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Abstract. Let M be a real hypersurface with almost contact metric structure (φ, ξ, η, g) in a nonflat complex
space form Mn(c). We denote by S be the Ricci tensor of M. In the present paper we investigate real hypersurfaces
with constant scalar curvature of Mn(c) whose structure Jacobi operator Rξ commute with both φ and S. We

characterize Hopf hypersurfaces of Mn(c).

Introduction

An n-dimensional complex space form Mn(c) is a Kaehlerian manifold of constant holo-
morphic sectional curvature c. As is well known, complete and simply connected complex
space forms are isometric to a complex projective space PnC, a complex Euclidean space Cn

or a complex hyperbolic space HnC according as c > 0, c = 0 or c < 0.

Let M be a real hypersurface of Mn(c). Then M has an almost contact metric structure
(φ, ξ, η, g) induced from the complex structure J and the Kaehlerian metric of Mn(c). This
structure plays an important role in the study of the geometry of a real hypersurface. The
structure vector ξ is said to be principal if Aξ = αξ is satisfied, where A is the shape operator
of M and α = η(Aξ). A real hypersurface is said to be a Hopf hypersurface if the structure
vector field ξ of M is principal.

In a complex projective space PnC, Hopf hypersurfaces with constant principal curva-
tures are just the homogeneous real hypersurfaces ([7]). Further, Hopf hypersurfaces with
constant principal curvatures in a nonflat complex space forms were completely classified as
follows:

THEOREM T ([9]). Let M be a homogeneous real hypersurface of PnC. Then M is a
tube of radius r over one of the following Kaehlerian submanifolds:

(A1) a hyperplane Pn−1C, where 0 < r < π
2 ,

(A2) a totally geodesic PkC (1 ≤ k ≤ n − 2), where 0 < r < π
2 ,

(B) a complex quadric Qn−1, where 0 < r < π
4 ,
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(C) P1C × P(n−1)/2C, where 0 < r < π
4 and n(≥ 5) is odd,

(D) a complex Grassmann G2,5C, where 0 < r < π
4 and n = 9,

(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < π
4 and n = 15.

THEOREM B ([1]). Let M be a real hypersurface of HnC. Then M has constant princi-
pal curvatures and ξ is principal if and only if M is locally congruent to one of the following:

(A0) a self-tube, that is, a horosphere,
(A1) a geodesic hypersphere or 2 tube over 2 hyperplane Hn−1(C),

(A2) a tube over a totally geodesic HkC(1 ≤ k ≤ n − 2),
(B) a tube over a totally real hyperbolic space HnR.

We denote by S and Rξ be the Ricci tensor and the structure Jacobi operator with respect
to the structure vector field ξ of M respectively. Then it is a very important problem to
investigate real hypersurfaces satisfying RξS = SRξ in Mn(c). From this point of view, Kim,
Lee and one of the present authors ([4]) was recently proved the following:

THEOREM KKL ([4]). Let M be a real hypersurface in a nonflat complex space form
Mn(c). If it satisfies Rξφ = φRξ ,RξS = SRξ and g(Sξ, ξ) = const., then M is a Hopf
hypersurface. Further, M is locally congruent to one of (A1), (A2) type if c > 0, or (A0),
(A1), (A2) type if c < 0 provided that η(Aξ) �= 0.

Further, the present authors ([5]) have been also proved the following:

THEOREM KNT ([5]). Let M be a real hypersurface with Rξφ = φRξ and at the same

time RξS = SRξ in Mn(c), c �= 0. If (ρ − λ)2 − c
4 �= 0, then M is a Hopf hypersurface (for

the definitions of ρ and λ see section 2).

The main purpose of this paper is to establish the following theorem:

THEOREM 3.2. Let M be a real hypersurface in a nonflat complex space form Mn(c)

which satisfies Rξφ = φRξ and at the same time RξS = SRξ . If the scalar curvature of M

is constant, then M is a Hopf hypersurface. Further, M is locally congruent to one of (A1),
(A2) type if c > 0, or (A0), (A1), (A2) type if c < 0 provided that η(Aξ) �= 0.

All manifolds in this paper are assumed to be connected and of class C∞ and the real
hypersurfaces supposed to be orientable.

