The Decomposability of Z_{2}-Manifolds in Cut-and-Paste Equivalence

Katsuhiro KOMIYA

Yamaguchi University
(Communicated by T. Kawasaki)

Introduction

All manifolds considered here are unoriented compact smooth manifolds with or without boundary. G denotes a finite abelian group, and G-manifolds mean manifolds with smooth G-action.

Let $m \geq 0$ be an integer. Let P and Q be m-dimensional compact G-manifolds with boundary, and $\varphi: \partial P \rightarrow \partial Q$ be a G-diffeomorphism. Pasting P and Q along the boundary by φ, we obtain a closed G-manifold $P \cup_{\varphi} Q$ after rounding a corner. If $\psi: \partial P \rightarrow \partial Q$ is a second G-diffeomorphism, we obtain a second closed G-manifold $P \cup_{\psi} Q$. The two closed G-manifolds $P \cup_{\varphi} Q$ and $P \cup_{\psi} Q$ are said to be obtained from each other by cutting and pasting (Schneiden und Kleben in German). Two m-dimensional closed G-manifolds M and N are said to be cut-and-paste equivalent, or $S K$-equivalent to each other, if there is an m dimensional closed G-manifold L such that the disjoint union $M+L$ is obtained from $N+L$ by a finite sequence of cuttings and pastings. This is an equivalence relation on \mathfrak{M}_{m}^{G}, the set of m-dimensional closed G-manifolds. Denote by [M] the equivalence class represented by M, and by $\mathfrak{M}_{m}^{G} / S K$ the quotient set of \mathfrak{M}_{m}^{G} by the $S K$-equivalence. $\mathfrak{M}_{m}^{G} / S K$ becomes a semigroup with the addition induced from the disjoint union of G-manifolds. The Grothendieck group of $\mathfrak{M}_{m}^{G} / S K$ is called the $S K$-group of m-dimensional closed G-manifolds and is denoted by $S K_{m}^{G}$. The direct sum $S K_{*}^{G}=\bigoplus_{m \geq 0} S K_{m}^{G}$ becomes a graded ring with multiplication induced from cartesian product, with diagonal G-action, of G-manifolds.

In Komiya [13] we dealt with the case in which G is of odd order, and obtained a necessary and sufficient condition for that, for a given $u \in S K_{m}^{G}$ and an integer $t \geq 0, u$ is divisible by t, i.e., $u=t v$ for some $v \in S K_{m}^{G}$.

In the present paper we will deal with the case of $G=\boldsymbol{Z}_{2}$, the cyclic group of order 2. Using a result in Komiya [12], we will obtain a condition for a closed \boldsymbol{Z}_{2}-manifold M to decompose in the sense of $S K$-equivalence into the product $N \times L$ of two closed \boldsymbol{Z}_{2}-manifolds N and L. In fact, for given $u \in S K_{m}^{\boldsymbol{Z}_{2}}$ and $v \in S K_{n}^{\boldsymbol{Z}_{2}}$ with $n \leq m$, we will obtain a necessary
and sufficient condition for the existence of an element $w \in S K_{m-n}^{\boldsymbol{Z}_{2}}$ such that $u=v w$ in $S K_{*}^{Z_{2}}$.

Note. The $S K$-group of (nonequivariant) closed manifolds was introduced and observed by Karras, Kreck, Neumann and Ossa [8]. We refer to this book for basic properties and general results on the $S K$-group. The notion of this group naturally extends to equivariant manifolds for any compact Lie group. For the case of finite abelian group we also refer to Kosniowski's book [16]. Hara [1], [2], [3], Hara and Koshikawa [4], [5], [6], Hermann and Kreck [7], Komiya [9], [10], [11], Koshikawa [14], [15] are also relevant to our present work.

