xi, \nabla \sigma) \xi+\left\{(h-\lambda)(2 h \lambda-3 \alpha h+2 \alpha \lambda)+\frac{c}{4}(3 \alpha-2 \lambda)\right\} U .
\end{aligned}
$$

Substituting (2.14) into this, we find

$$
\begin{align*}
\alpha^{2} \nabla \lambda+ & \mu^{2} \nabla h-A^{2} \nabla \alpha+2 h A \nabla \alpha-h^{2} \nabla \alpha \\
= & \{g(A \xi, \nabla h)-\xi \sigma\} A \xi+\{g(A \xi, \nabla \sigma)+h(\xi \sigma)-(\beta-h \alpha) \xi h\} \xi \tag{2.18}\\
& +\left\{(h-\lambda)\left(h \lambda-3 \alpha h+\alpha \lambda+3 \lambda^{2}\right)+\frac{c}{4}(3 \alpha-\lambda)\right\} U .
\end{align*}
$$

Now, it is, using (2.1), verified that

$$
\alpha \phi A \phi A X+\alpha A^{2} X=h g(A \xi, X) A \xi+\sigma \eta(X) A \xi-g(A U, X) U
$$

because of properties of almost contact metric structure.
On the other hand, we have from (1.10)

$$
\nabla_{X} U+g\left(A^{2} \xi, X\right) \xi=\phi\left(\nabla_{X} A\right) \xi+\phi A \phi A X+\alpha A X
$$

which together with (2.7) and the last equation yields

$$
\begin{aligned}
\nabla_{X} U & +\{h g(A \xi, X)+\alpha(\lambda-h) \eta(X)\} \xi=\phi\left(\nabla_{X} A\right) \xi+\alpha A X-A^{2} X \\
& +\frac{1}{\alpha}\{h g(A \xi, X)+\alpha(\lambda-h) \eta(X)\} A \xi-\frac{h-\lambda}{\alpha} g(U, X) U
\end{aligned}
$$

If we put $X=U$ in this and take account of (2.8), then we obtain

$$
\begin{equation*}
\nabla_{U} U=\phi\left(\nabla_{U} A\right) \xi+(h-\lambda)(2 \alpha-h) U \tag{2.19}
\end{equation*}
$$

If we differentiate (2.8) covariantly, we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) U+A \nabla_{X} U=X(h-\lambda) U+(h-\lambda) \nabla_{X} U, \tag{2.20}
\end{equation*}
$$

which together with (1.3), (1.13), (2.2) and (2.8) implies that

$$
\begin{aligned}
\phi\left(\nabla_{U} A\right) \xi= & -\left\{3(\lambda-h)(\lambda-\alpha)-\frac{c}{4}-\frac{1}{\alpha} U \alpha\right\} U-\mu(\xi h-\xi \lambda) W \\
& -(h-\lambda)(\nabla \alpha-(\xi \alpha) \xi)+A \nabla \alpha-\frac{1}{\alpha} g(A \xi, \nabla \alpha) A \xi
\end{aligned}
$$

Substituting this into (2.19), we find

$$
\begin{align*}
\nabla_{U} U= & \left\{(h-\lambda)(3 \lambda-\alpha-h)+\frac{c}{4}+\frac{1}{\alpha} U \alpha\right\} U+A \nabla \alpha-(h-\lambda) \nabla \alpha \tag{2.21}\\
& +\{(h-\lambda) \xi \alpha-g(A \xi, \nabla \alpha) \xi\}-\mu\left\{\xi h-\xi \lambda+\frac{1}{\alpha} g(A \xi, \nabla \alpha)\right\} W
\end{align*}
$$

which tells us that

$$
\begin{aligned}
& A\left(\nabla_{U} U\right)-(h-\lambda) \nabla_{U} U=A^{2} \nabla \alpha-2(h-\lambda) A \nabla \alpha+(h-\lambda)^{2} \nabla \alpha \\
& \quad+\{(h-\lambda) \xi \alpha-g(A \xi, \nabla \alpha)\}\{A \xi-(h-\lambda) \xi\} \\
& \quad-\mu\left(\xi h-\xi \lambda+\frac{1}{\alpha} g(A \xi, \nabla \alpha)\right)\{A W-(h-\lambda) W\}
\end{aligned}
$$