The authors would like to express their sincere gratitude to the referee for his valuable
suggestions and comments.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c), and N be

a unit normal vector field of M . By ∇̃ we denote the Levi-Civita connection with respect
to the Fubini-Study metric g̃ of Mn(c). Then the Gauss and Weingarten formulas are given
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respectively by

∇̃Y X = ∇Y X + g(AY,X)N , ∇̃XN = −AX ,

for any vector fields X and Y on M , where g denoted the Riemannian metric of M induced
from g̃ and A is the shape operator of M in Mn(c). For any vector field X tangent to M , we
put

JX = φX + η(X)N , JN = −ξ .

Then we may see that the aggregate (φ, ξ, η, g) is an

φ2X = −X + η(X)ξ , g(φX, φY ) = g(X, Y ) − η(X)η(Y ) ,

η(ξ) = 1 , φξ = 0 , η(X) = g(X, ξ)

for any vector fields X and Y on M .
Since J is parallel, we find from the Gauss and Weingarten formulas the following:

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ , ∇Xξ = φAX .(1.1)

The ambient space being of constant holomorphic sectional curvature c, we obtain the
following Gauss and Codazzi equations respectively:

R(X, Y )Z = c

4
{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ} + g(AY,Z)AX − g(AX,Z)AY ,

(1.2)

(∇XA)Y − (∇Y A)X = c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}(1.3)

for any vector fields X, Y and Z on M , where R denotes Riemann-Christoffel curvature tensor
of M .

NOTATION. In the sequel, we denote by α = η(Aξ), β = η(A2ξ), γ = η(A3ξ), h(2) =
Tr tAA and h = Tr A, and for a function f we denote by ∇f the gradient vector field of f .

Putting U = ∇ξ ξ, we see that U is orthogonal to ξ. Thus we have

φU = −Aξ + αξ ,(1.4)

which leads to g(U,U) = β − α2.

From (1.2) the Ricci tensor S of type (1,1) on M is given by

S = c

4
{(2n + 1)I − 3η ⊗ ξ} + hA − A2 ,(1.5)

where I is the identity tensor, which shows that

Sξ = c

2
(n − 1)ξ + hAξ − A2ξ .(1.6)
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If we put

Aξ = αξ + µW ,(1.7)

where W is a unit vector field orthogonal to ξ . Then we have U = µφW. So we verify that
W is also orthogonal to U . Further we have

µ2 = β − α2 .(1.8)

Therefore, we easily see that ξ is a principal curvature vector, that is, Aξ = αξ if and only if

β − α2 = 0 or µ = 0.

From the definition of U , and (1.1) and (1.7), we verify that

g(∇Xξ,U) = µg(AW,X) .(1.9)

Differentiating (1.4) covariantly along M and making use of (1.1), we find

η(X)g(AU + ∇α, Y ) + g(φX,∇Y U)

= g((∇Y A)X, ξ) − g(AφAX, Y ) + αg(AφX, Y ) ,
(1.10)

which enables us to obtain

(∇ξA)ξ = 2AU + ∇α(1.11)

because of (1.3) and (1.9). Since W is orthogonal to U , we verify, using (1.1), that

µg(∇XW, ξ) = g(AU,X) .(1.12)

Because of (1.1), (1.9) and (1.10), it is seen that

∇ξU = 3φAU + αAξ − βξ + φ∇α .(1.13)

2. Real hypersurfaces satisfying Rξφ = φRξ and RξS = SRξ

Let M be a real hypersurface of a complex space form Mn(c), c �= 0. Then the structure
Jacobi operator Rξ with respect to ξ is given by

RξX = R(X, ξ)ξ = c

4
(X − η(X)ξ) + αAX − η(AX)Aξ(2.1)

for any vector X on M, where we have used (1.2).
Now, suppose that Rξφ = φRξ . Then above equation implies that

α(φAX − AφX) = g(Aξ,X)U + g(U,X)Aξ .(2.2)

We set Ω be a set of points such that µ(p) �= 0 at p ∈ M and suppose that Ω �= ∅. In
what follows we discuss our arguments on the open subset Ω of M unless otherwise stated.
Then, it is, using (2.2), clear that α �= 0 on Ω. So a function λ given by β = αλ is defined.
Therefore, replacing X by U in (2.1) and taking account of (1.4), we find

φAU = λAξ − A2ξ .(2.3)
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Further, we assume that RξS = SRξ . Then we see from (1.6) and (2.1) that

g(A3ξ, Y )g(Aξ,X) − g(A3ξ,X)g(Aξ, Y )

= g(A2ξ, Y )g
(

hAξ − c

4
ξ,X

)
− g(A2ξ,X)g

(
hAξ − c

4
ξ, Y

)

