Токуо J. Матн. Vol. 30, No. 2, 2007

Structure Jacobi Operator of Real Hypersurfaces with Constant Scalar Curvature in a Nonflat Complex Space Form

U-Hang KI, Setsuo NAGAI and Ryoichi TAKAGI

Kyungpook National University, Toyama University and Chiba University

(Communicated by Y. Maeda)

Abstract. Let *M* be a real hypersurface with almost contact metric structure (ϕ, ξ, η, g) in a nonflat complex space form $M_n(c)$. We denote by *S* be the Ricci tensor of *M*. In the present paper we investigate real hypersurfaces with constant scalar curvature of $M_n(c)$ whose structure Jacobi operator R_{ξ} commute with both ϕ and *S*. We characterize Hopf hypersurfaces of $M_n(c)$.

Introduction

An *n*-dimensional complex space form $M_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature *c*. As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_n\mathbf{C}$, a complex Euclidean space \mathbf{C}_n or a complex hyperbolic space $H_n\mathbf{C}$ according as c > 0, c = 0 or c < 0.

Let *M* be a real hypersurface of $M_n(c)$. Then *M* has an almost contact metric structure (ϕ, ξ, η, g) induced from the complex structure *J* and the Kaehlerian metric of $M_n(c)$. This structure plays an important role in the study of the geometry of a real hypersurface. The structure vector ξ is said to be *principal* if $A\xi = \alpha \xi$ is satisfied, where *A* is the shape operator of *M* and $\alpha = \eta(A\xi)$. A real hypersurface is said to be a Hopf hypersurface if the structure vector field ξ of *M* is principal.

In a complex projective space $P_n \mathbb{C}$, Hopf hypersurfaces with constant principal curvatures are just the homogeneous real hypersurfaces ([7]). Further, Hopf hypersurfaces with constant principal curvatures in a nonflat complex space forms were completely classified as follows:

THEOREM T ([9]). Let M be a homogeneous real hypersurface of $P_n \mathbb{C}$. Then M is a tube of radius r over one of the following Kaehlerian submanifolds:

- (A₁) a hyperplane $P_{n-1}\mathbf{C}$, where $0 < r < \frac{\pi}{2}$,
- (A₂) a totally geodesic $P_k \mathbb{C}$ $(1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$,
- (B) a complex quadric Q_{n-1} , where $0 < r < \frac{\pi}{4}$,

Received June 1, 2005; revised February 28, 2006

Key words and phrases: Hopf hypersurface, Ricci tensor, scalar curvature, structure Jacobi operator.

²⁰⁰⁰ Mathematics Subject Classification: 53C40 (Primary), 53C15 (Secondary).

- (C) $P_1 \mathbf{C} \times P_{(n-1)/2} \mathbf{C}$, where $0 < r < \frac{\pi}{4}$ and $n \geq 5$ is odd,
- (D) a complex Grassmann $G_{2,5}$ C, where $0 < r < \frac{\pi}{4}$ and n = 9,
- (E) a Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n = 15.

THEOREM B ([1]). Let M be a real hypersurface of $H_n \mathbb{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:

- (A_0) a self-tube, that is, a horosphere,
- (A₁) a geodesic hypersphere or 2 tube over 2 hyperplane $H_{n-1}(\mathbb{C})$,
- (A₂) *a tube over a totally geodesic* $H_k \mathbb{C}(1 \le k \le n 2)$,
- (B) a tube over a totally real hyperbolic space $H_n \mathbf{R}$.

We denote by *S* and R_{ξ} be the Ricci tensor and the structure Jacobi operator with respect to the structure vector field ξ of *M* respectively. Then it is a very important problem to investigate real hypersurfaces satisfying $R_{\xi}S = SR_{\xi}$ in $M_n(c)$. From this point of view, Kim, Lee and one of the present authors ([4]) was recently proved the following:

THEOREM KKL ([4]). Let M be a real hypersurface in a nonflat complex space form $M_n(c)$. If it satisfies $R_{\xi}\phi = \phi R_{\xi}$, $R_{\xi}S = SR_{\xi}$ and $g(S\xi, \xi) = const.$, then M is a Hopf hypersurface. Further, M is locally congruent to one of (A₁), (A₂) type if c > 0, or (A₀), (A₁), (A₂) type if c < 0 provided that $\eta(A\xi) \neq 0$.

Further, the present authors ([5]) have been also proved the following:

THEOREM KNT ([5]). Let *M* be a real hypersurface with $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R_{\xi}S = SR_{\xi}$ in $M_n(c)$, $c \neq 0$. If $(\rho - \lambda)^2 - \frac{c}{4} \neq 0$, then *M* is a Hopf hypersurface (for the definitions of ρ and λ see section 2).