Because of (1.3) and (1.4), the relationship (2.20) implies that

$$
\begin{aligned}
& \frac{c}{4} \mu\{\eta(Y) w(X)-\eta(X) w(Y)\}+g\left(A X, \nabla_{Y} U\right)-g\left(A Y, \nabla_{X} U\right) \\
& \quad=Y(h-\lambda) u(X)-X(h-\lambda) u(Y) \\
& \quad+(h-\lambda)\left\{\left(\nabla_{Y} u\right)(X)-\left(\nabla_{X} u\right)(Y)\right\}
\end{aligned}
$$

where an 1-form u is defined by $u(X)=g(U, X)$.
If we replace X by U in this and make use of (2.8), then we obtain

$$
A\left(\nabla_{U} U\right)-(h-\lambda) \nabla_{U} U=\mu^{2}(\nabla \lambda-\nabla h)+U(h-\lambda) U
$$

which together with (2.21) gives

$$
\begin{align*}
A^{2} \nabla \alpha- & 2(h-\lambda) A \nabla \alpha+(h-\lambda)^{2} \nabla \alpha \\
= & \{g(A \xi, \nabla \alpha)-(h-\lambda) \xi \alpha\}\{A \xi-(h-\lambda) \xi\} \\
& +\mu\left\{\xi h-\xi \lambda+\frac{1}{\alpha} g(A \xi, \nabla \alpha)\right\}\{A W-(h-\lambda) W\} \tag{2.22}\\
& +\mu^{2}(\nabla \lambda-\nabla h)+U(h-\lambda) U
\end{align*}
$$

Substituting (2.18) into (2.22) and using (2.11), we find

$$
\begin{align*}
2 \mu^{2}(\nabla h & -\nabla \lambda)+U(\lambda-h) U-3(\lambda-\alpha)\left\{(h-\lambda)^{2}-\frac{c}{4}\right\} U \\
= & \{g(A \xi, \nabla h)-\xi \sigma-2 \lambda(\xi h)\} A \xi+\{g(A \xi, \nabla \sigma)+(h-2 \lambda) \xi \sigma-\sigma(\xi h)\} \xi \\
& +\{g(A \xi, \nabla \alpha)-(h-\lambda) \xi \alpha\}\{A \xi-(h-\lambda) \xi\} \tag{2.23}\\
& +\mu\left\{\xi h-\xi \lambda+\frac{1}{\alpha} g(A \xi, \nabla \alpha)\right\}\{A W-(h-\lambda) W\} .
\end{align*}
$$

Since $A \xi$ and $A W$ are orthogonal to U, it follows from the last equation that

$$
U(h-\lambda)=3(\lambda-\alpha)\left\{(h-\lambda)^{2}-\frac{c}{4}\right\} .
$$

Using this, (1.7) and (2.9), the equation (2.23) can be written as

$$
\mu^{2}(\nabla h-\nabla \lambda)=\mu^{2}(a \xi+b W)+3(\lambda-\alpha)\left\{(h-\lambda)^{2}-\frac{c}{4}\right\} U
$$

for some functions a and b, which shows that $a=\xi h-\xi \lambda$ and $b=W(h-\lambda)$. Since $\lambda-\alpha$ does not vanish on Ω, we verify that

$$
\begin{equation*}
\alpha(\nabla h-\nabla \alpha)=\alpha(a \xi+b W)+3\left\{(h-\lambda)^{2}-\frac{c}{4}\right\} U \tag{2.24}
\end{equation*}
$$

