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Abstract. In this paper we compare topological methods and dynamical methods corresponding to recent
developments in the classification of inverse limit spaces of one dimensional maps on graphs. We elucidate the role
of shifting the periodic base point in applying Williams’ theory. We exploit the Fox calculus to define and apply
the Bowen-Franks trace—a shift equivalence invariant of free group homomorphisms. We show that augmented
cohomology of certain suspensions associated with wrapping rules in a substitution yields augmented dimension
groups that have a relatively simple product structure. We complete the classification of a family of examples of
generalized solenoids initiated by R. F. Williams.

1. Introduction

The aim of this paper is to contrast older and more recent methods for classifying one
dimensional hyperbolic attractors or generalized solenoids. This is a problem with two fronts:
dynamical classification (by conjugacy) and the topological classification of the solenoid. We
present some new results in both directions, but we want to provide some background first.

In the late 1960’s, R. F. Williams (e.g. [16]) discovered a new way to think about the
conjugacy class of a one dimensional hyperbolic attractor h : S → S. Williams’ classification
of such attractors (S, h) ( or generalized 1-solenoids) relied on the shift equivalence of various
possible “presentations” of S. A presentation is a mapping pair (K, f ) such that f : K → K

is a continuous endomorphism of a graph K , with inverse limit space lim←−(f,K) whose shift

map is conjugate to the given homeomorphism on S. Williams showed (in [16, Theorem

3.3] and Theorem 2.2 below) that two shift maps f̄1 and f̄2, on presentations (K1, f1) and
(K2, f2), are topologically conjugate if and only if the maps f1 and f2 are shift equivalent.
He was able to show further that shift equivalence is equivalent to “strong shift equivalence”
in the category of maps on branched 1-manifolds (connected graphs). This reduces checking
shift equivalence to seeking a sequence of “elementary” (or lag 1) shift equivalences.

Williams went on to link the shift equivalence of pointed presentations (corresponding

to pointed conjugacy classes of shifts f̄ : (lim←−(K, f ), x̄)→ (lim←−(K, f ), x̄), x̄ = (x, x, . . . ))
to the shift equivalence of π1 representations.

Williams defines the shift class S(f̄ ) of f̄ to be the shift equivalence class of π1(f, x) :
π1(K, x) → π1(K, x). But as Williams observes, “More accurately, S(f̄ , x), as all of this
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depends on the choice of base point.” This is, indeed, a key distinction: shift equivalence
of graph maps does not imply shift equivalence of group endomorphisms unless results are
carefully framed in the category of pointed topological spaces. Writing the π1 representation
as f∗ rather than, say, f∗,x is common enough but perhaps a bit reckless.

In fact, shifting the basepoint can alter the shift equivalence class of the group endo-
morphism (Example 4.5). There is no easy fix for this, as group endomorphisms simply do
not have base points. Only graph maps and solenoidal shifts have base points (in a pointed
category).

Here is the Williams classification theorem ([16]): See definitions below.

THEOREM. Suppose the elementary presentations (Ki, fi), i = 1, 2, satisfy
Axioms 2.1. Suppose fi(yi) = yi , i = 1, 2. There is a pointed conjugacy r̄ :
(lim←−(K1, f1), ȳ1) → (lim←−(K2, f2), ȳ2) of f̄1 with f̄2 if and only if the fundamental group

homomorphisms π1(f1, y1) and π1(f2, y2) are shift equivalent.

This theorem is most useful when combined with strong shift equivalence invariants for
free group homomorphisms. In Section 4, we describe the “bf-trace”, due to the authors of
[10], which combines the Fox (free) calculus and Bowen-Franks theory. We make use of this
to determine (in Proposition 4.7) the pointed and unpointed conjugacy classes of the set of 1-

dimensional hyperbolic attractors having the particular characteristic polynomialX2−3X−2,
a lingering problem posed by Williams in [16].

The purely topological classification of generalized solenoids has its own history (see
references in [1]), which has taken on new life with the discovery that tiling spaces can be
viewed as generalized solenoids.

In Section 5.1, we study a new invariant—augmented ordered dimension groups—for
topologically distinguishing generalized solenoids. These first appear in the paper [7]. Most
recently, these “Matsumoto” groups (e.g. [14]) were constucted more topologically in [4]

as augmented Čech ordered first cohomology groups. We prove that augmented dimension
groups typically have a simple computable product structure (Theorem 5.4). We show that
the order part of the cohomology invariant is preserved, under additional assumptions, only
if a new invariant, called the crossing group, is preserved by an order isomorphism (Theo-
rem 5.10). We exploit the crossing group to topologically distinguish some specific unpointed
solenoids and to complete the classification of a family of generalized solenoids, originally
suggested by Williams.

2. Conjugacy and shift equivalence in pointed topological spaces

We will formulate a pointed version of R. F. Williams’ classification of 1-solenoids
([16]).

LetK denote a directed graph with vertex set V and edge set E, and suppose f : K → K

is a continuous map.
Consider the following version of Williams’ axioms taken from [17]:
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AXIOMS 2.1.
1: K is dynamically indecomposable (connected, in this context).
2: All points of K are nonwandering under f .
3: (Flattening) There is a k ≥ 1 such that for all x ∈ K , there is an open neighborhood

U of x such that f k(U) is an arc.
4: f is uniformly expanding on sufficiently small arcs.
5: f n|K\� is locally 1-1 for n > 0.
6: f (V) ⊂ V.