The main purpose of this paper is to establish the following theorem:

THEOREM 3.2. Let M be a real hypersurface in a nonflat complex space form $M_n(c)$ which satisfies $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R_{\xi}S = SR_{\xi}$. If the scalar curvature of Mis constant, then M is a Hopf hypersurface. Further, M is locally congruent to one of (A₁), (A₂) type if c > 0, or (A₀), (A₁), (A₂) type if c < 0 provided that $\eta(A\xi) \neq 0$.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces supposed to be orientable.

The authors would like to express their sincere gratitude to the referee for his valuable suggestions and comments.

1. Preliminaries

Let *M* be a real hypersurface immersed in a complex space form $M_n(c)$, and *N* be a unit normal vector field of *M*. By $\tilde{\nabla}$ we denote the Levi-Civita connection with respect to the Fubini-Study metric \tilde{g} of $M_n(c)$. Then the Gauss and Weingarten formulas are given

respectively by

$$\tilde{\nabla}_Y X = \nabla_Y X + g(AY, X)N, \quad \tilde{\nabla}_X N = -AX,$$

for any vector fields X and Y on M, where g denoted the Riemannian metric of M induced from \tilde{g} and A is the shape operator of M in $M_n(c)$. For any vector field X tangent to M, we put

$$JX = \phi X + \eta(X)N \,, \quad JN = -\xi \,.$$

Then we may see that the aggregate (ϕ, ξ, η, g) is an

$$\phi^{2}X = -X + \eta(X)\xi, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$
$$\eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta(X) = g(X, \xi)$$

for any vector fields X and Y on M.

Since J is parallel, we find from the Gauss and Weingarten formulas the following:

(1.1)
$$(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi, \quad \nabla_X \xi = \phi A X.$$

The ambient space being of constant holomorphic sectional curvature c, we obtain the following Gauss and Codazzi equations respectively:

(1.2)
$$R(X,Y)Z = \frac{c}{4} \{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z\} + g(AY,Z)AX - g(AX,Z)AY,$$

(1.3)
$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\}$$

for any vector fields X, Y and Z on M, where R denotes Riemann-Christoffel curvature tensor of M.

NOTATION. In the sequel, we denote by $\alpha = \eta(A\xi)$, $\beta = \eta(A^2\xi)$, $\gamma = \eta(A^3\xi)$, $h_{(2)} = \text{Tr }^t AA$ and h = Tr A, and for a function f we denote by ∇f the gradient vector field of f.

Putting $U = \nabla_{\xi} \xi$, we see that U is orthogonal to ξ . Thus we have

(1.4)
$$\phi U = -A\xi + \alpha \xi \,,$$

which leads to $g(U, U) = \beta - \alpha^2$.

From (1.2) the Ricci tensor S of type (1,1) on M is given by

(1.5)
$$S = \frac{c}{4} \{ (2n+1)I - 3\eta \otimes \xi \} + hA - A^2,$$

where I is the identity tensor, which shows that

(1.6)
$$S\xi = \frac{c}{2}(n-1)\xi + hA\xi - A^2\xi.$$

If we put

(1.7)
$$A\xi = \alpha\xi + \mu W$$

where W is a unit vector field orthogonal to ξ . Then we have $U = \mu \phi W$. So we verify that W is also orthogonal to U. Further we have

(1.8)
$$\mu^2 = \beta - \alpha^2$$

Therefore, we easily see that ξ is a principal curvature vector, that is, $A\xi = \alpha \xi$ if and only if $\beta - \alpha^2 = 0$ or $\mu = 0$.

From the definition of U, and (1.1) and (1.7), we verify that

(1.9)
$$g(\nabla_X \xi, U) = \mu g(AW, X).$$

Differentiating (1.4) covariantly along M and making use of (1.1), we find

(1.10)
$$\eta(X)g(AU + \nabla\alpha, Y) + g(\phi X, \nabla_Y U) \\= g((\nabla_Y A)X, \xi) - g(A\phi AX, Y) + \alpha g(A\phi X, Y)$$

which enables us to obtain

(1.11)
$$(\nabla_{\xi} A)\xi = 2AU + \nabla\alpha$$

because of (1.3) and (1.9). Since W is orthogonal to U, we verify, using (1.1), that

(1.12)
$$\mu g(\nabla_X W, \xi) = g(AU, X)$$

Because of (1.1), (1.9) and (1.10), it is seen that

(1.13)
$$\nabla_{\xi} U = 3\phi A U + \alpha A \xi - \beta \xi + \phi \nabla \alpha \,.$$

2. Real hypersurfaces satisfying $R_{\xi}\phi = \phi R_{\xi}$ and $R_{\xi}S = SR_{\xi}$

Let *M* be a real hypersurface of a complex space form $M_n(c)$, $c \neq 0$. Then the structure Jacobi operator R_{ξ} with respect to ξ is given by

(2.1)
$$R_{\xi}X = R(X,\xi)\xi = \frac{c}{4}(X - \eta(X)\xi) + \alpha AX - \eta(AX)A\xi$$

for any vector X on M, where we have used (1.2).