On the other hand, if we take the inner product (2.23) with W, and straightforward calculation, then we obtain

$$
\alpha^{2} W h=3 \alpha \mu \xi h+\alpha(4 \alpha-3 \lambda) W \alpha-\mu(4 \alpha-\lambda) \xi \alpha
$$

where we have used (2.12), (2.13) and the fact that $\sigma=\alpha(\lambda-h)$. Comparing this with (2.12) and (2.13), we see that $\alpha W(h-\lambda)=\mu \xi(h-\lambda)$, that is, $b \alpha=\mu a$. From this and (1.7), the equation (2.24) turns out to be

$$
\alpha(\nabla h-\nabla \lambda)=a A \xi+3\left\{(h-\lambda)^{2}-\frac{c}{4}\right\} U .
$$

Further, we can verify that $a=0$ and hence

$$
\alpha(\nabla h-\nabla \lambda)=3\left\{(h-\lambda)^{2}-\frac{c}{4}\right\} U .
$$

(for detail, see [4]).
If we assume that $(h-\lambda)^{2}-\frac{c}{4} \neq 0$ on an open subset $\Omega^{\prime \prime}$ of Ω, then we have from the last equation

$$
(Y \alpha) u(X)-(X \alpha) u(Y)=\alpha d u(Y, X)
$$

and

$$
\lambda \nabla \alpha-\alpha \nabla \lambda=2\left\{(h-\lambda)^{2}+(h-\lambda)(\alpha-2 \lambda)-\frac{c}{4}\right\} U
$$

(for detail, see [5]). Using above two equations, we can verify that $d u(Y, X)=0$, where the exterior derivative $d u$ of 1-form u is given by

$$
d u(X, Y)=Y u(X)-X u(Y)-u([X, Y])
$$

Therefore we have

$$
\begin{equation*}
\left\{(h-\lambda)^{2}-\frac{c}{4}\right\} d u(Y, X)=0 . \tag{2.25}
\end{equation*}
$$

on Ω. Therefore, we see, using (1.9), (1.13) and (2.8), that

$$
\begin{equation*}
d u(\xi, X)=(3 \lambda-2 h) \mu w(X)+g(\phi \nabla \alpha, X) \tag{2.26}
\end{equation*}
$$

for any vector X.
We prepare the following without proof in order to prove our Theorem 3.3 (See Lemma 3.5 of [4]).

REMARK 2.2. Let M be a real hypersurface in $M_{n}(c), c \neq 0$ such that $R_{\xi} \phi=\phi R_{\xi}$ and $R_{\xi} S=S R_{\xi}$. If $d u=0$, then Ω is void.

3. Proof ot Theorem

We will continue our arguments under the same hypotheses $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $R_{\xi} S=S R_{\xi}$ as in section 2. Because of Theorem KNT and Remark 2.2, we may only consider the case where $\theta=3(h-\lambda)^{2}-\frac{3}{4} c=0$ and hence

$$
\begin{equation*}
(h-\lambda)^{2}=\frac{c}{4} \tag{3.1}
\end{equation*}
$$

by virtue of (2.25). From (1.6), (2.7) and Remark 2.1, it follows that

$$
g(S \xi, \xi)=\frac{c}{2}(n-1)+(h-\lambda) \alpha,
$$

which together with (3.1) implies that $g(S \xi, \xi)=$ const. if α is constant.
According to Theorem KKL, we have
Lemma 3.1. Let M be a real hypersurface with (3.1) satisfying $R_{\xi} \phi=\phi R_{\xi}$, and $R_{\xi} S=S R_{\xi}$ in $M_{n}(c), c \neq 0$. If α is constant, then $\Omega=\emptyset$.

Because of (3.1), the equations (2.11), (2.21) and (2.22) are reduced respectively to