A Williams solenoid is defined to be the inverse limit space of a pair (K, f ) satisfying
each of Axioms 2.1. Such a pair will be called a presentation. The notation (K, f, x) will
mean that f (x) = x. Just to fix notation, put

lim←−(K, f ) = {(x1, x2, . . . ) : f (xn+1) = xn, for n ≥ 1}

If f (x) = x, let x̄ denote (x, x, x, . . . ). Let f̄ denote the shift map on lim←−(K, f ) given by

f̄ (x1, x2, . . . ) = (f (x1), x1, x2, . . . ).
Two graph presentations (K, f ) and (K ′, f ′) are shift equivalent of lag k if there exist

maps r : K → K ′ and s : K ′ → K , and a positive integer k, such that f k = s ◦ r ,
(f ′)k = r ◦ s, f ◦ s = s ◦ f ′, and f ′ ◦ r = r ◦ f . If (r, s) is such a shift equivalence, then r̄ :
lim←−(K, f )→ lim←−(K ′, f ′) given by r̄(x1, x2, . . . ) = (r(x1), r(x2), . . . ) is a homeomorphism

defining a conjugacy between f̄ and f̄ ′
The presentation (K, f ) is elementary provided K is homeomorphic with a wedge of

circles and f fixes the branch point of K .
A key result about solenoids is in R. F. Williams [16, Theorem 3.3].

THEOREM 2.2. Suppose that (K, f ) and (K ′, f ′) are presentations. There is a home-

omorphism h : lim←−(K, f )→ lim←−(K ′, f ′) conjugating f̄ with f̄ ′ if and only if there is a shift

equivalence (r, s) from f to f ′ such that h = r̄ .
REMARK 2.3. It should be noted that this result does not depend on base points, unlike

results about π1 representations, which we now consider.

Shift equivalence categorically extends to homomorphisms of fundamental groups.
Suppose given homomorphisms φ : π1(K, x) → π1(K, x) and ψ : π1(K

′, x ′) →
π1(K

′, x ′), there exist group homomorphisms r : π1(K
′, x ′) → π1(K, x) and s :

π1(K, x)→ π1(K
′, x ′) such that

φ� = rs , ψ� = sr , rψ = φr , and sψ = φr .

Then we say that φ and ψ are shift equivalent of lag �.
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EXAMPLE 2.4. Let K and K ′ denote wedges of two circles and let (K, f ) and
(K ′, f ′) be elementary presentations defined by the “wrapping rules”:

{
f : a→ abba

b→ aba

}
and

{
f ′ : α→ αβαβα

β → α

}
,

where a, b are the oriented edges ofK and α, β those ofK ′. In Example 4.5 we will show that
the free group endomorphisms φ = π1(f, p) and ψ = π1(f

′, p′) are not shift equivalent,
with p and p′ the branch points of K,K ′. We show now, however, that f and f ′ are shift
equivalent as maps.

Let x denote the fixed point of f in the interior of edge b, and let x ′ denote the fixed
point of f ′ in the interior of edge α. Then x splits b into oriented edges b1 and b2 and x ′ splits
α into oriented edges α1 and α2. Symbolically, b = b1b2 and α = α1α2. Let r : K → K ′
and s : K ′ → K be given symbolically by

{
r : a→ α2βα1

b→ α2α1

}
and

{
s : α→ b2aab1

β → b2b1

}
,

Then (r, s) is a shift equivalence of (K, f )with (K ′, f ′). In this example, (K, f ) and (K ′, f ′)
are different presentations of the same Williams solenoid, but with different fixed points of
the solenoids corresponding to the branch points p and p′.

3. The Fox calculus

We will state some basic facts from the free differential calculus originated by R. H. Fox
([11]). We have adapted the simple treatment due to J. Birman ([6]) to the needs of this paper,
and the reader can consult that resource for proofs in this section.

Let F(a1, . . . , an) be the free group with basis a1, . . . , an. Suppose G denotes an arbi-
trary factor group of F(a1, . . . , an).

Let ZG denote the integer group ring of all formal sums

∑
g∈G

ag · g ,

with ag ∈ Z and ag = 0 for all but finitely many terms (with 0 · g ≡ 0). Define addition and
multiplication in ZG by

∑
ag g +

∑
bg g =

∑
(ag + bg)g

( ∑
ag g

)( ∑
bg g

)
=

∑
g

( ∑
h

agh−1bh

)
g .
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An element g of G acts by left multiplication to define a ZG automorphism by

g ·
( ∑

k

nk gk

)
≡

∑
k

nk g gk .

Of course, ZG is a Z-module.
For j = 1, . . . , n, there is a unique Z-module homomorphism

∂

∂aj
: ZF(a1, . . . , an)→ ZF(a1, . . . , an)

such that

(i)
∂ai

∂aj
= δi,j

(ii)
∂a−1
i

∂aj
= −δi,j a−1

i

(iii)
∂(wv)

∂aj
=

(
∂w

∂aj

)
+w ·

(
∂v

∂aj

)
.

REMARK 3.1. If a word w in the generators {ai} contains no inverses, which is often

the case in our applications, the Fox partial derivatives are very easy to compute: ∂w
∂ai
=∑

pi,j

where pi,j denotes the prefix of the j th occurrence of ai in w. If w begins with ai , the prefix
is defined to be “1”. Inverses only slightly complicate this algorithm.

Suppose F(a1, . . . , an), F(b1, . . . , bm), and F(c1, . . . , cp) are free groups. A homo-
morphism φ : F(b1, . . . , bm)→ F(a1, . . . , an) replaces each occurrence of the letter bk in a
word of F(b1, . . . , bm) by a specific word in F(a1, . . . , an). We extend the group homomor-
phim to a homomorphism φ : ZF(b1, . . . , bm)→ ZF(a1, . . . , an) by

( ∑
ag g

)φ
≡

∑
ag φ(g) .

Finally, if M denotes the matrix
(
mi,j

)
over ZG, then Mφ denotes the matrix

(
φ(mi,j )

)
over

Zφ(G).
Given φ : F(b1, . . . , bm)→ F(a1, . . . , an), define the free jacobian matrix with entries

in ZF(a1, . . . , an) as follows:

Dφ =




∂φ(b1)

∂a1

∂φ(b1)

∂a2
· · · ∂φ(b1)

∂an

∂φ(b2)

∂a1

∂φ(b2)

∂a2
· · · ∂φ(b2)

∂an
...

...
...
...
...

...

∂φ(bm)

∂a1

∂φ(bm)

∂a2
· · · ∂φ(bm)

∂an



.
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Consider the chain of free group homomorphisms

F(c1, . . . , cp)
ψ−→ F(b1, . . . , bm)

φ−→ F(a1, . . . , an) .