Now, suppose that $R_{\xi}\phi = \phi R_{\xi}$. Then above equation implies that

(2.2)
$$\alpha(\phi AX - A\phi X) = g(A\xi, X)U + g(U, X)A\xi.$$

We set Ω be a set of points such that $\mu(p) \neq 0$ at $p \in M$ and suppose that $\Omega \neq \emptyset$. In what follows we discuss our arguments on the open subset Ω of M unless otherwise stated. Then, it is, using (2.2), clear that $\alpha \neq 0$ on Ω . So a function λ given by $\beta = \alpha \lambda$ is defined. Therefore, replacing X by U in (2.1) and taking account of (1.4), we find

(2.3)
$$\phi AU = \lambda A\xi - A^2 \xi$$

Further, we assume that $R_{\xi}S = SR_{\xi}$. Then we see from (1.6) and (2.1) that

$$\begin{split} g(A^{3}\xi,Y)g(A\xi,X) &- g(A^{3}\xi,X)g(A\xi,Y) \\ &= g(A^{2}\xi,Y)g\bigg(hA\xi - \frac{c}{4}\xi,X\bigg) - g(A^{2}\xi,X)g\bigg(hA\xi - \frac{c}{4}\xi,Y\bigg) \\ &+ \frac{c}{4}h\{g(A\xi,Y)\eta(X) - g(A\xi,X)\eta(Y)\}\,, \end{split}$$

which shows that

(2.4)
$$\alpha A^{3}\xi = \left(\alpha h - \frac{c}{4}\right)A^{2}\xi + \left(\gamma - \beta h + \frac{c}{4}h\right)A\xi + \frac{c}{4}(\beta - h\alpha)\xi$$

Combining above two equations and using (1.7), we obtain

$$\mu\{g(A^{2}\xi, Y)w(X) - g(A^{2}\xi, X)w(Y)\} = \beta\{\eta(Y)g(A\xi, X) - \eta(X)g(A\xi, Y)\}$$

where an 1-form w is defined by w(X) = g(W, X). Putting $Y = A\xi$ in this, we find

(2.5)
$$A^{2}\xi = \rho A\xi + (\beta - \rho \alpha)\xi,$$

where we have put $\mu^2 \rho = \gamma - \beta \alpha$ and $\mu^2 (\beta - \rho \alpha) = (\beta^2 - \alpha \gamma)$ on Ω , which implies $A^3 \xi = (\rho^2 - \beta - \rho \alpha) A \xi + \rho (\beta - \rho \alpha) \xi.$

Comparing this with (2.4), we verify that

(2.6)
$$\mu(h-\rho)\left(\beta-\rho\alpha-\frac{c}{4}\right)=0.$$

Remark 2.1. $h - \rho = 0$ on Ω .

In fact, if not, then we see from (2.6) that $\beta = \rho \alpha + \frac{c}{4}$ on a non empty open set $\Omega' = \{x \in \Omega \mid (h - \rho)(x) \neq 0\}$. Hence, (2.5) turns out to be $A^2 \xi = \rho A \xi + \frac{c}{4} \xi$, which connected to (2.1) implies that $R_{\xi}A = AR_{\xi}$. Thus, by Corollary 4.2 of [4], it is seen that $\Omega' = \emptyset$. Hence $h = \rho$ on Ω is proved. In what follows $h = \rho$ is satisfied everywhere.

Since we have $\beta = \alpha \lambda$, (2.5) becomes

(2.7)
$$A^{2}\xi = hA\xi + \alpha(\lambda - h)\xi.$$

Thus, (2.3) implies that

(2.8)
$$AU = (h - \lambda)U.$$

We also have by (1.7) and (2.7)

(2.9)
$$AW = \mu\xi + (h - \alpha)W$$

because of $\mu \neq 0$.

Differentiating (2.7) covariantly along Ω and making use of (1.1), we find

(2.10)
$$g((\nabla_X A)A\xi, Y) + g(A(\nabla_X A)\xi, Y) + g(A^2 \phi AX, Y)$$
$$-hg(A\phi AX, Y)$$
$$= (Xh)g(A\xi, Y) + hg((\nabla_X A)\xi, Y)$$

$$+ X(\alpha\lambda - \alpha h)\eta(Y) + \alpha(\lambda - h)g(\phi AX, Y)$$

for any vectors X and Y on M, which together with (1.3) and (1.11) yields

$$(\nabla_{\xi}A)A\xi = hAU - \frac{c}{4}U + \frac{1}{2}\nabla\beta$$

Putting $X = \xi$ in (2.10) and taking account of (1.11), (2.8) and above equation, we obtain

