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On the Parity Conjecture for Multiple L-values of
Conductor Four
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Abstract. In this paper, we prove that the multiplevalue of conductor 4 can be expressed in terms of lower
depth multipleL-values under the condition on the parity of its deahd weight. This can be regarded as a character
analogue of what is called the “parity result” for multiple zeta values which was proved by Zagier.

1. Introduction

Let N be the set of natural numbeidg = N U {0}, Z the ring of rational integersQ the
field of rational numbersR the field of real numbers ar@ the field of complex numbers.

Let x be a Dirichlet character. The multiple-value of depth- and of weightzl’,.:1 k;
can be defined by

e¢]

(n)x(m2)--- x(ny)
Lk ko ki)=Y kX k )
ny,eny =111 (n1+np)r2---(n1+---+n)k
for k1,...,k € N. Arakawa and Kaneko proved some relation formulas for them by
considering the shuffle product (see [1]). In particular wheis the trivial charactero,

L(ka, ko, ..., kr; xo0) is the multiple zeta value (also called the Euler-Zagier sum).
In [2], Borwein and Girgensohn conjectured the following fascinating result which is
called the parity result or the parity conjecture for multiple zeta values.

PARITY RESULT. For r € N withr > 2 and (k1,...,k;) € N with k, > 2,
C(k1, ..., k) can be expressed in terms of lower depth multiple zeta values when its depth
and weight are of different parity.

The case of depth 2 has been already careid by Euler, and the case of depth 3 was
proved by Borwein and Girgensohn in [2]. Recently Zagier (with Ihara and Kaneko) gave the
proof in the general case (see [4] § 8). More recently the author gave another proof of this
result in a different method ([7]).

As a next target, we would like to prove the parity result for multiplealues. But
it seems to be hard. Indeed, Terhune [5] proved a kind of the parity result for another type
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of doubleL-values. However a complicated calculation is necessary to prove it even for the

doubleL-values. At present, no parity results for general multiptealues have been known.
The aim of this paper is to prove the parity result for the multiplealues of general

depth attached to the primitive Dirichlet characterof conductor 4. Namely/ (1) = 1,

Y (3) = —-1landy(2) = ¥(4) =0, and

L(kl7k25 ~-~’kr; ‘ﬁ)

o]

_ Z (=D)L .. (=1)F
B @Ca+DR@2ja+2j2+ k2 2ja+ -+ 2jr + 00 ()

j1s~~~>jr:0

_ (~1™
B Z 2m1+ Dk (2mo 4+ 2)k2 ... (2m, +r)kr’

O0<mi<--<m,

Furthermore we let/2 be the non-primitive character such that(n) = ¥ (n)2 forn € Z,
and consider

1

Lki, ... ke y?) = 3

(k1 v . 2 Cm1+ Dk - 2my + r)kr 3
<my<--<m,

forka, ...,k € Nwith k, > 2.
Forr € N, let A, be theQ-algebra generated by

,
U U @G m 001G s jm) €N, i > LG x =42}
m=1 ye{y,y?)
Note thatr € A, because of the well-known formula(1; ) = n/4. Using these notation,
we prove the following theorem by the method introduced in our previous work (see [6, 7, 8]).
THEOREM 1. For r € N withr > 2 and (ky,...,k) € N with k, > 2,
Lk, ...,k ¥?) € A,_1 holds when its depth r and its weight Z;zl k; are of different
parity. Furthermore, L(k1, ..., k,; ¥) € A,_1 holdswhen its weight Z;zl k; isodd.

2. Preéliminaries

We make use of the notation and quote some results in[6, 7, 86 keR with § > 0
andu € Rwith1 <u < 1+ 5. We define
o0
(_u)fl’ﬂ
plsiu) =) 2m + 1) @
m=0
fors € C. If u > 1 thenp(s; u) is convergent for any € C. Note thato(s; 1) = L(s; ¥)
andp(2j + 1; 1)m~%~1 € Qfor j € Ng (see (47)). Let

2ue* > x™M
Feuw) = =) &) (5)

m=0
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forx € D(n/2) = {x € C||x| < %}. From [6] Section 2, we have
. 1 .
p(=jsu) = Eé’j(u) (j €No),
Eny1(1) =0 (N € Np).

Lety e Rwith0 < y < /2, andC, : z = ye'' for 0 <t < 2z, wherei
(5), we can easily check that

/ F(z;u)z " dz = M (n € Np) .
c, n!