+ c

4
h{g(Aξ, Y )η(X) − g(Aξ,X)η(Y )} ,

which shows that

αA3ξ =
(

αh − c

4

)
A2ξ +

(
γ − βh + c

4
h

)
Aξ + c

4
(β − hα)ξ .(2.4)

Combining above two equations and using (1.7), we obtain

µ{g(A2ξ, Y )w(X) − g(A2ξ,X)w(Y )} = β{η(Y )g(Aξ,X) − η(X)g(Aξ, Y )}
where an 1-form w is defined by w(X) = g(W,X). Putting Y = Aξ in this, we find

A2ξ = ρAξ + (β − ρα)ξ ,(2.5)

where we have put µ2ρ = γ − βα and µ2(β − ρα) = (β2 − αγ ) on Ω , which implies

A3ξ = (ρ2 − β − ρα)Aξ + ρ(β − ρα)ξ .

Comparing this with (2.4), we verify that

µ(h − ρ)

(
β − ρα − c

4

)
= 0 .(2.6)

REMARK 2.1. h − ρ = 0 on Ω.

In fact, if not, then we see from (2.6) that β = ρα + c
4 on a non empty open set Ω ′ =

{x ∈ Ω | (h−ρ)(x) �= 0}. Hence, (2.5) turns out to be A2ξ = ρAξ + c
4ξ, which connected to

(2.1) implies that RξA = ARξ . Thus, by Corollary 4.2 of [4], it is seen that Ω ′ = ∅. Hence
h = ρ on Ω is proved. In what follows h = ρ is satisfied everywhere.

Since we have β = αλ, (2.5) becomes

A2ξ = hAξ + α(λ − h)ξ .(2.7)

Thus, (2.3) implies that

AU = (h − λ)U .(2.8)

We also have by (1.7) and (2.7)

AW = µξ + (h − α)W(2.9)

because of µ �= 0.
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Differentiating (2.7) covariantly along Ω and making use of (1.1), we find

g((∇XA)Aξ, Y ) + g(A(∇XA)ξ, Y ) + g(A2φAX, Y )

− hg(AφAX, Y )

= (Xh)g(Aξ, Y ) + hg((∇XA)ξ, Y )

+ X(αλ − αh)η(Y ) + α(λ − h)g(φAX, Y )

(2.10)

for any vectors X and Y on M , which together with (1.3) and (1.11) yields

(∇ξA)Aξ = hAU − c

4
U + 1

2
∇β .

Putting X = ξ in (2.10) and taking account of (1.11), (2.8) and above equation, we
obtain

1

2
∇β = −A∇α + h∇α + (ξh)Aξ + ξ(αλ − αh)ξ

−
{
(h − λ)(h + α − 3λ) − c

4

}
U ,

(2.11)

which connected to β = αλ implies that

α(ξλ) = (2α − λ)ξα + 2µWα .(2.12)

Because of (2.9) and (2.11), we also have

αWλ = (2α − λ)Wα + 2µ(ξh − ξα) .(2.13)

If we take account of (2.7) and (2.8), then (2.11) implies that

1

2
(A∇β − h∇β) = −A2∇α + 2hA∇α − h2∇α + (ξσ )Aξ

+ (σξh − hξσ)ξ + λ

{
(h − λ)(h + α − 3λ) − c

4

}
U .

(2.14)

where we have put σ = α(λ − h).

Now, differentiating (2.9) covariantly along Ω, we find

(∇XA)W + A∇XW = (Xµ)ξ + µ∇Xξ + X(h − α)W + (h − α)∇XW ,

which together with (1.3), (1.12) and (2.8) yields

µ(∇WA)ξ =
{
(h − λ)(h − 2α) − c

2

}
U + 1

2
∇β − α∇α ,(2.15)

(∇WA)W = −2(h − λ)U + ∇h − ∇α ,(2.16)

which shows that

Wµ = ξh − ξα .(2.17)
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If we replace X by Aξ in (2.10) and make use of (1.3), (1.7), (1.11), (2.7), (2.8) and the
last two equations, we obtain

1

2
(A∇β − h∇β) + α2∇λ + µ2∇h

= g(Aξ,∇h)Aξ + g(Aξ,∇σ)ξ +
{
(h − λ)(2hλ − 3αh + 2αλ) + c

4
(3α − 2λ)

}
U .

Substituting (2.14) into this, we find

α2∇λ + µ2∇h − A2∇α + 2hA∇α − h2∇α

= {g(Aξ,∇h) − ξσ }Aξ + {g(Aξ,∇σ) + h(ξσ) − (β − hα)ξh}ξ

+
{
(h − λ)(hλ − 3αh + αλ + 3λ2) + c

4
(3α − λ)

}
U .