1. Linear equations

Since $S K_{n}^{Z_{2}}$ is the Grothendieck group of $\mathfrak{M}_{n}^{\boldsymbol{Z}_{2}} / S K$, any element $v \in S K_{n}^{\boldsymbol{Z}_{2}}$ is written in the form $v=[M]-[N]$ for some M and $N \in \mathfrak{M}_{n}^{Z_{2}}$. Let $M^{Z_{2}}$ denote the fixed point set of M, and $M_{i}^{\boldsymbol{Z}_{2}}$ the i-dimensional component of $M^{\boldsymbol{Z}_{2}}$ for $0 \leq i \leq n$. Then $M^{\boldsymbol{Z}_{2}}$ is the disjoint union of $M_{i}^{Z_{2}}$, i.e., $M^{Z_{2}}=\coprod_{0 \leq i \leq n} M_{i}^{Z_{2}}$. Define $\chi(v)=\chi(M)-\chi(N)$, where χ () denotes the Euler characteristic. For any integer i, define

$$
\chi_{i}(v)= \begin{cases}\chi\left(M_{i}^{Z_{2}}\right)-\chi\left(N_{i}^{Z_{2}}\right) & 0 \leq i \leq n \\ 0 & \text { otherwise }\end{cases}
$$

$\chi(v)$ and $\chi_{i}(v)$ are well-defined, namely independent of representatives M and N.
For given two elements $u \in S K_{m}^{Z_{2}}$ and $v \in S K_{n}^{Z_{2}}(n \leq m)$, we consider the problem: When does v divide u, i.e., $u=v w$ for some element $w \in S K_{m-n}^{Z_{2}}$? To consider this problem, define the following $(m+2)$-tuples of integers:

$$
\begin{aligned}
\boldsymbol{a}(v) & =(\chi(v), 0,0, \ldots, 0) \\
\boldsymbol{a}_{j}(v) & =(\underbrace{0, \ldots, 0}_{j+1}, \chi_{0}(v), \chi_{1}(v), \ldots, \chi_{m-j}(v))
\end{aligned}
$$

for $0 \leq j \leq m-n$. These vectors give an $(m+2) \times(m-n+2)$-matrix

$$
A(v)=\left(\boldsymbol{a}(v)^{t}, \boldsymbol{a}_{0}(v)^{t}, \boldsymbol{a}_{1}(v)^{t}, \ldots, \boldsymbol{a}_{m-n}(v)^{t}\right)
$$

where $\boldsymbol{a}(v)^{t}, \boldsymbol{a}_{j}(v)^{t}$ denote the column vectors corresponding to $\boldsymbol{a}(v), \boldsymbol{a}_{j}(v)$, respectively. Then we get a system of linear equations with integer coefficients and with indeterminates $x, x_{0}, x_{1}, \ldots, x_{m-n}$:

$$
A(v)\left(\begin{array}{c}
x \tag{*}\\
x_{0} \\
x_{1} \\
\vdots \\
x_{m-n}
\end{array}\right)=\left(\begin{array}{c}
\chi(u) \\
\chi_{0}(u) \\
\chi_{1}(u) \\
\vdots \\
\chi_{m}(u)
\end{array}\right)
$$

A solution of this system of linear equations, $\left(x, x_{0}, x_{1}, \ldots, x_{m-n}\right)=\left(b, b_{0}, b_{1}, \ldots, b_{m-n}\right)$, is called admissible, if the following (i)-(iv) are satisfied:
(i) $b, b_{0}, b_{1}, \ldots, b_{m-n}$ are all integers,
(ii) $b=0$ if $m-n$ is odd,
(iii) $\quad b_{i}=0$ if i is odd $(0 \leq i \leq m-n)$, and
(iv) $b \equiv \sum_{i=0}^{m-n} b_{i} \bmod 2$.

2. Lemma

In this section we will recall from Komiya [12] the definition of the $S K$-group of families of submanifolds.