Let M1(y) = max|F(z, u)| for (z,u) € C, x [1, 14 8]. Then we obtain

£ _ Ma(y)
nl =y

23

(6)
()

= +/—=1. From

(8)

for anyn € Ng. This means that (5) is uniformly convergent in the wider sense with respect
to(x,u) € D(w/2) x [1,1+6]. Ford € (—n/2,7/2) C Randu € [1, 1+ §], we let

(19)2}4-1 (19)2]
GO u) = Z €241 oy Z &2/ Gor- O
From (6), we see that if € (1, 1+ &] then
2 o0
GO u) ==Y (—w)™" sin((2m + 1)6) ;
d m=0
(10)
HO: u) = Z( u) ™™ cog(2m + 1)),
m=0
where we let,, = {1+ (—1)"}/2 form € Z. From (7)—(9), we have
I 90010 =0 an
Forsy,...,s, € Candu € [1,1+ 5], we let
) = ("
St s u) = 0<m§.<m Cm1+ 1)1 2m, + )5’ 12)
SG1 B = Y i (13)

O<mi<...<m,

(@m1+ 1)1 2my + 1)

We denote therth derivative of sitiX) by sif'”’(X), and further denote sif! (X)|,,_,
by sin” («) fora € R. Fora € N, b, p € No, (k1, ..., k-—1) € N'"1, u € [1,1+ §] and
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0 € [—mn/2, /2], we define

1—p b _1 . oW
i a +b—v\(—0)
RO k1, ... . kr_1:a,b;u) =

i ( 1 r—1,d u) o ;}( bh—v ) ol

(14)
Z (—u) ™" sin*tP ((2m, + r)H)
X .
2m1+ Dk (2my—g +r — Dkr21(2m, + r)atb—v
O<mi<...<m,
Since si’*t2 6 = —sin®™ ¢ andi? = —1, we have
RE@: ke, ... kr_1sa, biu) = REY2@ ke, ... ke_1s a, by u) . (15)

Then we obtain the following lemma. Note thaugt as elsewhere in this paper) an empty
sum is to be interpreted as zero.

LEMMA 1. Letu €[1,1+68]. Ifa+ rpyr > 2,then

i b a—1+b—v
RO(m/2: k1, ... kr—1:a,b;u) = - Z < )(—1)(“+’_1)/2/\u+r+1
v=0

b—v (16)
—7/2)V
X 01, ka4 b — vy D
V!
Ifa+ Aptr4+1 > 2,then
b
1 —1+b-—
Ry(u/2ike, o keogia biu) = = ) (“ ) i ”)(—1><“+”/2Au+r
- -V (17)
_ 2)V
X Lokt ko1, +b — v Y2 u)%.
In particular, for © € {0, 1},
RE(/2; k1, ..., ke—1; a, 0; u)
0 (p=r (mod?2); (18)
= ilf,u
— Lk, k@) (p#r(mod ),
and
Gm)* YRM(r/2: ke, .. ke_15a,b; 1) € Ay (19)

grtl—n
PROOF  We can easily check that

sin®) ((zm + r)%) = (—pmrtr=izy

for v, m € Ng. From (14), we have the assertion.
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Now we prepare some lemmas similar to those in [7] Section 2 as follows. From (2.16)
in [7], we have the formal relation

2”: <a —14b-— v) (—6)" sin*+P) (9x)

b—v V! xa+b—v

v=0 (20)

a—1+b N (le)N e

LEMMA 2. With the above notation and for u € (1, 1+ §],

1 X /fa—14+4b—N
ROk, ... ke—1ia,biu) = n,z( ) )
N=0 (21)
i0)N
x Lpk1, ... kr—1,a+b—N; Yy u)hpriey——— N

In particular, for ¢ € Np we have

1 _
RIFCO: ke, hrogsa o by = — 3 (_1)b(m : a)
"o 22)
(l'e)m—i-c

(m—+o)!’

PROOE By (12), (14) and (20), we obtain (21). (22) can be proved by replaging
with p 4 ¢, a with a 4 ¢ and puttingV = m + ¢ in (21), and by using the well-known relation

()=

LEMMA 3. With the above notation and for u € (1, 1+ §],

x Lok, ... kr—1,a+b—m; u))\p+l+m

iRVTNO: Ky, .. ke—1:a, b w)G(O; u) + RE O k1. ... ke_1; a, by uYH(6; u)

S @)

(o)™
x Lryalke, ... kr—1,a+b—v,v—m; ¥; u) )Lp+l+n17 .