Then the chain rule D(φ ψ) = (Dψ)φ ·Dφ holds.

REMARK 3.2. Although we cannot find a particular reference with the chain rule writ-
ten in this fashion, it is equivalent to the chain rule in J. Birman ([6]), originally due to R. H.
Fox.

EXAMPLE 3.3. Define a homomorphism ρ : F(a, b)→ F(α, β) by ρ(a) = αβα and
ρ(b) = α. Also define σ : F(α, β)→ F(a, b) by σ(α) = ab and σ(β) = b.

Then ρσ(α) = αβαα and ρσ(β) = α. Also

D(ρσ) =
(

1+ αβ + αβα α

1 0

)

(Dσ)ρ =
(

1 a

0 1

)ρ
=

(
1 αβα

0 1

)

Dρ =
(

1+ αβ α

1 0

)

4. Bowen-Franks factor groups and trace invariants

Given a free group endomorphism φ : F(a1, . . . , an) → F(a1, . . . , an). The factor
group Gφ generated by the relations [{φ(ak) ≡ ak}k, gh ≡ hg] is called the Bowen-Franks
group of φ ([5]). Let bf : F(a1, . . . , an)→ Gφ denote the natural homomorphism.

It is easily checked that if τ : Gφ → Gψ is an isomorphism, then the induced homomor-
phism τ : ZGφ → ZGψ is an isomorphism of the associated group rings.

In the absence of strong clues, it can be quite arduous to decide whether two distinct
endomorphisms are shift equivalent. As part of his program to classify hyperbolic attractors,
and as a kind of test case, R. F. Williams ([16]) sought to determine the shift equivalence
classes of all—there are 46—free group endomorphisms φ arising as actions of orientation
preserving presentations on fundamental groups whose induced abelianizations A share the

characteristic polynomial t2 − 3t − 2.
By restricting to shift equivalences that preserve the number of generators, which are

more computable, Williams found the following (see Table 1):

FACT 4.1. Under the equivalence relation of shift equivalence of group endomor-
phisms induced on the fundamental group, based at the branch point, the elementary pre-

sentations with characteristic polynomial t2 − 3t − 2 fall into at most the four equivalence
classes represented in Table 1.
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TABLE 1. Elementary Presentations with Characteristic Polynomial t2 − 3t − 2

I II III IV

g1(a) = a2b2a g2(a) = ababa g3(a) = a2b4 g4(a) = ab2a

g1(b) = a g2(b) = a g3(b) = ab g4(b) = aba

Previously obtained results on this classification problem are as follows: The fact that
classes (I) and (II) are distinct shift equivalence classes was first established in [15], using
combinatorial group theory, then in [17], using shift of finite type covers.

The strongest result along these lines (see [1]) is that the pair of 1-solenoids lim←−(K, g1)

and lim←−(K, g2) not only fail to have conjugate shift maps but are not even homeomorphic

topological spaces. The authors of [10] use the bf-trace invariant (see below) to show the
following:

FACT 4.2. Classes (I) and (III) in Table 1 are distinct and are each distinct from (II)
and (IV).

This leaves only classes (II) and (IV). We will show (in Example 4.5 below) that
π1(g2, p) and π1(g4, p) are not shift equivalent in the category of free group endomorphisms,

p the branch point, using the same bf-trace invariant applied to the squares π1(g2, p)
2 and

π1(g4, p)
2.

We will need the following definition (see [10]).
Let (Dφ)bf be the Bowen-Franks reduced Fox jacobian matrix as in Section 3. Then the

element T(φ) ≡ Trace((Dφ)bf ) in ZGφ will be called the bf-trace of φ.
Provided the Bowen-Franks groups aren’t too large, the bf-trace is useful for separating

shift equivalence classes. Comparing traces is greatly facilitated by further reducing them
modulo some integer. The following result was proved in [10, Theorem 4.3] by a different
argument.

PROPOSITION 4.3. If φ and ψ are shift equivalent of lag 1, then there is an isomor-
phism (of Bowen-Franks groups) r∗ : Gφ → Gψ such that T(φ) = T(ψ)r∗ .

PROOF. So we have φ = rs and ψ = sr . As observed in [5], there are canonical
isomorphisms

φ∗ : Gφ → Gφ , ψ∗ : Gψ → Gψ , r∗ : Gψ → Gφ and s∗ : Gφ → Gψ ,

that are factor maps, respectively, of the homomorphisms φ,ψ, r, and s.
For ease in notation, the choice of Bowen Franks reduction (bf = bfφ) is to be under-

stood by the context.
In particular, bf r = r∗ bf and bf s = s∗ bf . Also r∗s∗ = id and s∗r∗ = id .



146 MARCY M. BARGE AND RICHARD C. SWANSON

Applying the chain rule and Bowen-Franks reductions yields

(Dφ)bf = (Drs)bf = ((Ds)rDr)bf = (Ds)r bf (Dr)bf

((Dψ)bf )r∗ = ((Dr)s bf (Ds)bf )r∗ = (Dr)bf s∗r∗(Ds)bf r∗ = (Dr)bf (Ds)r bf .
That completes the proof, since, for all compatible matrix pairs A,B, we know that
trace(AB) = trace(BA). �

COROLLARY 4.4. If φ and ψ are shift equivalent (of arbitrary lag) then for all k ≥ 1,
T(φk) = T(ψk)rk∗ , where rk∗ denotes an isomorphism of Bowen-Franks groups of the powers

φk and ψk .

PROOF. If φ and ψ are shift equivalent, then so are φk and ψk by [16]. Every shift
equivalence can be decomposed into a finite chain of lag 1 shift equivalences (Lemma 4.6 in
[16]). By Proposition 4.3, each lag 1 shift equivalence preserves the trace up to Bowen-Franks
isomorphism. �

EXAMPLE 4.5. Define a pair of free group homomorphisms in terms of generators, as
follows:

[a, b] φ−→ [abba, aba] [α, β] ψ−→ [αβαβα, α] .
These endomorphisms arise from the shift equivalence classes (IV) and (II) in the table above.
Our aim is to show that these lie in distinct shift equivalence classes.