(2.11)
$$\frac{1}{2}\nabla\beta = -A\nabla\alpha + h\nabla\alpha + (\xi h)A\xi + \xi(\alpha\lambda - \alpha h)\xi - \left\{(h-\lambda)(h+\alpha-3\lambda) - \frac{c}{4}\right\}U,$$

which connected to $\beta = \alpha \lambda$ implies that

(2.12)
$$\alpha(\xi\lambda) = (2\alpha - \lambda)\xi\alpha + 2\mu W\alpha.$$

Because of (2.9) and (2.11), we also have

(2.13)
$$\alpha W \lambda = (2\alpha - \lambda) W \alpha + 2\mu (\xi h - \xi \alpha).$$

If we take account of (2.7) and (2.8), then (2.11) implies that

(2.14)
$$\frac{1}{2}(A\nabla\beta - h\nabla\beta) = -A^{2}\nabla\alpha + 2hA\nabla\alpha - h^{2}\nabla\alpha + (\xi\sigma)A\xi + (\sigma\xi h - h\xi\sigma)\xi + \lambda\left\{(h-\lambda)(h+\alpha-3\lambda) - \frac{c}{4}\right\}U.$$

where we have put $\sigma = \alpha(\lambda - h)$.

Now, differentiating (2.9) covariantly along Ω , we find

$$(\nabla_X A)W + A\nabla_X W = (X\mu)\xi + \mu\nabla_X\xi + X(h-\alpha)W + (h-\alpha)\nabla_X W,$$

which together with (1.3), (1.12) and (2.8) yields

(2.15)
$$\mu(\nabla_W A)\xi = \left\{ (h-\lambda)(h-2\alpha) - \frac{c}{2} \right\} U + \frac{1}{2} \nabla\beta - \alpha \nabla\alpha ,$$

(2.16)
$$(\nabla_W A)W = -2(h-\lambda)U + \nabla h - \nabla \alpha$$

which shows that

$$W\mu = \xi h - \xi \alpha \,.$$

If we replace X by $A\xi$ in (2.10) and make use of (1.3), (1.7), (1.11), (2.7), (2.8) and the last two equations, we obtain

$$\frac{1}{2}(A\nabla\beta - h\nabla\beta) + \alpha^{2}\nabla\lambda + \mu^{2}\nabla h$$

= $g(A\xi, \nabla h)A\xi + g(A\xi, \nabla\sigma)\xi + \left\{(h-\lambda)(2h\lambda - 3\alpha h + 2\alpha\lambda) + \frac{c}{4}(3\alpha - 2\lambda)\right\}U$.

Substituting (2.14) into this, we find

(2.18)

$$\alpha^{2}\nabla\lambda + \mu^{2}\nabla h - A^{2}\nabla\alpha + 2hA\nabla\alpha - h^{2}\nabla\alpha$$

$$= \{g(A\xi, \nabla h) - \xi\sigma\}A\xi + \{g(A\xi, \nabla\sigma) + h(\xi\sigma) - (\beta - h\alpha)\xih\}\xi$$

$$+ \left\{(h - \lambda)(h\lambda - 3\alpha h + \alpha\lambda + 3\lambda^{2}) + \frac{c}{4}(3\alpha - \lambda)\right\}U.$$

Now, it is, using (2.1), verified that

$$\alpha \phi A \phi A X + \alpha A^2 X = hg(A\xi, X)A\xi + \sigma \eta(X)A\xi - g(AU, X)U$$

because of properties of almost contact metric structure.

On the other hand, we have from (1.10)

$$\nabla_X U + g(A^2\xi, X)\xi = \phi(\nabla_X A)\xi + \phi A\phi AX + \alpha AX,$$

which together with (2.7) and the last equation yields

$$\nabla_X U + \{hg(A\xi, X) + \alpha(\lambda - h)\eta(X)\}\xi = \phi(\nabla_X A)\xi + \alpha AX - A^2 X + \frac{1}{\alpha}\{hg(A\xi, X) + \alpha(\lambda - h)\eta(X)\}A\xi - \frac{h - \lambda}{\alpha}g(U, X)U.$$

If we put X = U in this and take account of (2.8), then we obtain

(2.19)
$$\nabla_U U = \phi(\nabla_U A)\xi + (h - \lambda)(2\alpha - h)U.$$

If we differentiate (2.8) covariantly, we find

(2.20)
$$(\nabla_X A)U + A\nabla_X U = X(h-\lambda)U + (h-\lambda)\nabla_X U ,$$

which together with (1.3), (1.13), (2.2) and (2.8) implies that

$$\begin{split} \phi(\nabla_U A)\xi &= -\left\{3(\lambda - h)(\lambda - \alpha) - \frac{c}{4} - \frac{1}{\alpha}U\alpha\right\}U - \mu(\xi h - \xi\lambda)W\\ &-(h - \lambda)(\nabla\alpha - (\xi\alpha)\xi) + A\nabla\alpha - \frac{1}{\alpha}g(A\xi, \nabla\alpha)A\xi \,. \end{split}$$