ProOOFE By (10), (12), (14) and using the well-known relations
sin®*™ ¢ - sing + sin® & - cosp = sin® (a + B)
and
(19)"

sin'?) @) = i~ 12Ap+1+n :
n=0 !
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we can verify that the left-hand side of (23) equals to

a—1+b—v (—0)Y
i 1 v!

y Z (—u) "1 sin TP (2my g1 41 4+ 1)6)
Mmy<--<my (2my + 1)k1 e @mp_a = Dkr_l(zmr + r)a-i-b—v
B a—1+b—v\(-0)"
T Z( ) v!
9 n
x i”*l’—lzml(kl, O R L e AR P ¢ )
n=0

From the binomial theorem, this equals to

-1 b —
2y (D)
m=0v=0 -V
m!

x Lrpalke, ... kr—1,a +b —v, v —m; Y WA piim

Thus we have the assertion.
Leta € N, b € Ngand(ks, ko, ..., k—1) € N~Landu € (1,1+ 8]. Form € Z, we

define
2 b o(m\fa—1+b—v
’*1;,(_1) (V>< b—v ) (24)

x &ryalks, ... ke, a+b—v, v —myyiu).

Am(kl,... r—1;a,b;u) =

In particular whenn < —1, we can define

Anke, ... k—1;a,b; 1) = I|m Am (k1, ..., kr—1;a,b;u). (25)

Ll~>
Lemma 3 states that

iRITNO ke, - k1 a, b wG(O; )+ RE O ke, .., kr—15 @, by u)H(O; )

io)m (26)

= Z Am(ka, ... kr_15a, b; u))\p+l+m |
m.:

m=0
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LEMMA 4. With the above notation and for ¢ € Np,

b
—1+b—v
Z <a L )Rfjr“frl(@; ki,....kr—1,a+b—v;c,v;u)
v=0

(27)

(le)m—i-c
— Z Am(kl, r 1,4, b M))\.p+mm.

m—*c

PrROOFE By applying (22) to the left-hand side of (27) and using (24), we obtain the
asserted formula.

PROPOSITION 1. Wth the above notation, RY (0; k1, . .., kr—1; a, b; u) isdefined and
holomorphic for all & € D(x/2) whenu € [1,1+ §]. Furthermore, for any y € R with
0 < y < /2,thereexists a constant 90t (y) (> 0) independent of u such that

[Ap ke, ... kr—1;a,b;u)l S)ﬁr(y)

(meNo, ue(L,1+38]). (28)

m! pm

In particular

liminf

m—00

(wel1+8]). (29)

{|Am(k1,... r—1a.b: u>|}‘1/'" .

m!

NS

PROOF  We prove this proposition by induction ene N. Whenr = 1, by (21), we
have

RY©;;a,b;u)

1+b N iy
__Z pla+b—N;u)kpirirn N

(30)

foru € (1, 1+ §]. From (8), the right-hand side of (30) is uniformly convergent with respect
to (O,u) € [—y,y] x [1,1+ 8] foranyy € Rwith0 < y < 7/2. Hence (30) holds for

u € [1,1+8]whend € (—7/2, w/2). Namely, foru € [1, 1+ 8], R} (0; ; a, b; u) is defined
and holomorphic for ab € D(xr/2) and continuous for all9, u) € D(r/2) x [1, 1+ §]. By
(26), we have

iRYTHO; s a, by )G O: u) + RE ;5 a, by uyH(O; u)

e (31)
= ZAm( a, b; u))\p+l+m ¢ )

m=0
foru € (1,1 + §]. Furthermore, it follows from the above consideration that the left-hand
side of (31) is holomorphic fa# € D(xr/2) and continuous fo(@, u) € D(x/2) x [1, 1+ 5].
Hence, by the same method as in the proof of (8), we obtairn;, folR with 0 < y < 7/2,
[AnGa biw)] _ Ma(y)

m! - ym

(m € No, u e (1,1446]), (32)
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where

M) = max RO a.biu)GO: u) +RYO: . by )HE: w)].

AP
Cy x[1,1431x{0,1)

Thus we have the assertion in the case whenl.
Next we assume that the caserdiolds. Then, forany € Rwith 0 < y < 7/2, there
exists a constanbt, (y)(> 0) independent of: such that
[Apm ke, ... kr—1:a,b;u)| )
m

- (meNg, ue@,1+546).

In particular wherm: = &k, € N andb = 0, it follows from (24) that

2|£r+1(kl’ -~-’kr—1’ kr’_m; 1//7u)| < mr()’)

2+l ! ym (m e Nog, ue(1,1+446].

Hence the right-hand side of (21) in the case af 1 is uniformly convergent in the wider
sense with respect t@, u) € (—n/2,7/2) x [1,1+ §]. Therefore, foru € [1,1 + 8],
Rf+l(9; k1,...,ks; a, b; u) is defined and holomorphic for all € D(/2) and continuous
forall (6,u) € D(r/2) x [1, 1+ §]. Using (26) in the case af+ 1 and the same method as
above, we have the assertion in the case-6fl. By induction, we obtain the proof.