We noteGφ2 ∼= Z8, where b8 = 1, a = b6. SimilarlyGψ2 ∼= Z8, where β8 = 1, α = β5.

A computation shows T(φ) = [1+ab2+a]bf = 2+b2 and T(ψ) = [1+αβ+(αβ)2]bf =
2 + β2, so not much help here. Passing to the second powers, we obtain the Bowen-Franks
groups: Gφ2 = 〈b〉 ∼= Z8, a = b6 and Gψ2 = 〈β〉 ∼= Z8, α = β5. The integer term

in the monomial expansion of T(φ2) is 4, whereas the integer part of T(ψ2) equals 2. By
Corollary 4.4, there is no shift equivalence between φ and ψ .

PROPOSITION 4.6. There exists an elementary presentation, satisfying Axioms 2.1,
f : K → K with branch point p and a fixed point x such that π1(f, p) = φ and π1(f, x) = θ
with φ and θ not shift equivalent.

PROOF. Let (K, f ) be as in Example 2.4, with branch point p ∈ K and second fixed

point x in edge b splitting b as b = b1b2. Then π1(K, x) has generators â = b2ab
−1
2 and

b̂ = b2bb
−1
2 . Apply f to these generators to get

f (â) = f (b2ab
−1
2 ) = (b2a)(abba)(a

−1b−1
2 ) = ââb̂b̂

f (b̂) = f (b2bb
−1
2 ) = (b2a)(aba)(a

−1b−1
2 ) = ââb̂ .

Thus, θ = π1(f, x) has the form [â, b̂] → [ââb̂b̂, ââb̂]. Let (K ′, f ′) be as in Exam-
ple 2.4 with K ′ the wedge of circles α and β, p′ the branch point of K ′. Define the group
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homomorphisms s : π1(K, x)→ π1(K
′, p′) and r : π1(K

′, p′)→ π1(K, x) by

s(â) = αβ
s(b̂) = α

r(α) = ââb̂
r(β) = b̂ .

Then (r, s) is a shift equivalence of θ = π1(f, x) with π1(f
′, p′) = ψ : [α, β] →

[αβαβα, α]. In Example 4.5 we saw that ψ and φ = π1(f, p) are not shift equivalent;
therefore, neither are φ = π1(f, p) and θ = π1(f, x). �

We return to the four part classification of R. F. Williams’ endomorphisms in Table 1.

PROPOSITION 4.7. Suppose K is a wedge of two circles. There are exactly three con-
jugacy classes of shift homeomorphisms f̄ : lim←−(K, f ) → lim←−(K, f ), for which (K, f ) is

an elementary presentation such that the abelianizations have the characteristic polynomial

t2 − 3t − 2. There are exactly five pointed conjugacy classes of such shifts.

PROOF. There are 46 positive endomorphisms of the free group on two generators

whose abelianizations share the characteristic polynomial t2 − 3t − 2, and each of these
is shift equivalent to one induced by an elementary presentation in Table 1 by Fact 4.1.

Each of the presentations (K, gi ), i = 1, . . . , 4 fixes the branch point p and an additional
point xi = p. For each i there is an elementary presentation (Ki, fi) with (fi , p) pointedly
shift equivalent to (gi , xi). We need to make this precise.

Moving the basepoint to xi (as in Example 4.5), one finds Ki = K , i = 1, 2, 4, is a
wedge of two circles, K3 is a wedge of three circles and the wrapping rules are as follows:

f1 : [a, b] → [baa, ba4]; f2 : [a, b] → [ab2a, aba]; f3 : [a, b, c] → [ab4c, abc, ac] and
f4 : [a, b] → [ababa, a]. Note that f2 = g4 and f4 = g2.

We explicitly show that π1(f1, p) is shift equivalent to π1(g1, p) as follows: The con-

jugacy [a, b] → [α, β], α = a−1, β = b−1, yields the homomorphism θ : [α, β] →
[ααβ, α4β] shift equivalent with π1(f1, p). Now the pair of homomorphisms r(α) =
a, r(β) = bba and s(a) = ααβ, s(b) = α defines a shift equivalence between θ and
π1(g1, p).

Since a conjugacy between f̄ on lim←−(K, f ) and ḡ on lim←−(K, g) must arise from a shift

equivalence between f and g (Theorem 2.2), the foregoing calculations show that there are at

most three conjugacy classes of shifts f̄ : lim←−(K, f )→ lim←−(K, f ) represented by ḡ1, ḡ2, and

ḡ3. Now if there is a conjugacy from ḡi to ḡj ,for some i = j , then the conjugacy either fixes
the point p̄ = (p, p, . . . ) or maps p̄ to x̄j . Thus, either the group endomorphisms π1(gi , p)
and π1(gj , p) are shift equivalent, or π1(gi , p) and π1(fj , p) are shift equivalent.

We will know there are exactly three (unpointed) conjugacy classes if we verify that
π1(f3, p) is not shift equivalent to either π1(g1, p) or π1(g2, p), as group endomorphisms.
The bf-trace τ (π1(f3, p)) = 3 is distinct from the constant terms of both τ (π1(g1, p)) and
τ (π1(g2, p)) (see Example 4.5). Thus, (using Fact 4.2 and Example 4.5) the conjugacy classes
of ḡi , i = 1, 2, 3, are all distinct.
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We now want to show that π1(f3, p) and π1(g3, p) are not shift equivalent as group

endomorphisms1. We claim that f̄3 : lim←−(K3, f3) → lim←−(K3, f3) and ḡ3 : lim←−(K, g3) →
lim←−(K, g3) are not conjugate by a conjugacy taking the fixed point p̄ of ḡ3 to the fixed point

p̄ of f̄3. The branched manifolds K andK3 are naturally oriented and g3, f3 preserve the ori-
entation. Hence, the inverse limits are orientable and any homeomorphism from lim←−(K3, f3)

to lim←−(K3, f3) either preserves or reverses the orientation. Suppose that h is a conjugacy of