(2.18)

Now, it is, using (2.1), verified that

αφAφAX + αA2X = hg(Aξ,X)Aξ + ση(X)Aξ − g(AU,X)U

because of properties of almost contact metric structure.
On the other hand, we have from (1.10)

∇XU + g(A2ξ,X)ξ = φ(∇XA)ξ + φAφAX + αAX ,

which together with (2.7) and the last equation yields

∇XU + {hg(Aξ,X) + α(λ − h)η(X)}ξ = φ(∇XA)ξ + αAX − A2X

+ 1

α
{hg(Aξ,X) + α(λ − h)η(X)}Aξ − h − λ

α
g(U,X)U .

If we put X = U in this and take account of (2.8), then we obtain

∇UU = φ(∇U A)ξ + (h − λ)(2α − h)U .(2.19)

If we differentiate (2.8) covariantly, we find

(∇XA)U + A∇XU = X(h − λ)U + (h − λ)∇XU ,(2.20)

which together with (1.3), (1.13), (2.2) and (2.8) implies that

φ(∇UA)ξ = −
{

3(λ − h)(λ − α) − c

4
− 1

α
Uα

}
U − µ(ξh − ξλ)W

−(h − λ)(∇α − (ξα)ξ) + A∇α − 1

α
g(Aξ,∇α)Aξ .
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Substituting this into (2.19), we find

∇UU =
{
(h − λ)(3λ − α − h) + c

4
+ 1

α
Uα

}
U + A∇α − (h − λ)∇α

+ {(h − λ)ξα − g(Aξ,∇α)ξ} − µ

{
ξh − ξλ + 1

α
g(Aξ,∇α)

}
W ,

(2.21)

which tells us that

A(∇UU) − (h − λ)∇UU = A2∇α − 2(h − λ)A∇α + (h − λ)2∇α

+ {(h − λ)ξα − g(Aξ,∇α)}{Aξ − (h − λ)ξ}

− µ

(
ξh − ξλ + 1

α
g(Aξ,∇α)

)
{AW − (h − λ)W } .

Because of (1.3) and (1.4), the relationship (2.20) implies that

c

4
µ{η(Y )w(X) − η(X)w(Y )} + g(AX,∇Y U) − g(AY,∇XU)

= Y (h − λ)u(X) − X(h − λ)u(Y )

+ (h − λ){(∇Y u)(X) − (∇Xu)(Y )} ,

where an 1-form u is defined by u(X) = g(U,X).

If we replace X by U in this and make use of (2.8), then we obtain

A(∇UU) − (h − λ)∇UU = µ2(∇λ − ∇h) + U(h − λ)U ,

which together with (2.21) gives

A2∇α − 2(h − λ)A∇α + (h − λ)2∇α

= {g(Aξ,∇α) − (h − λ)ξα}{Aξ − (h − λ)ξ}

+ µ

{
ξh − ξλ + 1

α
g(Aξ,∇α)

}
{AW − (h − λ)W }

+ µ2(∇λ − ∇h) + U(h − λ)U .

(2.22)

Substituting (2.18) into (2.22) and using (2.11), we find

2µ2(∇h − ∇λ) + U(λ − h)U − 3(λ − α)

{
(h − λ)2 − c

4

}
U

= {g(Aξ,∇h) − ξσ − 2λ(ξh)}Aξ + {g(Aξ,∇σ) + (h − 2λ)ξσ − σ(ξh)}ξ
+ {g(Aξ,∇α) − (h − λ)ξα}{Aξ − (h − λ)ξ}

+ µ

{
ξh − ξλ + 1

α
g(Aξ,∇α)

}
{AW − (h − λ)W } .

(2.23)
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Since Aξ and AW are orthogonal to U, it follows from the last equation that

U(h − λ) = 3(λ − α)

{
(h − λ)2 − c

4

}
.

Using this, (1.7) and (2.9), the equation (2.23) can be written as

µ2(∇h − ∇λ) = µ2(aξ + bW) + 3(λ − α)

{
(h − λ)2 − c

4

}
U

for some functions a and b, which shows that a = ξh − ξλ and b = W(h − λ). Since λ − α

does not vanish on Ω, we verify that

α(∇h − ∇α) = α(aξ + bW) + 3

{
(h − λ)2 − c

4

}
U .(2.24)

On the other hand, if we take the inner product (2.23) with W, and straightforward cal-
culation, then we obtain

α2Wh = 3αµξh + α(4α − 3λ)Wα − µ(4α − λ)ξα ,

where we have used (2.12), (2.13) and the fact that σ = α(λ−h). Comparing this with (2.12)
and (2.13), we see that αW(h − λ) = µξ(h − λ), that is, bα = µa. From this and (1.7), the
equation (2.24) turns out to be

α(∇h − ∇λ) = aAξ + 3

{
(h − λ)2 − c

4

}
U .