Substituting this into (2.19), we find

(2.21)

$$\nabla_U U = \left\{ (h-\lambda)(3\lambda-\alpha-h) + \frac{c}{4} + \frac{1}{\alpha}U\alpha \right\} U + A\nabla\alpha - (h-\lambda)\nabla\alpha$$

$$+ \left\{ (h-\lambda)\xi\alpha - g(A\xi,\nabla\alpha)\xi \right\} - \mu \left\{ \xi h - \xi\lambda + \frac{1}{\alpha}g(A\xi,\nabla\alpha) \right\} W,$$

which tells us that

$$A(\nabla_U U) - (h - \lambda)\nabla_U U = A^2 \nabla \alpha - 2(h - \lambda)A \nabla \alpha + (h - \lambda)^2 \nabla \alpha + \{(h - \lambda)\xi\alpha - g(A\xi, \nabla \alpha)\}\{A\xi - (h - \lambda)\xi\} - \mu \left(\xi h - \xi\lambda + \frac{1}{\alpha}g(A\xi, \nabla \alpha)\right)\{AW - (h - \lambda)W\}.$$

Because of (1.3) and (1.4), the relationship (2.20) implies that

$$\begin{aligned} \frac{c}{4}\mu\{\eta(Y)w(X) - \eta(X)w(Y)\} + g(AX, \nabla_Y U) - g(AY, \nabla_X U) \\ &= Y(h - \lambda)u(X) - X(h - \lambda)u(Y) \\ &+ (h - \lambda)\{(\nabla_Y u)(X) - (\nabla_X u)(Y)\}, \end{aligned}$$

where an 1-form *u* is defined by u(X) = g(U, X).

If we replace X by U in this and make use of (2.8), then we obtain

$$A(\nabla_U U) - (h - \lambda)\nabla_U U = \mu^2 (\nabla \lambda - \nabla h) + U(h - \lambda)U,$$

which together with (2.21) gives

$$(2.22) \qquad A^{2}\nabla\alpha - 2(h-\lambda)A\nabla\alpha + (h-\lambda)^{2}\nabla\alpha \\ = \{g(A\xi,\nabla\alpha) - (h-\lambda)\xi\alpha\}\{A\xi - (h-\lambda)\xi\} \\ + \mu \left\{\xi h - \xi\lambda + \frac{1}{\alpha}g(A\xi,\nabla\alpha)\right\}\{AW - (h-\lambda)W\} \\ + \mu^{2}(\nabla\lambda - \nabla h) + U(h-\lambda)U .$$

Substituting (2.18) into (2.22) and using (2.11), we find

$$(2.23) \begin{aligned} & 2\mu^2(\nabla h - \nabla \lambda) + U(\lambda - h)U - 3(\lambda - \alpha) \bigg\{ (h - \lambda)^2 - \frac{c}{4} \bigg\} U \\ &= \{g(A\xi, \nabla h) - \xi\sigma - 2\lambda(\xi h)\}A\xi + \{g(A\xi, \nabla \sigma) + (h - 2\lambda)\xi\sigma - \sigma(\xi h)\}\xi \\ &+ \{g(A\xi, \nabla \alpha) - (h - \lambda)\xi\alpha\}\{A\xi - (h - \lambda)\xi\} \\ &+ \mu \bigg\{ \xi h - \xi\lambda + \frac{1}{\alpha}g(A\xi, \nabla \alpha) \bigg\} \{AW - (h - \lambda)W\}. \end{aligned}$$

Since $A\xi$ and AW are orthogonal to U, it follows from the last equation that

$$U(h - \lambda) = 3(\lambda - \alpha) \left\{ (h - \lambda)^2 - \frac{c}{4} \right\}$$

Using this, (1.7) and (2.9), the equation (2.23) can be written as

$$\mu^{2}(\nabla h - \nabla \lambda) = \mu^{2}(a\xi + bW) + 3(\lambda - \alpha)\left\{(h - \lambda)^{2} - \frac{c}{4}\right\}U$$

for some functions a and b, which shows that $a = \xi h - \xi \lambda$ and $b = W(h - \lambda)$. Since $\lambda - \alpha$ does not vanish on Ω , we verify that

(2.24)
$$\alpha(\nabla h - \nabla \alpha) = \alpha(a\xi + bW) + 3\left\{(h - \lambda)^2 - \frac{c}{4}\right\}U.$$

On the other hand, if we take the inner product (2.23) with W, and straightforward calculation, then we obtain

$$\alpha^2 Wh = 3\alpha\mu\xi h + \alpha(4\alpha - 3\lambda)W\alpha - \mu(4\alpha - \lambda)\xi\alpha,$$

where we have used (2.12), (2.13) and the fact that $\sigma = \alpha(\lambda - h)$. Comparing this with (2.12) and (2.13), we see that $\alpha W(h - \lambda) = \mu \xi(h - \lambda)$, that is, $b\alpha = \mu a$. From this and (1.7), the equation (2.24) turns out to be

$$\alpha(\nabla h - \nabla \lambda) = aA\xi + 3\left\{(h - \lambda)^2 - \frac{c}{4}\right\}U.$$

Further, we can verify that a = 0 and hence

$$\alpha(\nabla h - \nabla \lambda) = 3\left\{ (h - \lambda)^2 - \frac{c}{4} \right\} U.$$

(for detail, see [4]).