ḡ3 with f̄3 taking p̄ to p̄ with corresponding shift equivalences (r, s) from g3 to f3 (as in The-
orem 2.2). Then r and s both preserve or both reverse the orientation. Thus, the free group

homomorphism r∗ takes letters a, b to words in a, b, c or to words in α = a−1, β = b−1, γ =
c−1, and similarly for s∗. Now (g3)∗ has a unique periodic right infinite word: w = w1w2 · · ·
with each wi ∈ {a, b} such that (g3)

k∗(w) := (g3)
k∗(w1)(g3)

k∗(w2) · · · = w. In our case, k = 1
and w = aabbbbaabbbbabababab · · · . Similarly, (f3)∗ has unique positive and negative
periodic right infinite words u = abbbbcabcabcabcabcac · · · and v = γαγββββαγα · · · .
The homomorphism r∗ must either take w to u or w to v (if orientation reversing). A straight
forward inductive argument shows that neither of the words u or v has a nonempty prefix that

is a square. Since r∗(w) = r∗(a)r∗(a)r∗(b) · · · = xxr∗(b) · · · , we see that ḡ3 and f̄3 cannot
be conjugate by a homeomorphism that takes p̄ to p̄.

We can now infer that there are five distinct pointed conjugacy classes represented by
(ḡi , p̄), for i = 1, . . . , 4 and (ḡ3, x̄3). �

5. Ordered Čech equivalence of augmented solenoids

If the graph K is oriented and the presentation (K, f ) is orientation preserving, there is

a natural nonsingular flow ϕt on the Williams solenoid lim←−(K, f ) that satisfies f̄ (ϕt (x̄)) =
ϕλt(f̄ (x̄)), for all x̄ = (x1, x2, . . . ) ∈ lim←−(K, f ), and λ the Perron-Frobenius eigenvalue of

the abelianization of f . In case lim←−(K, f ) is homeomorphic to the inverse limit of z �→ zn on

the circle—a classical solenoid—then ϕt is a translation, and isometry, on a compact abelian
group. Otherwise, there are a finite number of forward asymptotic orbits of the flow; that
is, there exist x̄ = ȳ such that d(ϕt (x̄), ϕt (ȳ)) → 0 as t → ∞ (similarly for backward
asymptotic orbits). In case (K, f ) and (K ′, f ′) are two orientation preserving presenta-
tions, an orientation preserving homeomorphism of lim←−(K, f ) onto lim←−(K ′, f ′) must take

forward (backward) asymptotic orbits to forward (backward) asymptotic orbits ([1], Lemma
3.5). Moreover, each asymptotic orbit contains a unique periodic point of f̄ so that a home-
omorphism between lim←−(K, f ) and lim←−(K ′, g) must, up to isotopy, map the collection of as-

ymptotic periodic points, say P±f , to the like collection P±g of lim←−(K ′, g) ([1], Proof of Thm.

3.10), where the ± superscript refers to forward (+) or backward (−) asymptotic orbits.

1One can prove that it is not possible to distinguish the shift equivalence classes of π1(f3, p) and π1(g3, p) based
solely on Bowen-Franks traces of powers.
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The orientation on lim←−(K, f ) induces an order structure on the Čech cohomology

Ȟ1(lim←−(K, f ),Pf ), with integer coefficients, and Pf = P+f , P−f , or P+f ∪ P−f . This

ordered group is called the augmented cohomology group of lim←−(K, f ). The augmented

cohomology group is closely related to the augmented dimension group employed by Carlsen
and Eilers to study substitutive systems ([7], [8]). The latter group is, in turn, a manifestation
of the Matsumoto K0 group ([14]) arising in C∗-algebra theory. In this section we use the
following theorem to separate Williams solenoids.

THEOREM 5.1. [4] If (K, f ) and (K ′, g) are orientation preserving presentations,
and there is an orientation preserving homeomorphism between the Williams solenoids

lim←−(K, f ) and lim←−(K ′, g), then the augmented cohomology groups Ȟ1(lim←−(K, f ),Pf ) and

Ȟ1(lim←−(K ′, g),Pg ) are order isomorphic.

The group Ȟ1(lim←−(K, f )) is determined entirely by the abelianization of f . The space

lim←−(K, f )/Pf contains some additional cocycles that may intertwine in an algebraically non-

trivial fashion with the generators of Ȟ1(lim←−(K, f )). In this way, Ȟ1(lim←−(K, f ),Pf ) can

capture at least some of the nonabelian character of f , as we will see in the sequel. For any
such augmented cohomology group, there is a recipe (see [4]) for constructing an “augmented
matrix” whose dimension group is order isomorphic to the augmented cohomology group. In
the extended discussion at the end of this section, we will explain in more detail this recipe in
the context of the Williams examples.

5.1. Ordered dimension groups for augmented matrices. SupposeA denotes a d×
d nonsingular matrix over the integers called the base matrix. The nonsingularity will greatly
simplify the exposition (see Remark 5.3). Let I denote the k×k identity matrix, andE denote
a k × d rational matrix. Then an augmented matrix (A,E) is a d + k square matrix of the
special form

(A,E) =
(
A O

E I

)
.

We will say A is augmented by E. The reader can verify that (A,E)−1 = (A−1,−EA−1),
and (A,E) ∗ (B, F ) = (AB,EB + F).

DEFINITION 5.2. The dimension group of a nonsingular matrix M is defined to be
the infinite union DM = ⋃

m≥0M
−mZn. When M = (A,E) with E a k × d integral matrix,

we will say that DA,E is a k-augmented dimension group.

REMARK 5.3. While, for simplicity, we assume M is nonsingular in the sequel, suit-
ably adapted results would hold for the singular case. If detM = 0, one replaces M by the
restriction of M to the eventual range R(M) = ⋂

mM
m(Qn).