Further, we can verify that a = 0 and hence

α(∇h − ∇λ) = 3

{
(h − λ)2 − c

4

}
U .

(for detail, see [4]).
If we assume that (h − λ)2 − c

4 �= 0 on an open subset Ω ′′ of Ω, then we have from the
last equation

(Yα)u(X) − (Xα)u(Y ) = αdu(Y,X)

and

λ∇α − α∇λ = 2

{
(h − λ)2 + (h − λ)(α − 2λ) − c

4

}
U ,

(for detail, see [5]). Using above two equations, we can verify that du(Y,X) = 0, where the
exterior derivative du of 1-form u is given by

du(X, Y ) = Yu(X) − Xu(Y ) − u([X,Y ]) .

Therefore we have {
(h − λ)2 − c

4

}
du(Y,X) = 0 .(2.25)
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on Ω. Therefore, we see, using (1.9), (1.13) and (2.8), that

du(ξ,X) = (3λ − 2h)µw(X) + g(φ∇α,X)(2.26)

for any vector X.
We prepare the following without proof in order to prove our Theorem 3.3 (See Lemma

3.5 of [4]).

REMARK 2.2. Let M be a real hypersurface in Mn(c), c �= 0 such that Rξφ = φRξ

and RξS = SRξ . If du = 0, then Ω is void.

3. Proof ot Theorem

We will continue our arguments under the same hypotheses Rξφ = φRξ and at the same
time RξS = SRξ as in section 2. Because of Theorem KNT and Remark 2.2, we may only

consider the case where θ = 3(h − λ)2 − 3
4c = 0 and hence

(h − λ)2 = c

4
(3.1)

by virtue of (2.25). From (1.6), (2.7) and Remark 2.1, it follows that

g(Sξ, ξ) = c

2
(n − 1) + (h − λ)α ,

which together with (3.1) implies that g(Sξ, ξ) = const. if α is constant.
According to Theorem KKL, we have

LEMMA 3.1. Let M be a real hypersurface with (3.1) satisfying Rξφ = φRξ , and
RξS = SRξ in Mn(c), c �= 0. If α is constant, then Ω = ∅.

Because of (3.1), the equations (2.11), (2.21) and (2.22) are reduced respectively to

A∇α − h∇α = −1

2
∇β + (ξh)Aξ + (λ − h)(ξα)ξ + (h − λ)(2λ − α)U ,(3.2)

∇U U =
{
(h − λ)(2λ − α) + 1

α
Uα

}
U + A∇α − (h − λ)∇α

+ {(h − λ − α)ξα − µWα}ξ − {µξα + (λ − α)Wα}W ,

(3.3)

A2∇α + 2(λ − h)A∇α + (h − λ)2∇α

= {g(Aξ,∇α) − (h − λ)ξα}{Aξ − (h − λ)ξ}
+ µ

α
g(Aξ,∇α){AW − (h − λ)W } .

(3.4)

Now, differentiating (1.7) covariantly, we find

(∇XA)ξ + AφAX = (Xα)ξ + αφAX + (Xµ)W + µ∇XW ,(3.5)
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from which, taking the trace and using (2.17) we get

divW = 0 .(3.6)

Putting X = µW in (3.5) and making use of (1.8), (2.9), (2.15) and (3.1), we obtain

µ2∇W W + µ(Wµ)W

= 1

2
∇β − α∇α − µ(Wα)ξ + {(h − λ)(2λ − 3α) − α(h − α)}U .

(3.7)

By the way, from µW = −φU we have

(Xµ)W + µ∇XW = g(AX,U)ξ − φ∇XU ,

where we have used (1.1), which shows that

−µφ∇WU = µ2∇WW + µ(Wµ)W .

From this and (3.7) it follows that

µφ∇W U = α∇α − 1

2
∇β + µ(Wα)ξ + {(h − λ)(3α − 2λ) + α(h − α)}U .(3.8)

Differentiating µφW = U covariantly and using (1.1), we also find

∇XU = (Xµ)φW − µg(AX,W)ξ + µφ∇XW .