3. Proof of Theorem 1in the case of depth 2

In this section, we prove Theorem 1 in the case wher- 2, namely prove that
L(k,I;y) € ArandL(k,[; ¥?) € A1 fork,l e Nwithk +1 =1 (mod 2, wherel > 2 in
the case ofy2.

We formally defineé’}(u) = 2p(—j;u) foranyj € Z. Note thatE}(u) = &;(u) for
J € Ng. From (21) withb = 0, we have
i

N!

1 o0
RY©;;5a,0;u) = > Z EN_a@Apr1in , (33)
N=0

becausels(s; ¥; u) = p(s; u). Fork e N, p e No,u € [1, 1+ 8] andd € [—x/2, /2], let

1 =2 (i6)/
IOk w) =REO; 1k, 0 ) — o= 3 &7 1 (Whpras, T (34)
j=0 '
TEO; ks u) = RO 5k, O u) . (35)
If u e (1,14 45]then
1 (i) +*
Pg. 1. _ = 1
O k) = o n;] En Mt p ek (o (36)
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1 & i)y
IO k;u) = o ZO 6,}_k(u>xn+p7. (37)

From Proposition 1, we obtain the following (see [6] (2.8)).

LEMMA 5. Letk e Nand® € (—n/2,7/2). Then R} (6;; a, 0; u), Z1(0; k; u) and
J1(0; k; u) can be defined and holomorphic for 6 € D(x/2) whenu € [1,1 + §], and
continuousfor (0, u) € D(r/2) x [1, 1+ §8]. Furthermorelim, 110 Z1(0; k; u) = 0.

Forn € Z andu € (1,1 + §], we define
k—1
n
E2 (ks u) = 28a(k, —n; Yriu) — Y (J.)E}_k(u)mlﬂ-p(j —n;u). (38)
j=0
In particular whernm < —1, we defineEf(k; 1) by (38) withu = 1. We can prove the
following assertions by the same method as in [7].

LEMMA 6. ForkeN, peNgandu € (1,1+ 6],

1 & i
TP 1 . Pg. 1 C) — 2(7.
LT 0; k)G (0; 1) + I (6; ks wyH(O; 1) = — NZ_O Ex s WAk 1an — o -
PrRooF Applying (23) with(a, b, p,r) = (k, 0, k, 1), we have
IR0 1k, 0 )G (0: u) + RY (0: : k. 0; uyH (B u)
2 & i0)N (39)
= Z Lok, =N ¥; w)hpy1+n N
N=0
From (6), (9) and using the binomial theorem, we have
13 , (i6)/
= otk — ji W hiyrj———HO; 1)
T~ J!
j=0
2 S (N . . 0N
=2 NX:O { X% (J.)p(k = Ji Whit1+jp(j — N; u)}kk+1+1v N
=l j=

because., 1 Ag4+r = Apt+rAipiq. By (38), we have the assertion.

LEMMA 7. ForkeNandy € RwithO < y < 7/2,thereexistsa constant M>(y) >
0 independent of u such that

|E2k )| _ Ma(y)

< (n€No, ue(1,143]), (40)
n! ph
in particular
2 k- —1/n
lim inf {M} > we@1+4]). (41)
n—00 n! 2
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Furthermore
I|m 5 (k; u)rk+14n =0 (n € Np) . (42)

u—>1

PrROOF By Proposition 1 with- = 2 andb = 0, we obtain
| Lok, —n: )| _ Ma(y)

n! -yt

(neNg, ue@,1+546])

for a certairt,(y) (> 0) independent of. Combining this and (8), it follows from (38) that
(40), namely (41) holds. Hence the equation of Lemma 6 holds ferl, and tends to O as
u — 14 0 by (11) and Lemma 5. Thus we obtain (42).

PrRoOPOSITION 2. Fork,l e N,u€{0,1},u e (1,1+68landb € (- /2, 7/2),

RETTH O k1, 0; ) — —Z ) (=D M1 RO 5w

/=0 43
(ie)m+l ( )

(m+0!"

1 o0
=52 Z E2 (k; W) Mt 14mtp

PROOF By (22) with (a, b,c, p,r) = (0,0,1,k + u,2) and (0, j, I, k + u, 1), we
obtain (43) whem € (—n /2, 7/2).