We now show that DA,E has a very simple product structure in most cases.
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THEOREM 5.4. Given the k-augmented dimension group DA,E such thatA andA−I
are nonsingular, there exist a subgroup D(E) ⊂ DA and a lattice Λk = ∑k

i=1 Z · (pi, qi)
isomorphic to Zk , for some pi ∈ Zd and qi ∈ Qk , such that DA,E is isomorphic to D(E)⊕Λk .

The subgroup D(E) has the form
⋃
m≥0 A

−mPE where PE = {p ∈ Zd : E(A−I)−1p ∈ Zk}.
REMARK 5.5. Even though (A,E) can be block diagonalized to (A, 0) = A ⊕ Ik ,

this similarity transformation does not imply that the dimension group DA,E is isomorphic

to DA ⊕ Zk as might be expected, unless the similarity transformation is invertible over Z.
In the sequel we will equate DA,E with the particular, easy to describe, product structure
D′A,E = D(E)⊕Λk of Theorem 5.4.

Let Mk,d denote the group of k × d integral matrices. Theorem 5.4 shows that there are

at most k0 =
∣∣Mk,d/Mk,d(A− I)

∣∣ isomorphism classes of augmented dimension groups. We

can relate this to the Bowen-Franks group (Section 4) bf g(A) = Zd/Zd (A− I).
COROLLARY 5.6. There are at most

k0 = |bf g(A)|k ≤ | det(A− I)|k

isomorphism classes for the family of k-augmented dimension groups DA,E .

Now we prove Theorem 5.4.

PROOF. It will be convenient to replace DA,E with the isomorphic group

D′A,E =
(

I 0
−E(A− I)−1 I

)
DA,E = {(A−mp,−E(A− I)−1p + z)}m,p,z ,

for all nonnegative integers m, and all (p, z) ∈ Zd × Zk .
The group (−E(A − I)−1Zd ) + Zk is a submodule of the free Z-module det((A −

I)−1))Zk and hence is a free Z-module having a set of k generators (nonunique)
{q1, . . . , qk} ⊂ Q.

As a consequence, there exist vectors (pi, zi) ∈ Zd × Zk such that −E (A− I)−1 pi +
zi = qi . Put vi = (pi, qi) for each i.

Define the subgroup PE = {p̃ ∈ Zd : E (A− I)−1 p̃ ∈ Zk}.
Then we want to establish the following splitting:

D′A,E =
⋃
m≥0

A−mPE ⊕
∑

Z · vi .

We need to solve the equation (A−mp,−E(A− I)−1p+ z) = (A−mp̃, 0)+∑
i �ivi for

p̃ ∈ PE and �i ∈ Z. From the definition of the set {qi}, there exist unique integers {�i} such

that
∑
i �iqi = −E (A− I)−1 p + z.
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We are left with A−mp̃ = A−mp−
∑

�ipi to be solved for p̃ ∈ PE . But we can rewrite

this as

p̃ = p − Am
( ∑

i

�ipi

)
= p − (Am − I)

( ∑
i

�ipi

)

−
∑
i

�ipi = p −
∑
i

�ipi + (A− I)t

for some t ∈ Zd . So, it is enough to show p −∑
i �ipi ∈ PE . We have the two equations:

−E (A− I)−1 p + z =
∑
i

�iqi and − E (A− I)−1
( ∑

i

�ipi

)
+ z0 =

∑
i

�iqi .

Subtracting yields the conclusion that E(A− I)−1(p −∑
i �ipi) ∈ Zk .

For the reverse inclusion, fixing m = 0, p = pi and z = zi , then (pi, qi) ∈ D′A,E , for

each i = 1, . . . , k. If each �i = 0, we want to show that A−mp̃ ∈ D′A,E , when there exists

z ∈ Zk such that −E (A− I)−1 p̃ + z = 0. Hence, p = p̃ and z = E (A− I)−1 p̃ will
do. �

EXAMPLE 5.7. Consider the 1-augmented matrices Aj =
(

8 0
j 1

)
. For j = 0, 1,

these matrices appear in [7]. An explicit computation (using Theorem 5.4) shows that if

j = 0 and aj = (7− j)−1 mod 7, then

D′Aj =
(

7
0

)
Z[1/2] ⊕

(
aj

1/7

)
Z .

If j = 0, D′A0
=

(
1
0

)
Z[1/2] ⊕

(
0
1

)
Z. All seven dimension groups are isomorphic.

As described at the beginning of the section, the topological invariant underlying aug-

mented dimension groups is ordered Čech cohomology. In case u is a nonnegative left Perron-
Frobenius eigenvector for an augmented matrix (A,E), an order is determined in DA,E by
x ≥ y ⇔ (x − y) · u ≥ 0. A homeomorphism between oriented Williams solenoids either
preserves or reverses orientations and the induced isomorphism on augmented cohomology
groups (augmented dimension groups) either preserves or reverses the order. In either event,
the induced isomorphism must preserve orthogonality to Perron-Frobenius eigenvectors. With
this in mind, for v ∈ Rn define v⊥ = {u ∈ Rn : v · u = 0}.

In terms of augmented dimension groups, the order structure is reflected in the following
definition ((see [4] and [7] for more details).

Suppose we are given two augmented matrices (A,E) and (B, F ) having, respectively,
the left Perron-Frobenius eigenvectors u and v. Then the isomorphism C : DA,E → DB,F is

an augmented order isomorphism if C(u⊥) = v⊥.
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Order isomorphisms yield a new topological invariant, as follows:
Suppose A − I is nonsingular. Define the crossing group of the augmented matrix

(A,E) to be the quotient group

CG(A,E) =
(
E(A− I)−1Zd + Zk

)
/Zk.

The assignment v + (A − I)Zd �→ vT + Zd (A − I) yields an isomorphism between the

Bowen-Franks groups bf g(A) and bf g(AT ). Some additional dual characterizations of the
crossing group are as follows:

PROPOSITION 5.8. (a) CG(A,E) is isomorphic to a factor group of the Bowen-
Franks group bf g(A).