Let P be an m-dimensional compact manifold. For any i with $0 \leq i \leq m$, let P_{i} be an i-dimensional compact submanifold of P such that $\partial P_{i}=P_{i} \cap \partial P$ and $P_{i} \cap P_{j}=\emptyset$ if $i \neq j$. We write $\tilde{P}=\left(P ; P_{m}, P_{m-1}, \ldots, P_{0}\right)$ for a family of such submanifolds, and call this an m dimensional family. This is modeled on a family of a \boldsymbol{Z}_{2}-manifold and its fixed point sets. For another such family $\tilde{Q}=\left(Q ; Q_{m}, Q_{m-1}, \ldots, Q_{0}\right)$, let $\varphi: \partial P \rightarrow \partial Q$ be a diffeomorphism which restricts to a diffeomorphism $\varphi_{i}=\varphi \mid \partial P_{i}: \partial P_{i} \rightarrow \partial Q_{i}$ for any i. Then we obtain a family of submanifolds of a closed manifold

$$
\tilde{P} \cup_{\varphi} \tilde{Q}=\left(P \cup_{\varphi} Q ; P_{m} \cup_{\varphi_{m}} Q_{m}, \ldots, P_{0} \cup_{\varphi_{0}} Q_{0}\right)
$$

Let $\psi: \partial P \rightarrow \partial Q$ be another diffeomorphism which restricts to a diffeomorphism ψ_{i} : $\partial P_{i} \rightarrow \partial Q_{i}$ for any i. We obtain another family

$$
\tilde{P} \cup_{\psi} \tilde{Q}=\left(P \cup_{\psi} Q ; P_{m} \cup_{\psi_{m}} Q_{m}, \ldots, P_{0} \cup_{\psi_{0}} Q_{0}\right)
$$

The two families $\tilde{P} \cup_{\varphi} \tilde{Q}$ and $\tilde{P} \cup_{\psi} \tilde{Q}$ are said to be obtained from each other by cutting and pasting. Let $\mathfrak{M}_{m}^{\mathcal{F}}$ be the set of m-dimensional family of submanifolds of closed manifolds. Two families $\tilde{M}, \tilde{N} \in \mathfrak{M}_{m}^{\mathcal{F}}$ are said to be $S K$-equivalent to each other, if there is an $\tilde{L} \in \mathfrak{M}_{m}^{\mathcal{F}}$ such that $\tilde{M}+\tilde{L}$ is obtained from $\tilde{N}+\tilde{L}$ by a finite sequence of cuttings and pastings, where $\tilde{M}+\tilde{L}$ is the disjoint union of \tilde{M} and \tilde{L}, i.e.,

$$
\tilde{M}+\tilde{L}=\left(M+L ; M_{m}+L_{m}, \ldots, M_{0}+L_{0}\right)
$$

for $\tilde{M}=\left(M ; M_{m}, \ldots, M_{0}\right)$ and $\tilde{L}=\left(L ; L_{m}, \ldots, L_{0}\right)$. The quotient set $\mathfrak{M}_{m}^{\mathcal{F}} / S K$ by this $S K$-equivalence becomes a semigroup with the addition induced from the disjoint union of families. The $S K$-group of m-dimensional families of submanifolds is defined as the Grothendieck group of $\mathfrak{M}_{m}^{\mathcal{F}} / S K$ and is denoted by $S K_{m}^{\mathcal{F}}$. Any element $x \in S K_{m}^{\mathcal{F}}$ is written in the form $x=[\tilde{M}]-[\tilde{N}]$ for some $\tilde{M}=\left(M ; M_{m}, \ldots, M_{0}\right), \tilde{N}=\left(N ; N_{m}, \ldots, N_{0}\right) \in \mathfrak{M}_{m}^{\mathcal{F}}$. Define $\chi(x)=\chi(M)-\chi(N)$ and $\chi_{i}(x)=\chi\left(M_{i}\right)-\chi\left(N_{i}\right)$ for $0 \leq i \leq m$.

We have a natural correspondence $\mathfrak{M}_{m}^{\boldsymbol{Z}_{2}} \rightarrow \mathfrak{M}_{m}^{\mathcal{F}}$ which assigns to a \boldsymbol{Z}_{2}-manifold $M \in$ $\mathfrak{M}_{m}^{\boldsymbol{Z}_{2}}$ the family $\left(M ; M_{m}^{\boldsymbol{Z}_{2}}, \ldots, M_{0}^{\boldsymbol{Z}_{2}}\right) \in \mathfrak{M}_{m}^{\mathcal{F}}$. This induces a homomorphism $\eta: S K_{m}^{\boldsymbol{Z}_{2}} \rightarrow$ $S K_{m}^{\mathcal{F}}$.