By (40), the right-hand side of (43) is uniformly convergent with respegt¢o(1, 1+§].
Hence we leizx — 1+ 0in (43). Then it follows from (42) that

RGO k:1,0:1) = —Z DD 1 RET @11 )
]_
(i 9)m+l
E2 (ki Disep1pm——— 44
m;l ) A1+ R (44)
(ié’)v

=552 ng 1k DAgra4i4v

In particular whenl > 2 andp = 0, both sides of (44) are continuous foe [—x/2, /2].
Hence (44) holds fof € [—n/2, /2].

Now we assume that+/ = 0 (mod 2 in (44). Substituting (16) into (44) with = /2
and using (15) and (18), we have

1 . .
—5m 2 & WD degasjRYGT/2 51, 3 )
Jj=0
[(1-2)/2] (45)

1 (m/2)21+1
Z €2j+l l( (2 +1)‘ .
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Putting! — 2 = 2m + n with m € Ng andn € {0, 1} such that) = k£ (mod 2), and multiplying
47 /i on both sides of (45), we have

(i7/2)% 23 :
252 om—y1k; e = —— Z E DD Mig14
A = (46)

X ZR?(T[/Z; i2m+24n,5;1) € Ay,
l
Indeed, it is known that

(— )1' 21'+1

p(2] + 17 1) (2 )‘221_;’_2 21

(D (j €No) (47)

(see, for example, [3] § 1). Hence, if© j < k then

1 2
- },k(l))»k+1+j = ;P(k — Ak+1+; € Qlm

and(n/z)R (/2;;m+ 2, j; 1) € A from (18). Hence (46) holds.
We recall the following lemma (see [8] Lemma 4.1).

LEMMA 8. Leté € {0, 1}. Suppose {P,,} and {Q,,} are sequences which satisfy the
relation

= (im/2)%
m— = m N .
,Z iejven = 9 (meNo

Then therelation

(ln/Z)zm 2v
Pm = Z %m N (2m 21))' Qv

holds for any m € No, where {8, ,},>0 are the rational numbers defined by
216 o t2n
_— = B e—— 0,1 .
¢+ (~1fFet ; S GO

Applying Lemma 8 witht = 1, P, = Eleﬂf,’fl(k; 1) and using (46), we can easily
check thaﬁEmenfl(k; 1) € A1, namely

E2 (ks DAaen € A1 (48)

for N € N, becauser € Aj. By (38), we see tha€o(k, N; ¥; Dirr1+n € A1. Namely
L(k,N;vy) € Apfork, N e Nwithk + N =1 (mod 2.
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Next we assumeé + [/ = 1 (mod 2 in (44). Similarly, substituting (16) with = 1 into
(44) and using (15) and (18), we have

k=1 [(j—=1)/2]

1 1 : -2+ j—0
- S8k Ly D)~ Z;@km(—lﬂxmﬂ ;0 ( i1 )
x (=1)°FLgi (1 + j — 20 — 1; y% 1)w (49)
v VYo £ 1)

_ 1 [(li/z]gz (k: 1)(irr/2)2j
st o AT @)

Combining (48) and (49), we have(k, [; ¥?) = La(k,l; ¥?; 1) € A fork,I € N with
k +1 =1 (mod 2. Thus we obtain the assertion of Theorem 1 in the case wheR.

ExAMPLE. Putting(k, ) = (1, 3) in (46) and using (18), we have
2 2 7
&L =-LB Yy = —54(3),

becauseL(s; ¥?) = (1—27%)¢(s), where¢(s) is the Riemann zeta function. Putting
(k,n) = (1, —-2)in (38) and(k, ) = (1, 2) in (49), we have

Y T (1 AT — ET 22y — Epeo gy L
L1, 2 9) = L(LY)L(Z ) 2L(3, v) = 4L(2, ¥) 16((3),
N T N
LA, 29y = 2L(3, V) = 16((3).
By the same method as above, we obtain, for example,
L2 3 y) = =3L(L Y) L4 y) + %L(l; V)L Y2 +2L(5; ¥P)

I TR sl
= _ZnL(4, W) + 195" )+ 164(5).