If we assume that $(h - \lambda)^2 - \frac{c}{4} \neq 0$ on an open subset Ω'' of Ω , then we have from the last equation

$$(Y\alpha)u(X) - (X\alpha)u(Y) = \alpha du(Y, X)$$

and

$$\lambda \nabla \alpha - \alpha \nabla \lambda = 2 \left\{ (h - \lambda)^2 + (h - \lambda)(\alpha - 2\lambda) - \frac{c}{4} \right\} U,$$

(for detail, see [5]). Using above two equations, we can verify that du(Y, X) = 0, where the exterior derivative du of 1-form u is given by

$$du(X, Y) = Yu(X) - Xu(Y) - u([X, Y]).$$

Therefore we have

(2.25)
$$\left\{ (h-\lambda)^2 - \frac{c}{4} \right\} du(Y, X) = 0.$$

on Ω . Therefore, we see, using (1.9), (1.13) and (2.8), that

(2.26)
$$du(\xi, X) = (3\lambda - 2h)\mu w(X) + g(\phi \nabla \alpha, X)$$

for any vector X.

We prepare the following without proof in order to prove our Theorem 3.3 (See Lemma 3.5 of [4]).

REMARK 2.2. Let M be a real hypersurface in $M_n(c)$, $c \neq 0$ such that $R_{\xi}\phi = \phi R_{\xi}$ and $R_{\xi}S = SR_{\xi}$. If du = 0, then Ω is void.

3. Proof ot Theorem

We will continue our arguments under the same hypotheses $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R_{\xi}S = SR_{\xi}$ as in section 2. Because of Theorem KNT and Remark 2.2, we may only consider the case where $\theta = 3(h - \lambda)^2 - \frac{3}{4}c = 0$ and hence

$$(3.1) (h-\lambda)^2 = \frac{c}{4}$$

by virtue of (2.25). From (1.6), (2.7) and Remark 2.1, it follows that

$$g(S\xi,\xi) = \frac{c}{2}(n-1) + (h-\lambda)\alpha,$$

which together with (3.1) implies that $g(S\xi, \xi) = \text{const. if } \alpha$ is constant. According to Theorem KKL, we have

LEMMA 3.1. Let M be a real hypersurface with (3.1) satisfying $R_{\xi}\phi = \phi R_{\xi}$, and $R_{\xi}S = SR_{\xi}$ in $M_n(c), c \neq 0$. If α is constant, then $\Omega = \emptyset$.

Because of (3.1), the equations (2.11), (2.21) and (2.22) are reduced respectively to

(3.2)
$$A\nabla\alpha - h\nabla\alpha = -\frac{1}{2}\nabla\beta + (\xi h)A\xi + (\lambda - h)(\xi\alpha)\xi + (h - \lambda)(2\lambda - \alpha)U,$$

(3.3)
$$\nabla_U U = \left\{ (h-\lambda)(2\lambda-\alpha) + \frac{1}{\alpha}U\alpha \right\} U + A\nabla\alpha - (h-\lambda)\nabla\alpha \\ + \left\{ (h-\lambda-\alpha)\xi\alpha - \mu W\alpha \right\} \xi - \left\{ \mu\xi\alpha + (\lambda-\alpha)W\alpha \right\} W$$

(3.4)

$$A^{2}\nabla\alpha + 2(\lambda - h)A\nabla\alpha + (h - \lambda)^{2}\nabla\alpha$$

$$= \{g(A\xi, \nabla\alpha) - (h - \lambda)\xi\alpha\}\{A\xi - (h - \lambda)\xi\}$$

$$+ \frac{\mu}{\alpha}g(A\xi, \nabla\alpha)\{AW - (h - \lambda)W\}.$$

Now, differentiating (1.7) covariantly, we find

(3.5)
$$(\nabla_X A)\xi + A\phi AX = (X\alpha)\xi + \alpha\phi AX + (X\mu)W + \mu\nabla_X W,$$

from which, taking the trace and using (2.17) we get

$$(3.6) divW = 0.$$

Putting $X = \mu W$ in (3.5) and making use of (1.8), (2.9), (2.15) and (3.1), we obtain

$$\mu^2 \nabla_W W + \mu(W\mu) W$$

(3.7)

$$= \frac{1}{2} \nabla \beta - \alpha \nabla \alpha - \mu (W \alpha) \xi + \{ (h - \lambda)(2\lambda - 3\alpha) - \alpha (h - \alpha) \} U.$$