(b) If k = 1, CG(A,E) ∼= 〈E + Zd 〉 ⊂ bf g(A). Hence, CG(A,E) is isomorphic to a
cyclic subgroup of bf g(A). If k > 1, and E has the row vectors e1, e2, . . . , ek , then
CG(A,E) is isomorphic to the subgroup of bf g(A)k corresponding to the direct

product of the cyclic subgroups 〈ei + Zd (A− I)〉, for i = 1, 2, . . . , k.

PROOF. (a): The coset map η : v + (A− I)Zd �→ E(A− I)−1v + Zk is well-defined

and defines a surjective homomorphism η : bf g(A)→ CG(A,E).
(b): First, suppose k = 1. Fix a generator E(A − I)−1v1 + Z of CG(A,E), for some

v1 ∈ Zd .
Consider the homomorphism h : v+Zd(A− I) �→ v(A− I)−1v1+Z for v ∈ Zd . Then

h(E + Zd (A − I)) generates CG(A,E). The homomorphism h maps the cyclic subgroup

〈E + Zd (A − I)〉 onto CG(A,E). Choose the least m (equal to the order of CG(A,E))
such that mE(A − I)−1v1 ∈ Z. If mE(A − I)−1 /∈ Zd then there exists w ∈ Zd with

E(A− I)−1mw /∈ Z. But this would mean CG(A,E) contains a cyclic subgroup whose order

does not divide m. Thus the restriction of h to 〈E + Zd (A− I)〉 is an isomorphism.
Now suppose k > 1 with E a matrix containing the rows ei , i = 1, 2, . . . , k of 1 × d

vectors. The crossing group (E(A− I)−1Zd +Zk)/Zk is naturally isomorphic to the product∏k
i (ei(A − I)−1Zd + Zk)/Z. Each group summand (ei(A − I)−1Zd + Z)/Z = 〈ei(A −

I)−1vi + Z〉 for some choice of vi ∈ Zd . By the above remarks for k = 1, each component

cyclic group is isomorphic to the cyclic subgroup 〈ei + Zd (A − I)〉 of the Bowen-Franks
group. �

EXAMPLE 5.9. For instance, the crossing group for (A,E) =
( (

3 2
1 0

)
, (1 0)

)
is

CG(A,E) = 1

4
Z/Z ∼=

〈
1

4
+ Z

〉
∼= Z4 .

THEOREM 5.10. Suppose det(A), det(B) = 0,±1, and the characteristic polynomi-
als of A,B are irreducible over Q. Then the condition CG(A,E) ∼= CG(B, F ) is necessary
for the existence of an order isomorphism from DA,E to DB,F .
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EXAMPLE 5.11. If det(A) = ±1, then CG(A,E) need not be an invariant. For in-

stance, let A = B =
(

2 3
3 4

)
, E = (1 1), and F = (2 3).

Then CG(A,E) ∼= Z3 and CG(A, F ) ∼= Z2. The dimension group of both examples is
Z3. The identity map is certainly an isomorphism. Since the base matrices are the same, the
identity preserves the orthogonal space to the left Perron eigenvector, and, thus, is an order iso-
morphism, despite the crossing group difference. In fact, these two augmented matrices arise

from specific wrapping rules, given by [a, b] �→ [ab2ab, a3b4] and [a, b] �→ [a2b3, a3b4]
(see the recipe in 5.1 below for obtaining augmented matrices from wrapping rules).

PROOF. Suppose that there is an order isomorphism of DA,E with DB,F . Then there
is an order isomorphism C given by a rational (d + k) × (d + k)-matrix, acting on the left,
mapping D′A,E onto D′B,F .

Since C is rational, we have C(u⊥i ) = w⊥i for the left Perron conjugate eigenvectors

ui,wi for i = 1, 2, . . . , d , of (A,E) and (B, F ) respectively. The intersection
⋂
u⊥i =

0 ⊕ Rk is C-invariant.
By Theorem 5.4, since C fixes 0 × Rk and preserves dimension groups, and, therefore,

their intersection 0× Zk = D′A,E
⋂
(0⊕ Rk) = D′B,F

⋂
(0 ⊕ Rk), it follows that 0 ⊕ Zk is

C-invariant and that C has the (d, k) block decomposition

C =
(
Cd 0
H Ck

)

with Ck invertible over Z.
Since C(D′A,E) = D′B,F , we know that

(Cd(A
−mp),H(A−mp)+ Ck(−E(A− I)−1p + z)) = (B−�p′,−F(B − I)−1p′ + z′)

for p,p′ ∈ Zd and z, z′ ∈ Zk .
From Minkowski’s Theorem, and det(A) = 0,±1, the element zero is not isolated in the

dimension group DA. The nonzero rational vector space W = ⋂
ε>0 spanQ(DA ∩ Bε\{0})

is A-invariant, where Bε denotes the ε ball about 0. It follows that spanQ (DA ∩ Bε\{0}) =
W = Qd , since the nested intersections must stabilize at some fixed ε > 0 and A has no
proper nontrivial rational invariant subspaces. Thus, spanZ (DA ∩ Bε\{0}) ⊂ DA is ε-dense

in Rd .
It follows that H(Rd) = 0, since H is continuous with discrete values, and that C is

block diagonal, relative to Rd × Rk.
We now know thatCk(−E(A−I)−1(Zd )+Zk) = −F(B−I)−1(Zd )+Zk andCk(Zk) =

Zk . Therefore Ck induces the quotient map C̃k : CG(A,E) → CG(B, F ). Since Ck is

invertible, C̃k is a group isomorphism. �
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EXAMPLE 5.12. Which matrices in Example 5.7 have order isomorphic dimension
groups? The crossing group for j = 0 mod 7 is trivial while all the others have crossing
groups isomorphic to Z7. The cases j = 0 mod 7 correspond to order isomorphic dimension
groups, as the reader can check.

We now can write the “final chapter” on the Williams examples featured in Section 4
(Table 1) on the dynamical classification of solenoids. We want to indicate how the augmented
matrices are obtained from those presentations.