4. Proof of Theorem 1in the case of an arbitrary depth

In this section, we aim to complete the proof of Theorem 1 by the same method as in
Section 4 of [7].
Forr € N andu € [1, 1+ 3], we denote byA, (1) the Q-algebra generated by

U U @G gm0 [ G jim) €N i > 10 x = ¥2)).
m=1ye(y,y?)
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Note thatA, (1) = A,. Furthermore, folp € Ng, we denote by, (p; u) the A, (u)-module
generated by

,
RO k1, . kjm;a, by w) | (k. kjo1) € NI,
j=1

aeN, be NOWith(l+)»b+j+p > 2}.
By (15), we haveV, (p; u) = V. (p + 2; u). It follows from (19) that ifg(0; u) € V. (u; u)

for u € {0, 1} then(im)* 1g(/2; 1) € #7711 A,. We define theA, (u)-linear operator
AD - V.(p;u) = Vepr(p+1+1;u)forl,r €N, p e Ngandu € [1, 1+ 8] by

AORYO; ka, ... kj-15 @, b; ) 50
b
a-1+b—v I1+1
:Z( h—v > fj:l"'(e ki, ....kj_1,a+b—v;l,v;u),
v=0

wherej € Nwith 1 < j < r. We further define

P20k, 1; u) = AORE(6; 1 k, 0; u))
-1
= 5 D& (D hga Ry O 5L ).
j=0

fork,l e N,u €{0,1},0 € [—/2, 7/2] andu € [1, 1+ §]. Then we have

2,0k, 1; u) — RETH(0; k; 1, 0; u)

1« . (51)
5 Zo5},k(u)(—1>ka+1+,;R’;+l+“ @331, jiu) € Valk +1+ ).
From Proposition 2 and (50), we have
5 . . 1 (19)n1+l
o @ kL) = 5 Z En ks 0N = (52)

m=—I

These results can be generalized as follows.

PropPosITION 3. Forr e Nwithr > 2, (k1,..., k) e N, 1 €{0,1},u € [1,14 5]
and o € [—n/2, /2], thereexist

.
L@k, .. ks u) € Vr(Z(kj + 1+ u>

j=1
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and {& (k1. ..., kr—1; u)}nez such that the following conditions hold:

3 "+l
Fr,u,(e; kl, e, kr; 1) _ RrZ:J—l( i+D+u

r (53)
x @k, ... k—1,k,0; 1) € Vrl(Z(kj +1)+ u) ;
j=1

1
o’

0 (l'e)m+kr
Z gm (k1. ... kr—1s u)A ;;i(k_,'+l)+,u+mm ;

(54)

@i ke, .. ke u) =

m=—k,

Lt£T+0 g,’;, (kls ceey kr,l; M)A‘Z;;i(kj‘l’l)‘i’r‘l’m =0 (m € NO) 5 (55)

EiN(kl, e ke 1))‘2;;i(kj+l)+r+N eA_1 (NeN). (56)

Furthermore, for any y € Rwith0 < y < /2, there existsa constant M, (y) > 0 such that

|5;;1(k]_, N S < M, (y)

m! - ym

(m € No). (57)

PROOF We prove this proposition by induction @1i> 2). The case of = 2 is what
we mentioned above. Indeed, it follows from (40), (42), (48), (51) and (52) that we obtain
(53)—(57) in the case when= 2.

Now we assume that we defing. ,(6; k1, ..., k;u) € Vit + 1) + s u)
and{&} (k1, ..., kr—1; u)}mez satisfying (53)—(57), and prove the assertion in the case of
r+ 1. Supposar > 1 and letp = Z;zl(kj + 1). By the assumption, we can write

[.00: k1, ..., k- u) € Vy(p; u) as the following finite sum:

Fr0@; ka, o kw) =) Co) RY (03101, lody—15 o Do 1)
o

whereC, (1) € A,(u) andd, < r foranyo. By Lemma 2 and (54), we see that

Fa@: ke keiw) =Y Colu) RYTHO: o, . lod,—1: o bo' 1)
o

holds. By (53), we can assume tltatu) = 1 and

(dy; g, .. lua—15a1,01) = (rs ke, .. ke—13 K, 0) (0 = 1);

dy <r—1 © #1). 8)
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Let uo € {0, 1} with uo = r (mod 2, and put
ZOska, ... kryu)

= 1,,10(9;k1,...,kr; u)

(l9)m+kr
2 Epka, .. kr—13u)kp (ke Dtpotm (S (59)
m=—k,
. (i0)7
= r,[lo(e;klv"'skn;u) Z g} kr(kls cee r 15 u))tp+l+,uo+] ]! )

and

t7r(9;kls" krvu) rl }LO(Q kls"'vkr;u)‘ (60)
By (54) and (55), we have

. T T

lim Z,0: k. .. Jyi ) = 0 (9 c (_E’ E)) : (61)

Inthe same way as in the proof of Lemma 6, it follows from (9), (26) and the binomial theorem
that

iTrOska, ... ks u)GO;u) +ZL,(0; k1, ..., ke u)H(O; u)

= Z{Zc W) Ano1, ... 1o, jy—1; Ao, bo 1)