By the way, from $\mu W = -\phi U$ we have

$$(X\mu)W + \mu\nabla_X W = g(AX, U)\xi - \phi\nabla_X U,$$

where we have used (1.1), which shows that

$$-\mu\phi\nabla_W U = \mu^2\nabla_W W + \mu(W\mu)W.$$

From this and (3.7) it follows that

(3.8)
$$\mu\phi\nabla_W U = \alpha\nabla\alpha - \frac{1}{2}\nabla\beta + \mu(W\alpha)\xi + \{(h-\lambda)(3\alpha-2\lambda) + \alpha(h-\alpha)\}U.$$

Differentiating $\mu \phi W = U$ covariantly and using (1.1), we also find

$$\nabla_X U = (X\mu)\phi W - \mu g(AX, W)\xi + \mu\phi\nabla_X W.$$

Putting X = U in this, we obtain

$$\nabla_U U = \frac{1}{\mu} (U\mu)U + \mu \phi \nabla_U W \,,$$

which together with (3.8) implies that

$$\begin{split} \mu\phi(\nabla_W U + \nabla_U W) &= \alpha \nabla \alpha - \frac{1}{2} \nabla \beta + \mu(W\alpha)\xi + \nabla_U U - \frac{1}{\mu}(U\mu)U \\ &+ \{(h-\lambda)(3\alpha-2\lambda) + \alpha(h-\alpha)\}U \,. \end{split}$$

Substituting (3.3) into this, we get

$$\begin{split} \mu\phi(\nabla_W U + \nabla_U W) &= A\nabla\alpha + (\lambda - h + \alpha)\nabla\alpha - \frac{1}{2}\nabla\beta \\ &+ \left\{\frac{1}{\alpha}U\alpha - \frac{1}{\mu}U\mu + \alpha(3h - 2\lambda - \alpha)\right\}U \\ &+ (h - \lambda - \alpha)(\xi\alpha)\xi - \{\mu\xi\alpha + (\lambda - \alpha)W\alpha\}W\,, \end{split}$$

or, using (3.2),

(3.9)
$$\mu\phi(\nabla_W U + \nabla_U W) = \alpha(\nabla\alpha - \nabla h) + (\xi h - \xi\alpha)A\xi - (\lambda - \alpha)(W\alpha)W + \left\{\frac{1}{\alpha}U\alpha - \frac{1}{\mu}U\mu + 2h\alpha - \lambda\alpha - \alpha^2 + 2h\lambda - 2\lambda^2\right\}U.$$

On the other hand, from (1.7) and (2.2) we have

(3.10)
$$(A\phi - \phi A)X + \eta(X)U + u(X)\xi + \tau(w(X)U + u(X)W) = 0,$$

where we have put

$$(3.11) \qquad \qquad \alpha \tau = \mu \,.$$

From the last relationship, we see that

(3.12)
$$\mu \alpha \nabla \tau = \mu \nabla \mu - (\lambda - \alpha) \nabla \alpha \,.$$

Using (1.7) and (2.8), the equation (1.13) turns out to be

(3.13)
$$\nabla_{\xi} U = \mu (3\lambda - 3h + \alpha) W + \alpha (\alpha - \lambda) \xi + \phi \nabla \alpha \,.$$

Differentiating (3.10) covariantly and using (1.1), we find

$$\begin{aligned} (\nabla_k A_j^r)\phi_i^r + (\nabla_k A_{ir})\phi_j^r + A_{jk}^2\xi_i - A_{ki}(A_{jr}\xi^r) + A_{ik}^r\xi_j - A_{kj}(A_{ir}\xi^r) \\ + \nabla_k U_j(\xi_i + \tau w_i) + \nabla_k U_i(\xi_j + \tau w_j) + U_j\nabla_k\xi_i + U_i\nabla_k\xi_j \\ + \tau_k(U_jW_i + U_iW_j) + \tau(U_j\nabla_kW_i + U_i\nabla_kW_j) &= 0. \end{aligned}$$