Putting X = U in this, we obtain

∇UU = 1

µ
(Uµ)U + µφ∇UW ,

which together with (3.8) implies that

µφ(∇W U + ∇UW) = α∇α − 1

2
∇β + µ(Wα)ξ + ∇UU − 1

µ
(Uµ)U

+{(h − λ)(3α − 2λ) + α(h − α)}U .

Substituting (3.3) into this, we get

µφ(∇WU + ∇UW) = A∇α + (λ − h + α)∇α − 1

2
∇β

+
{

1

α
Uα − 1

µ
Uµ + α(3h − 2λ − α)

}
U

+(h − λ − α)(ξα)ξ − {µξα + (λ − α)Wα}W ,

or, using (3.2),

µφ(∇WU + ∇UW) = α(∇α − ∇h) + (ξh − ξα)Aξ − (λ − α)(Wα)W

+
{

1

α
Uα − 1

µ
Uµ + 2hα − λα − α2 + 2hλ − 2λ2

}
U .

(3.9)
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On the other hand, from (1.7) and (2.2) we have

(Aφ − φA)X + η(X)U + u(X)ξ + τ (w(X)U + u(X)W) = 0 ,(3.10)

where we have put

ατ = µ .(3.11)

From the last relationship, we see that

µα∇τ = µ∇µ − (λ − α)∇α .(3.12)

Using (1.7) and (2.8), the equation (1.13) turns out to be

∇ξU = µ(3λ − 3h + α)W + α(α − λ)ξ + φ∇α .(3.13)

Differentiating (3.10) covariantly and using (1.1), we find

(∇kA
r
j )φ

r
i + (∇kAir)φ

r
j + A2

jkξi − Aki(Ajrξ
r ) + Ar

ikξj − Akj (Airξ
r )

+ ∇kUj (ξi + τwi) + ∇kUi(ξj + τwj ) + Uj∇kξi + Ui∇kξj

+ τk(UjWi + UiWj ) + τ (Uj∇kWi + Ui∇kWj ) = 0 .

Now we define the function h(2) by h(2) = Ai
jA

j

i . Then, taking
∑

gki on the last

equation and summing for k and i, we obtain

− c

2
(n − 1)ξ − φ∇h − hAξ + h(2)ξ + τ (∇W U + ∇U W) + µ(3λ − 3h + α)W

+ α(α − λ)ξ + φ∇α + divU(ξ + τW) − (h − λ)µW

+ (Wτ)U + (Uτ)W = 0 ,

where we have used (1.3), (2.8), (3.6) and (3.13), which tells us that

αφ(∇α − ∇h) + µ(∇WU + ∇UW) + α(Wτ)U

= α

{
c

2
(n − 1) + hα − h(2) + α(λ − α) − divU

}
ξ

+ {µα(5h − 4λ − α) − µdivU − α(Uτ)}W

(3.14)

by virtue of (3.11). If we apply this by φ and make use of (2.17), (3.9) and (3.12), then we
obtain

divU = (h − λ)(3α − 2λ) .(3.15)

Since we have

g(∇W U + ∇UW, ξ) = µ(α − λ)

because of (1.1), (2.8) and (2.9), by taking the inner product (3.14) with ξ, we also find

divU = c

2
(n − 1) + hα − h(2) + λ2 − αλ .
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From this and (3.15), it follows that

(h − λ)(3α − 2λ) = c

2
(n − 1) + hα − h(2) + λ2 − αλ ,

From this and (3.15), it follows that

(h − λ)(3α − 2λ) = c

2
(n − 1) + hα − h(2) + λ2 − αλ ,

which together with (3.1) implies that

∇h(2) − 2h∇h = 2(λ − h)∇α .(3.16)

However, the scalar curvature r of M is given by

r = c(n2 − 1) + h2 − h(2)

since we have (1.5). Thus, (3.16) is reduced to

∇r = 2(h − λ)∇α .

Now, we assume that the scalar curvature of M is constant. Then we have

∇α = 0 ,(3.17)

since h − λ �= 0.
So, using Lemma 3.1, we finally have

THEOREM 3.2. Let M be a real hypersurface in a nonflat complex space form Mn(c)

which satisfies Rξφ = φRξ and at the same time RξS = SRξ . If the scalar curvature of M

is constant, then M is a Hopf hypersurface. Further, M is locally congruent to one of (A1),
(A2) type if c > 0, or (A0), (A1), (A2) type if c < 0 provided that η(Aξ) �= 0.
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