: (62)
B nr+l Z S Y ”)<]>P(J —m; ”))‘p+1+uo+l}
i)™
X )\p+l+uo+m m
SinCE)Lp+1+Mo+m)xj+m = )‘p+l+,uo+j)“p+l+uo+m' Hence we define
Entka, . ks u) = n’“Zc W AnUo s - lody—1; o, bo 1)
b (63)
—i Z Er g ke, ke u)( )P(] — M WA pt1gr+j
j=0 J
form € Z. Then (62) can be written as
iJr(O5ka, ... krs w)G(O; u) + 105 ka, ..., ks u)H(O; u)
(64)

= Z ik ks 1) wo"
- r+1 1y - r 1, Kr, p+l+r+m m! )
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becauseip = r (mod 2. By (24) and (63), we can define
r+1 1D = i r+1 .
Ey ke, . ks 1) u_|>rP+05m (k1, ..., kr; u) (65)

form e Zwithm < —1. Lety € Rwith 0 < y < /2. Combining (8), (28), (57) and (62),
there exists a constam, 1(y)(> 0) independent of such that

etk k)] My ()

o = (m € No), (66)

which means that (57) in the caseref 1 holds. Hence the left-hand side of (64) is uniformly
convergent in the wider sense with respectéou) € (—n/2, 7/2) x [1, 1+ §]. Therefore
we can letu — 1+ 0 on both sides of (64), namely (64) holds foe [1, 1+ §]. Combining
(11), (61) and (64), we have

I|m €’+1(k1, ekl WAy i 4m =0 (m € No), (67)

M—>
becausg = >"_;(k; +1). Fork.11 € Nandu € {0, 1}, we define
Fopru@s ke, . kegaiu) = A% (F 05k, ks w))
(68)
— 5 Z (ka1 ) (=1 hp R G0 i,

wherep = Z;zl(kj + 1). This means that (55) in the caserof 1 holds. Furthermore, by
(27) and (50), we have

A ([ O ke, ki)

= an @) A RO 11, . . ly.d, 15 Ao, bos 1))

ay — 14+ bs — vy
- ZC (u) Z ( by — vy ) (69)

ve=0
+utkp1+1
Rfi) _;,l_}']_ +H @;lsa, ..., lo,dg—l’ as + by — v5; kr—i—l’ Vo U)
1 00 (ig)m+kr+1
= = Co(u Anls1, ... ls.a.—1; a0, bs; u)A _—
2 ; o( )mzzk+l m( 0,1 o,dy;—1; o, Do ) p+pu+m (m + kr+1)!

By (69), we see that (68) states
1,0k, key1s w)

1 ad (10)ntkre1 (70)
_ § : r+1 .
= —r+l gm (k]_, ey kr, M))Lp+ﬂ+m 4( n kr+1)!

m=—k,41
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for u € {0, 1}, which means that (54) in the caserof- 1 holds. From the assumption (58),
we have

Ak (B @3k, . k) = R @k, ke kg1, 0 w) € V(g + psw), (71)
whereqg = Z’*l(k + 1). Hence, from (56) and (68), we have
Frirp@ike, ki) =RV @ik ki keyn, Oow) € Vi(g + i), (72)
which means that (53) in the caserof 1 holds. Note that

~ L (k41
Alkr (er“( T G ke, k1 Ky O u)) ROk, s yn, O 1)

Now we fix (k1,...,k-) € N". Letk,y1 € N with Zr“ =r + 1 (mod 2) and
wn € {0, 1} with u = r + 1 (mod 2), namely; = 0 (mod 2). Let

h(O; k1, ..., kyy1;u) = Dria, w@ska, . oo key1su)
- Rr+l(9; ki, ..., krykry1,0;u) .

(73)

Sinceq = 0 (mod 2), it follows from (72) thak(0; k1, . .., ky+1; u) € Vr(u;u) = Vo(r +
1; u). By combining (70) and (73), we have

R£L+l(9; kls IR kr; kr+ls 0; u) + h(@; kls IR kr+l; u)

(i) (74)

1 - r+1
= P} Z E ke, o ks u))»p+u+m(m+—kr+l)! )

m=—ky4+1
wherep = }7;_;(kj +1). Assumek,+1 > 2. Then, by (66), we can let — 1+ 0 on both
sides of (74). Furthermore, by (18) and (67) and the assumpgien® andyx = r + 1 (mod
2), we can lep — 7 /2, and obtain

(/2 ke, - ki D)

-1

(i /2)m
EFka, .o ke DAy, e
2 (l P eatleren ™G o) (75)