Suppose we consider a solenoid with an elementary presentation on a wedge of two
circles (K, f ), where f denotes one of the four classes of wrapping rules gi , i = 1, 2, 3, 4
described in Table 1. The general construction can be found in [4]. The space lim←−(K, f ) has

exactly one pair of forward (and one pair of backward) orbits asymptotic under the natural
flow, each invariant under the square f̄ 2. Each of the flow orbits contains a unique fixed point

of f̄ 2. If, for some letters i = j , f (i) is a prefix (suffix) of f (j), we say that f has a prefix
problem (suffix problem). In the recipe for finding augmented matrices given below, it is
somewhat simpler to start with wrapping rules with no prefix or suffix problem. In the present
case, we can readily find wrapping rules (Williams presentations) that are shift equivalent to
gi in Table 1 and do not have a prefix or suffix problem.

Assume this has been done and select fixed points (underlined below), one on a backward
composant, one on a forward composant, that correspond to word factorings of the form:

(backward) f 2(a) = p a x , f 2(b) = p b y p a nonempty prefix, and

(forward) f 2(a) = u a s , f 2(b) = v b s s a nonempty suffix.

Then the 1-augmented matrix for (K, f 2) is (M2, E) where M is the transpose of the
2×2 transition matrix for f , as cohomology suggests. (The group DM2,E is order isomorphic

with Ȟ 1(lim←−(K, f ),Pf ), for the case Pf = P+f ∪ P−f ). The (2×1)-matrix E = (e1 e2)

has e1 equal to the number of occurrences of a in the word p s and e2 equal to the number of
occurrences of b in p s.

It should be of some interest that one can obtain the crossing group at this juncture,
without passing to the augmented matrix first, as follows:

Suppose we are in the setting with k = 1, and there are pairs of forward and backward

asymptotic composants. The asymptotic group of the wrapping rule f 2 above is given by
the

AG(f 2) ≡ 〈(p s)bf 〉
viewing {a, b} as generators of the Bowen-Franks group, and the word p s as in the descrip-
tion of the asymptotic composants. In other words, AG is the cyclic group generated by the

reduction of p s to the Bowen-Franks group of f 2.
Since this is just the second representation of the crossing group in Propositon 5.8, ex-

pressed in terms of the original symbols, we obtain the following result:
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PROPOSITION 5.13. The crossing group and asymptotic group are isomorphic; i.e.,
CG(A,E) ∼= AG(f 2)

We now return to the Williams examples, described in Table 1. For example, given g3

with wrapping rule, g3(a) = a2b4, g3(b) = ab, then the images of g2
3 factor as follows:

(backward) a �→
p︷ ︸︸ ︷

a2b4a a

x︷ ︸︸ ︷
b4(ab)4 and b �→

p︷ ︸︸ ︷
a2b4a b

y︷︸︸︷
{ } , and

(forward) b �→
u︷ ︸︸ ︷

a2b4a2b4abab a

s︷︸︸︷
bab and b �→

v︷︸︸︷
a2b2 b

s︷︸︸︷
bab .

The wrapping rules for g3 do not have a prefix/suffix problem. Consequently, we can

directly apply the foregoing algorithm. It follows that points ofK fixed by g2
3 corresponding to

the “a” in g2
3 (a) = p a s and the “b” in g2

3 (b) = p b, lifted to fixed (by ḡ2
3 ) points in lim←−(K, g3)

that lie on backward asymptotic composants, and there are corresponding fixed points on
forward asymptotic composants in lim←−(K, g3). The relevant word is p s = aabbbbabab and

the augmented matrix is

(M2
3 , E3) =


8 12 0

3 5 0
4 6 1


 .

The Bowen-Franks group of g2
3 has presentation 〈a, b | b8 = 1, a = b4〉. The asymptotic

group for g2
3 is

CG(A,E) ∼= AG(g2
3 ) ≡ 〈(p, s)〉bf = 〈(a2b4(ab)2)bf 〉 = 〈b2〉 ∼= Z4 .

To treat the prefix/suffix problem for the rules g1, g2, replace g1 with g̃1 : [a, b] →
[abb, abab] and g2 with g̃2 : [a, b] → [aba, aabaa] (taken from Williams original reduction
to Table 1).

In like manner to the construction for g3, one computes the pair of augmented matrices

(M2
2 , E2) =


 8 3 0

12 5 0
6 2 1


 , for the wrapping rule g̃2 : [a, b] → [aba, aabaa] ,

(M2
1 , E1) =


5 6 0

6 8 0
6 8 1


 , for the wrapping rule g̃1 : [a, b] → [abb, abab] .

Here M1,M2,M3 are the transposes of the transition matrices for the wrapping rules gener-
ated by g̃1, g̃2, g3, respectively.
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The crossing groups are CG(M2
1 , E1) ∼= Z/4Z CG(M3, F3) ∼= Z/4Z and CG(M2

2 , E2) ∼=
Z/2Z. As a consequence, lim←−(K, g1) and lim←−(K, g3) are not orientation preserving homeo-

morphic to lim←−(K, g2). The symmetry of g2 induces an orientation reversing self homeomor-

phism of lim←−(K, g2). Thus, lim←−(K, g1) and lim←−(K, g3) are not orientation reversing homeo-

morphic with lim←−(K, g2) either.

Unfortunately, the dimension groups of (M2
3 , E3) and (M2

1 , E1) are order isomorphic,
with an explicit isomorphism given by the matrix

C =

1 1 0

1 2 0
1 1 1


 .

Can we topologically distinguish the unpointed solenoids lim←−(K, g3) and lim←−(K, g1) by

some other method? The answer is “yes”. Because the Perron-Frobenius eigenvalue of the
base matrices is a Pisot number, there is an additional topological invariant associated with
so-called proximal composants. While this invariant does topologically separate these two
Williams solenoids, the topic is not in the scope of this paper. We refer the interested reader
to the preprint [2].

This observation does allow us to obtain the following topological classification corre-
sponding to the Williams examples.

PROPOSITION 5.14. Consider the four classes of wrapping rules given in Table 1 in
Section 5.1. The solenoids corresponding to these rules have exactly three homeomorphism
classes, the same as the (unpointed) conjugacy classes.
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