The following lemma is proved in Komiya [12, Theorem 4.2].
Lemma 2.1. An element $x \in S K_{m}^{\mathcal{F}}$ is in the image of η if and only if $\chi(x) \equiv$ $\sum_{i=0}^{m} \chi_{i}(x) \bmod 2$

3. Main result

The main result in this paper is the following:
THEOREM 3.1. For $u \in S K_{m}^{\boldsymbol{Z}_{2}}$ and $v \in S K_{n}^{Z_{2}}(n \leq m)$, there exists $w \in S K_{m-n}^{\boldsymbol{Z}_{2}}$ such that $u=v w$ in $S K_{*}^{Z_{2}}$, if and only if the system of linear equations $(*)$ has an admissible solution.

Proof. Assume $u=v w$. Then we see $\chi(u)=\chi(v) \chi(w)$ and $\chi_{i}(u)=\sum_{i=j+k}$ $\chi_{j}(v) \chi_{k}(w)$. This implies

$$
\left(x, x_{0}, x_{1}, \ldots, x_{m-n}\right)=\left(\chi(w), \chi_{0}(w), \chi_{1}(w), \ldots, \chi_{m-n}(w)\right)
$$

is an integral solution for the equation $(*)$. Moreover, this is admissible from the facts that the Euler characteristic of an odd-dimensional closed manifold is zero and that $\chi(M) \equiv \sum_{i \geq 0} \chi\left(M_{i}^{\boldsymbol{Z}_{2}}\right)\left(=\chi\left(M^{\boldsymbol{Z}_{2}}\right)\right) \bmod 2$ for a closed \boldsymbol{Z}_{2}-manifold M.

Conversely, assume that the equation (*) has an admissible solution $\left(b, b_{0}, b_{1}, \ldots, b_{m-n}\right)$. We define an $(m-n)$-dimensional families \tilde{L} and $\tilde{L}_{i}(0 \leq i \leq m-n)$ as follows:

$$
\begin{aligned}
\tilde{L} & =\left(R P^{m-n} ; \emptyset, \emptyset, \ldots, \emptyset\right), \\
\tilde{L}_{i} & =\left(R P^{m-n} ; L_{i, m-n}, L_{i, m-n-1}, \ldots, L_{i, 0}\right),
\end{aligned}
$$

where $R P^{m-n}$ is an $(m-n)$-dimensional real projective space, and

$$
L_{i, j}=\left\{\begin{array}{cl}
R P^{i} & \text { for } j=i \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

where $R P^{i}$ is considered as a canonically imbedded submanifold of $R P^{m-n}$. These families give classes [$\tilde{L}]$ and $\left[\tilde{L}_{i}\right]$ in $S K_{m-n}^{\mathcal{F}}$. Define $\tilde{w} \in S K_{m-n}^{\mathcal{F}}$ as follows:

$$
\tilde{w}=b[\tilde{L}]+\sum_{i=0}^{m-n} b_{i}\left[\tilde{L}_{i}\right]
$$

Then

$$
\chi(\tilde{w})-\sum_{i=0}^{m-n} \chi_{i}(\tilde{w})=b \chi\left(R P^{m-n}\right)-\sum_{i=0}^{m-n} b_{i} \chi\left(R P^{i}\right)=b-\sum_{i=0}^{m-n} b_{i} \equiv 0 \quad \bmod 2
$$

since $\left(b, b_{0}, b_{1}, \ldots, b_{m-n}\right)$ is admissible and $\chi\left(R P^{i}\right)=0$ or 1 . From Lemma 2.1 we have an element $w \in S K_{m-n}^{\boldsymbol{Z}_{2}}$ such that $\eta(w)=\tilde{w}$. Then we see $\chi(w)=\chi(\tilde{w})=b$ and $\chi_{i}(w)=$ $\chi_{i}(\tilde{w})=b_{i}(0 \leq i \leq m-n)$. Considering the product $v w \in S K_{m}^{Z_{2}}$ of v and w, we have

$$
\begin{aligned}
& \chi(v w)=\chi(v) \chi(w)=\chi(v) b=\chi(u), \text { and } \\
& \chi_{i}(v w)=\sum_{i=j+k} \chi_{j}(v) \chi_{k}(w)=\sum_{i=j+k} \chi_{j}(v) b_{k}=\chi_{i}(u) \quad(0 \leq i \leq m) .
\end{aligned}
$$

This shows from Kosniowski [16, Corollary 5.3.7] that $v w=u$ in $S K_{m}^{Z_{2}}$.