$$
\begin{align*}
A \nabla \alpha-h \nabla \alpha= & -\frac{1}{2} \nabla \beta+(\xi h) A \xi+(\lambda-h)(\xi \alpha) \xi+(h-\lambda)(2 \lambda-\alpha) U \tag{3.2}\\
\nabla_{U} U= & \left\{(h-\lambda)(2 \lambda-\alpha)+\frac{1}{\alpha} U \alpha\right\} U+A \nabla \alpha-(h-\lambda) \nabla \alpha \tag{3.3}\\
& +\{(h-\lambda-\alpha) \xi \alpha-\mu W \alpha\} \xi-\{\mu \xi \alpha+(\lambda-\alpha) W \alpha\} W \\
A^{2} \nabla \alpha+ & 2(\lambda-h) A \nabla \alpha+(h-\lambda)^{2} \nabla \alpha \\
= & \{g(A \xi, \nabla \alpha)-(h-\lambda) \xi \alpha\}\{A \xi-(h-\lambda) \xi\} \\
& +\frac{\mu}{\alpha} g(A \xi, \nabla \alpha)\{A W-(h-\lambda) W\}
\end{align*}
$$

Now, differentiating (1.7) covariantly, we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi+A \phi A X=(X \alpha) \xi+\alpha \phi A X+(X \mu) W+\mu \nabla_{X} W \tag{3.5}
\end{equation*}
$$

from which, taking the trace and using (2.17) we get

$$
\begin{equation*}
\operatorname{div} W=0 . \tag{3.6}
\end{equation*}
$$

Putting $X=\mu W$ in (3.5) and making use of (1.8), (2.9), (2.15) and (3.1), we obtain

$$
\begin{align*}
& \mu^{2} \nabla_{W} W+\mu(W \mu) W \\
& \quad=\frac{1}{2} \nabla \beta-\alpha \nabla \alpha-\mu(W \alpha) \xi+\{(h-\lambda)(2 \lambda-3 \alpha)-\alpha(h-\alpha)\} U \tag{3.7}
\end{align*}
$$

By the way, from $\mu W=-\phi U$ we have

$$
(X \mu) W+\mu \nabla_{X} W=g(A X, U) \xi-\phi \nabla_{X} U
$$

where we have used (1.1), which shows that

$$
-\mu \phi \nabla_{W} U=\mu^{2} \nabla_{W} W+\mu(W \mu) W
$$

From this and (3.7) it follows that

$$
\begin{equation*}
\mu \phi \nabla_{W} U=\alpha \nabla \alpha-\frac{1}{2} \nabla \beta+\mu(W \alpha) \xi+\{(h-\lambda)(3 \alpha-2 \lambda)+\alpha(h-\alpha)\} U \tag{3.8}
\end{equation*}
$$

Differentiating $\mu \phi W=U$ covariantly and using (1.1), we also find

$$
\nabla_{X} U=(X \mu) \phi W-\mu g(A X, W) \xi+\mu \phi \nabla_{X} W
$$

Putting $X=U$ in this, we obtain

$$
\nabla_{U} U=\frac{1}{\mu}(U \mu) U+\mu \phi \nabla_{U} W,
$$

which together with (3.8) implies that

$$
\begin{aligned}
\mu \phi\left(\nabla_{W} U+\nabla_{U} W\right)= & \alpha \nabla \alpha-\frac{1}{2} \nabla \beta+\mu(W \alpha) \xi+\nabla_{U} U-\frac{1}{\mu}(U \mu) U \\
& +\{(h-\lambda)(3 \alpha-2 \lambda)+\alpha(h-\alpha)\} U
\end{aligned}
$$

Substituting (3.3) into this, we get

$$
\begin{aligned}
\mu \phi\left(\nabla_{W} U+\nabla_{U} W\right)= & A \nabla \alpha+(\lambda-h+\alpha) \nabla \alpha-\frac{1}{2} \nabla \beta \\
& +\left\{\frac{1}{\alpha} U \alpha-\frac{1}{\mu} U \mu+\alpha(3 h-2 \lambda-\alpha)\right\} U \\
& +(h-\lambda-\alpha)(\xi \alpha) \xi-\{\mu \xi \alpha+(\lambda-\alpha) W \alpha\} W,
\end{aligned}
$$

or, using (3.2),

$$
\begin{align*}
& \mu \phi\left(\nabla_{W} U+\nabla_{U} W\right)=\alpha(\nabla \alpha-\nabla h)+(\xi h-\xi \alpha) A \xi-(\lambda-\alpha)(W \alpha) W \\
& \quad+\left\{\frac{1}{\alpha} U \alpha-\frac{1}{\mu} U \mu+2 h \alpha-\lambda \alpha-\alpha^{2}+2 h \lambda-2 \lambda^{2}\right\} U \tag{3.9}
\end{align*}
$$