1

27-L-r+l
m=—ky41

r+1 1 )
(im/2)Y
- nr+1 Yo &t (kl,...,krgl)xrﬂL'

v—kri1 |
V!
v=0

Let& € {0,1} with & = r (mod 2). As well as (46), we put-11 — 1 — & = 2m + n with
n=kq41+ 14+ & (Mmod 2). Sincey = Z’“(k + 1) = 0 andé¢ = r (mod 2), we have

UEZ(kj+1)+rEZk,- (mod 2. (76)
j=1 =1



38 HIROFUMI TSUMURA
Puttingv = 2j + &, (75) states that

h(w/25 k1, ... ke, 2m+ 14+ &+ 15 1)

1 ., (im)2)%+8 (77)
e S ST (TR % 1)ﬁ (m € No).
j=0 '

Sinceh(0; k1, ... .k, 2m+1+E+n;u) € V.(r+1;u) = V,(1—&; u), it follows from (19)
that

1

1
() Sh(m/2 ke, .. ke, 2m+1+E+m;1) € A, C A, .
]Tr+1

nr+l—&' r

Applying Lemma 8 with

1
Pm = 2nr+lgi4é,];,_l_n(kl, e, kr, 1) ,

1
Q=) h(n/2 ke, ....kp.2m+1+E+m 1) e —A

gr+17
for m € No, we have
1 o 1 ;
i o1y Kt ok D € A (me Zwithm < —1). (78)
Using (76), we obtain
Ettka, . ks Diyr aj4ntriain € Ar (N EN). (79)

Hence it follows from (66), (67), (70), (72) and (79) that we obtain the proof of Proposition 3
by induction.

Finally we give the proof of Theorem 1 in §1 as follows.

Supposey = >y (kj +1) = Z;zl kj+r=1(mod?2), namel[j;zl kj andr are
of different parity. Then the condition (53) gives

Frp@ska, .o ks u) — REPO: k.o krm1i ke, Oy ) € Vema(L— s u)

for u € {0, 1}. Chooseu € {0, 1} with u = r (mod 2). Then, by (19), we have
el A it 2 1
(im)™" Fr’ﬂ(ﬂ/z;kl,...,kr;l)—;L(kl,...,kr;l// )) € ;Ar—la

namely

() M Trp(r/2 ke, o ke 1) — w0 P Lk, ... ks Y2) € Ay (80)
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On the other hand, by (57) and the condition> 2, we can lep = 7/2 andu — 1+ 0in
both sides of (54). Then by (55), we have

fr,/}.(ﬂ/z ki, ...,k 1)
-1

; (im /2"t
=g 2 Ehbn bk DA e G
k=1 . 81)
1 (in/2)N (
=5 ZoeN (ks ks DA —
N

1 [(kr—1=p)/2]

= Y &vuni ko1 D)
2n’ v=0

(im/2)2
Qv +pwp)!

By the assumptiong = r andz;zl (kj +1) = 1 (mod 2), it follows from (56) that
Evip—t, k1, .. k13 D) € Apq.
Hence, from (81) and the fact thate A,_1, we have
(im) Ma Ty (/2 k1, ... ks 1) € A1 (82)
By combining (80) and (81), we have
Lk, ... ks ¥ e thAr_1 C Ap1.

Hence we obtain the former assertion of Theorem 1.
Next we prove the latter assertion by inductionror 2. The case of = 2 has already
been proved in Section 3. Hemwe assume that the caserdfolds, and prove the case of

r 4+ 1. Chooséks, . .., k.+1) € N"t1 with Z’*l kj is odd, namely

r+1

Y (kj+1)=r (mod2. (83)

j=1
By (58) and (63) withu = 1 andm = —k, 1, we have

Ett ke ) = A (ka1 ke, 00D

—kry1

+ 7Y " Co Aty (ot - lody -1 o bos 1)
o#L (84)

kr+l .
—i Z —k, (k1, ... kr—1; 1))LZ/ NG +1)+1+r+j( j )P(] +kry13 1)
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It follows from (24) that the first term on the right-hand side of (84) coincides with
2L(k1, ..., kr, kr41; V), the second term belongs t, becausel, < r (o0 # 1). Fur-
thermore, from (56), we have

&t Kty oo kr 13 DA )41+

= ;_kr (kl, ceey krfl; 1))\, r

J

H -y € Ar-1 C A
Hence the third term on the right-hand side of (84) belonga,toOn the other hand, from
(56) and (83), we have

+1 1) — ert+l .
Ey ko ki D) = EL (ke ke DAY 1)k € Ar

Combining these results, we obtdigky, . . ., k-41; ¥) € A,. Hence we see that the assertion
in the case of + 1 holds. Thus, by induction, we obtain the latter assertion of Theorem 1.
This completes the proof of Theorem 1.
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