4. Corollaries and remarks

Let $S K_{n}$ be the $S K$-group of n-dimensional closed manifolds, i.e., $S K_{n}=S K_{n}^{\{1\}}$, where $\{1\}$ is the trivial group. $S K_{n}$ is canonically identified with a subgroup of $S K_{n}^{Z_{2}}$. Under this identification, for $v \in S K_{n}^{Z_{2}}$ we see that

$$
v \in S K_{n} \Leftrightarrow \chi_{0}(v)=\chi_{1}(v)=\cdots=\chi_{n-1}(v)=0 \text { and } \chi_{n}(v)=\chi(v) .
$$

Applying Theorem 3.1 to the case of $v \in S K_{n}\left(\subset S K_{n}^{Z_{2}}\right)$, we obtain
COROLLARY 4.1. Given $u \in S K_{m}^{\boldsymbol{Z}_{2}}$ and $v \in S K_{n}(n \leq m)$, v divides u in $S K_{*}^{\boldsymbol{Z}_{2}}$, i.e., there exists $w \in S K_{m-n}^{\boldsymbol{Z}_{2}}$ such that $u=v w$ in $S K_{*}^{Z_{2}}$, if and only if the following conditions (i)-(iii) are satisfied:
(i) $\chi_{0}(u)=\chi_{1}(u)=\cdots=\chi_{n-1}(u)=0$,
(ii) $\quad \chi(u), \chi_{n}(u), \chi_{n+1}(u), \ldots, \chi_{m}(u)$ are all multiples of $\chi(v)$, and
(iii) $\quad \chi(u) \equiv \sum_{i=0}^{m} \chi_{i}(u) \bmod 2 \chi(v)$.

Proof. For $u \in S K_{m}^{Z_{2}}$ and $v \in S K_{n}$, the system of equations (*) reduces to

We see that the conditions (i)-(iii) are necessary and sufficient for the above equations to have an admissible solution. Hence Theorem 3.1 implies Corollary 4.1.

REMARK 4.2. When G is a finite abelian group of odd order, in Komiya [13, Theorem 4.2] we obtained a necessary and sufficient condition for that $u \in S K_{m}^{G}$ is divisible by an integer $t \geq 0$. If we apply Corollary 4.1 to the case of $v=t \in S K_{0}$, we obtain a corresponding result for the case $G=\boldsymbol{Z}_{2}$.

Remark 4.3. Let M be an m-dimensional closed G-manifold, G a finite abelian group of odd order. It is shown in Komiya [13, Theorem 7.1] that M is equivariantly fibred over the circle S^{1} within a cobordism class, i.e., M is equivariantly cobordant to the total space of a G-fibration over S^{1} such that the G-action takes place within the fibres, if and only if $[M] \in S K_{m}^{G}$ is divisible by 2 . When $G=\boldsymbol{Z}_{2}$, for a closed \boldsymbol{Z}_{2}-manifold M to be equivariantly fibred over S^{1} within a cobordism class it is not necessary that $[M] \in S K_{m}^{\boldsymbol{Z}_{2}}$ is divisible by 2 . Indeed, a closed free \boldsymbol{Z}_{2}-manifold M is equivariantly fibred over S^{1} within a cobordism class, but Theorem 3.1 (or Corollary 4.1) shows that $[M] \in S K_{m}^{Z_{2}}$ is not divisible by 2 if $\chi(M) \not \equiv 0 \bmod 4$. See Hara [3] for a necessary and sufficient condition for a closed $\boldsymbol{Z}_{2^{r}}$-manifold to be equivariantly fibred over S^{1} within a cobordism class. Also see Hermann and Kreck [7] for oriented \boldsymbol{Z}_{2}-manifolds.