On the other hand, from (1.7) and (2.2) we have

$$
\begin{equation*}
(A \phi-\phi A) X+\eta(X) U+u(X) \xi+\tau(w(X) U+u(X) W)=0 \tag{3.10}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\alpha \tau=\mu . \tag{3.11}
\end{equation*}
$$

From the last relationship, we see that

$$
\begin{equation*}
\mu \alpha \nabla \tau=\mu \nabla \mu-(\lambda-\alpha) \nabla \alpha \tag{3.12}
\end{equation*}
$$

Using (1.7) and (2.8), the equation (1.13) turns out to be

$$
\begin{equation*}
\nabla_{\xi} U=\mu(3 \lambda-3 h+\alpha) W+\alpha(\alpha-\lambda) \xi+\phi \nabla \alpha \tag{3.13}
\end{equation*}
$$

Differentiating (3.10) covariantly and using (1.1), we find

$$
\begin{aligned}
& \left(\nabla_{k} A_{j}^{r}\right) \phi_{i}^{r}+\left(\nabla_{k} A_{i r}\right) \phi_{j}^{r}+A_{j k}^{2} \xi_{i}-A_{k i}\left(A_{j r} \xi^{r}\right)+A_{i k}^{r} \xi_{j}-A_{k j}\left(A_{i r} \xi^{r}\right) \\
& \quad+\nabla_{k} U_{j}\left(\xi_{i}+\tau w_{i}\right)+\nabla_{k} U_{i}\left(\xi_{j}+\tau w_{j}\right)+U_{j} \nabla_{k} \xi_{i}+U_{i} \nabla_{k} \xi_{j} \\
& \quad+\tau_{k}\left(U_{j} W_{i}+U_{i} W_{j}\right)+\tau\left(U_{j} \nabla_{k} W_{i}+U_{i} \nabla_{k} W_{j}\right)=0
\end{aligned}
$$

Now we define the function $h_{(2)}$ by $h_{(2)}=A_{j}^{i} A_{i}^{j}$. Then, taking $\sum g^{k i}$ on the last equation and summing for k and i, we obtain

$$
\begin{aligned}
& -\frac{c}{2}(n-1) \xi-\phi \nabla h-h A \xi+h_{(2)} \xi+\tau\left(\nabla_{W} U+\nabla_{U} W\right)+\mu(3 \lambda-3 h+\alpha) W \\
& \quad+\alpha(\alpha-\lambda) \xi+\phi \nabla \alpha+\operatorname{div} U(\xi+\tau W)-(h-\lambda) \mu W \\
& \quad+(W \tau) U+(U \tau) W=0
\end{aligned}
$$

where we have used (1.3), (2.8), (3.6) and (3.13), which tells us that

$$
\begin{align*}
\alpha \phi(\nabla \alpha & -\nabla h)+\mu\left(\nabla_{W} U+\nabla_{U} W\right)+\alpha(W \tau) U \\
= & \alpha\left\{\frac{c}{2}(n-1)+h \alpha-h_{(2)}+\alpha(\lambda-\alpha)-\operatorname{div} U\right\} \xi \tag{3.14}\\
& +\{\mu \alpha(5 h-4 \lambda-\alpha)-\mu \operatorname{div} U-\alpha(U \tau)\} W
\end{align*}
$$

by virtue of (3.11). If we apply this by ϕ and make use of (2.17), (3.9) and (3.12), then we obtain

$$
\begin{equation*}
\operatorname{div} U=(h-\lambda)(3 \alpha-2 \lambda) \tag{3.15}
\end{equation*}
$$