Now we define the function $h_{(2)}$ by $h_{(2)} = A_j^i A_i^j$. Then, taking $\sum g^{ki}$ on the last equation and summing for k and i, we obtain

$$\begin{aligned} &-\frac{c}{2}(n-1)\xi - \phi \nabla h - hA\xi + h_{(2)}\xi + \tau (\nabla_W U + \nabla_U W) + \mu (3\lambda - 3h + \alpha)W \\ &+ \alpha (\alpha - \lambda)\xi + \phi \nabla \alpha + divU(\xi + \tau W) - (h - \lambda)\mu W \\ &+ (W\tau)U + (U\tau)W = 0 \,, \end{aligned}$$

where we have used (1.3), (2.8), (3.6) and (3.13), which tells us that

$$\alpha\phi(\nabla\alpha-\nabla h)+\mu(\nabla_W U+\nabla_U W)+\alpha(W\tau)U$$

(3.14)
$$= \alpha \left\{ \frac{c}{2}(n-1) + h\alpha - h_{(2)} + \alpha(\lambda - \alpha) - divU \right\} \xi \\ + \left\{ \mu\alpha(5h - 4\lambda - \alpha) - \mu divU - \alpha(U\tau) \right\} W$$

by virtue of (3.11). If we apply this by ϕ and make use of (2.17), (3.9) and (3.12), then we obtain

(3.15)
$$divU = (h - \lambda)(3\alpha - 2\lambda).$$

Since we have

$$g(\nabla_W U + \nabla_U W, \xi) = \mu(\alpha - \lambda)$$

because of (1.1), (2.8) and (2.9), by taking the inner product (3.14) with ξ , we also find

$$divU = \frac{c}{2}(n-1) + h\alpha - h_{(2)} + \lambda^2 - \alpha\lambda.$$

From this and (3.15), it follows that

$$(h-\lambda)(3\alpha-2\lambda)=\frac{c}{2}(n-1)+h\alpha-h_{(2)}+\lambda^2-\alpha\lambda\,,$$

From this and (3.15), it follows that

$$(h-\lambda)(3\alpha-2\lambda)=\frac{c}{2}(n-1)+h\alpha-h_{(2)}+\lambda^2-\alpha\lambda,$$

which together with (3.1) implies that

$$\nabla h_{(2)} - 2h\nabla h = 2(\lambda - h)\nabla\alpha$$

However, the scalar curvature r of M is given by

$$r = c(n^2 - 1) + h^2 - h_{(2)}$$

since we have (1.5). Thus, (3.16) is reduced to

$$\nabla r = 2(h - \lambda) \nabla \alpha$$
.

Now, we assume that the scalar curvature of M is constant. Then we have

 $(3.17) \qquad \qquad \nabla \alpha = 0\,,$

since $h - \lambda \neq 0$.

(3.16)

So, using Lemma 3.1, we finally have

THEOREM 3.2. Let M be a real hypersurface in a nonflat complex space form $M_n(c)$ which satisfies $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R_{\xi}S = SR_{\xi}$. If the scalar curvature of Mis constant, then M is a Hopf hypersurface. Further, M is locally congruent to one of (A_1) , (A_2) type if c > 0, or (A_0) , (A_1) , (A_2) type if c < 0 provided that $\eta(A\xi) \neq 0$.

References

- J. BERNDT, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141.
- [2] J. T. CHO and U.-H. KI, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar 80 (1998), 155–167.
- [3] U.-H. KI, H.-J. KIM and A.-A. LEE, The Jacobi operator of real hypersurfaces of a complex space form, Comm. Korean Math. Soc. 13 (1998), 545–560.
- [4] U.-H. KI, S. J. KIM and S.-B. LEE, The structure Jacobi operator on real hypersurfaces in a nonflat complex space form, to appear in Bull. Korean Math. Soc.
- [5] U.-H. KI, S. NAGAI and R. TAKAGI, Real hypersurfaces in nonflat complex space forms concerned with the structure Jacobi operator and Ricci tensor, to appear in *Topics in Almost Hermitian Geometry and Related Fields*, World Scientific, 2005.
- [6] N.-G. KIM, C. LI and U.-H. KI, Note on real hypersurfaces of nonflat complex space forms in terms of the structure Jacobi operator and Ricci tensor, to appear in Honam Math. J.
- [7] M. KIMURA, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Soc. 296 (1986), 137–149.

- [8] R. NIEBERGALL and P. J. RYAN, Real hypersurfaces in complex space forms, in Tight and Taut submanifolds, Cambridge Univ. Press, 1998, (T. E. Cecil and S. S. Chern eds.), 233–305.
- [9] R. TAKAGI, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495–506.

Present Addresses: U-HANG KI THE NATIONAL ACADEMY OF SCIENCES, KOREA. DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, DAEGU, 702–701 KOREA. *e-mail*: uhangki2005@yahoo.co.kr

SETSUO NAGAI DEPARTMENT OF EDUCATION, TOYAMA UNIVERSITY, TOYAMASHI, 930–8555 JAPAN. *e-mail*: EZW00314@nifty.com

RYOICHI TAKAGI DEPARTMENT OF MATHEMATICS AND INFORMATICS, CHIBA UNIVERSITY, CHIBASHI, 263–8522 JAPAN. *e-mail*: takagi@math.s.chiba-u.ac.jp