Finally we consider the $S K$-group of n-dimensional closed free \boldsymbol{Z}_{2}-manifolds, which is denoted by $S K_{n}^{Z_{2}}$ (free). This is regarded as the subgroup of $S K_{n}^{Z_{2}}$ consisting of elements $v \in S K_{n}^{Z_{2}}$ such that $\chi_{0}(v)=\chi_{1}(v)=\cdots=\chi_{n}(v)=0$. Applying Theorem 3.1 to the case of $v \in S K_{n}^{Z_{2}}($ free $)\left(\subset S K_{n}^{Z_{2}}\right)$, we obtain

COROLLARY 4.4. Given $u \in S K_{m}^{Z_{2}}$ and $v \in S K_{n}^{Z_{2}}($ free $)\left(\subset S K_{n}^{Z_{2}}\right)$, v divides u in $S K_{*}^{\boldsymbol{Z}_{2}}$, i.e., there exists $w \in S K_{m-n}^{\boldsymbol{Z}_{2}}$ such that $u=v w$ in $S K_{*}^{\boldsymbol{Z}_{2}}$, if and only if $\chi_{0}(u)=$ $\chi_{1}(u)=\cdots=\chi_{m}(u)=0$ and $\chi(u)$ is a multiple of $\chi(v)$.

References

[1] T. HARA, Equivariant SK invariants on $\boldsymbol{Z}_{2^{r}}$ manifolds with boundary, Kyushu J. Math. 53 (1999), 17-36.
[2] T. HARA, Equivariant cutting and pasting of G manifolds, Tokyo J. Math. 23 (2000), 69-85.
[3] T. HARA, SK invariants on closed $\boldsymbol{Z}_{2} r$ manifolds, Kyushu J. Math. 54 (2000), 307-331.
[4] T. HARA and H. Koshikawa, Equivariant SK group of manifolds with boundary, Kyushu J. Math. 49 (1995), 455-461.
[5] T. Hara and H. Koshikawa, Cutting and pasting of G manifolds with boundary, Kyushu J. Math. 51 (1997), 165-178.
[6] T. Hara and H. Koshikawa, A homomorphism between an equivariant SK ring and the Burnside ring for Z_{4}, Hokkaido Math. J. 28 (1999), 461-474
[7] J. Hermann and M. Kreck, Cutting and pasting of involutions and fibering over the circle within a bordism class, Math. Ann. 214 (1975), 11-17.
[8] U. Karras, M. Kreck, W. D. Neumann and E. Ossa, Cutting and pasting of manifolds; SK-groups, Publish or Perish, Inc., Boston, 1973.
[9] K. Komiya, Cutting and pasting of pairs, Osaka J. Math., 23 (1986), 577-584.
[10] K. KomiYa, Cutting, pasting and the doubles of manifolds with boundary, Kyushu J. Math., 55 (2001), 321328.
[11] K. Komiya, Cutting and pasting of manifolds into G-manifolds, Kodai Math. J. 26 (2003), 230-243.
[12] K. Komiya, Cutting and pasting of families of submanifolds modeled on \boldsymbol{Z}_{2}-manifolds, Tokyo J. Math. 26 (2003), 403-411.
[13] K. Komiya, The divisibility in the cut-and-paste group of G-manifolds and fibring over the circle within a cobordism class, Osaka J. Math. 42 (2005), 233-241.
[14] K. Koshikawa, On the homomorphism between the equivariant SK ring and the Burnside ring for involution, Hokkaido Math. J. 14 (1985), 169-174.
[15] K. Koshikawa, SK groups of manifolds with boundary, Kyushu J. Math. 49 (1995), 47-57.
[16] C. Kosniows ki, Actions of finite abelian groups, Pitman, London-San Francisco-Melbourne, 1978.

Present Address:
Department of Mathematics,
Yamaguchi University,
YAMAGUCHI, 753-8512 JAPAN.
e-mail: komiya@yamaguchi-u.ac.jp