Since we have

$$
g\left(\nabla_{W} U+\nabla_{U} W, \xi\right)=\mu(\alpha-\lambda)
$$

because of (1.1), (2.8) and (2.9), by taking the inner product (3.14) with ξ, we also find

$$
\operatorname{div} U=\frac{c}{2}(n-1)+h \alpha-h_{(2)}+\lambda^{2}-\alpha \lambda
$$

From this and (3.15), it follows that

$$
(h-\lambda)(3 \alpha-2 \lambda)=\frac{c}{2}(n-1)+h \alpha-h_{(2)}+\lambda^{2}-\alpha \lambda,
$$

From this and (3.15), it follows that

$$
(h-\lambda)(3 \alpha-2 \lambda)=\frac{c}{2}(n-1)+h \alpha-h_{(2)}+\lambda^{2}-\alpha \lambda,
$$

which together with (3.1) implies that

$$
\begin{equation*}
\nabla h_{(2)}-2 h \nabla h=2(\lambda-h) \nabla \alpha . \tag{3.16}
\end{equation*}
$$

However, the scalar curvature r of M is given by

$$
r=c\left(n^{2}-1\right)+h^{2}-h_{(2)}
$$

since we have (1.5). Thus, (3.16) is reduced to

$$
\nabla r=2(h-\lambda) \nabla \alpha
$$

Now, we assume that the scalar curvature of M is constant. Then we have

$$
\begin{equation*}
\nabla \alpha=0 \tag{3.17}
\end{equation*}
$$

since $h-\lambda \neq 0$.
So, using Lemma 3.1, we finally have
THEOREM 3.2. Let M be a real hypersurface in a nonflat complex space form $M_{n}(c)$ which satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $R_{\xi} S=S R_{\xi}$. If the scalar curvature of M is constant, then M is a Hopf hypersurface. Further, M is locally congruent to one of $\left(A_{1}\right)$, $\left(A_{2}\right)$ type if $c>0$, or $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}\right)$ type if $c<0$ provided that $\eta(A \xi) \neq 0$.

References

[1] J. BERNDT, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
[2] J. T. Cho and U.-H. Kı, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar 80 (1998), 155-167.
[3] U.-H. Ki, H.-J. Kim and A.-A. Lee, The Jacobi operator of real hypersurfaces of a complex space form, Comm. Korean Math. Soc. 13 (1998), 545-560.
[4] U.-H. KI, S. J. Kim and S.-B. Lee, The structure Jacobi operator on real hypersurfaces in a nonflat complex space form, to appear in Bull. Korean Math. Soc.
[5] U.-H. Ki, S. NAGAI and R. TAKAGI, Real hypersurfaces in nonflat complex space forms concerned with the structure Jacobi operator and Ricci tensor, to appear in Topics in Almost Hermitian Geometry and Related Fields, World Scientific, 2005.
[6] N.-G. Kim, C. Li and U.-H. Ki, Note on real hypersurfaces of nonflat complex space forms in terms of the structure Jacobi operator and Ricci tensor, to appear in Honam Math. J.
[7] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Soc. 296 (1986), 137-149.
[8] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, in Tight and Taut submanifolds, Cambridge Univ. Press, 1998, (T. E. Cecil and S. S. Chern eds.), 233-305.
[9] R. TAKAGI, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.

Present Addresses:
U-Hang Ki
The National Academy of Sciences, Korea.
Department of Mathematics,
Kyungrook National University,
Daegu, 702-701 Korea.
e-mail: uhangki2005@yahoo.co.kr
Setsuo Nagai
Department of Education,
Toyama University,
TOYAMASHI, 930-8555 JAPAN.
e-mail: EZW00314@nifty.com
RYOICHI TAKAGI
Department of Mathematics and informatics,
Chiba University,
Chibashi, 263-8522 JApAN.
e-mail: takagi@math.s.chiba-u.ac.jp

[^0]: Received June 1, 2005; revised February 28, 2006
 2000 Mathematics Subject Classification: 53C40 (Primary), 53C15 (Secondary).
 Key words and phrases: Hopf hypersurface, Ricci tensor, scalar curvature, structure Jacobi operator.

