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Abstract. A generalized Burgers equation with measure data is studied.The existence of a weak solution of an
initial boundary-value problem in a bounded cylindrical domain, is established. Time-periodic solutions are shown
to exist and an optimization problem related to an inverse problem is considered.

1. Introduction

Let Ω be a bounded open subset of R3 with a smooth boundary and consider the initial
boundary-value problem

u′ −∆u+
3∑
j=1

u
∂u

∂xj
= g(t)µ(x) in Ω × (0, T ) ,(1.1)

u(x, t) = 0 on ∂Ω × (0, T ) , u(x, 0) = u0(x) in Ω

with {g, µ, u0} ∈ H 1(0, T ) × Mb(Ω) × L1(Ω). The set of all Radon measures of
bounded variation in Ω, is denoted byMb(Ω).

The purpose of this paper is
• to establish the existence of a solution u of (1.1) with

{u, u′} ∈ {L∞(0, T ;L1(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω))} × L∞(0, T ;L1(Ω))

with 1 < p < 5/4,
• to prove the existence of a time-periodic solution of the problem

u′ −∆u+
3∑
j=1

u
∂u

∂xj
= g(t)µ(x) in Ω × (0, T ) ,(1.2)

u(x, t) = 0 on ∂Ω × (0, T ) , u(x, 0) = u(x, T ) in Ω .

• to determine the source and its intensity from the partial measurements of the solution
of (1.1) in an interior subdomain.
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Parabolic initial boundary-value problems with Radon measure data were studied by
L. Boccardo and T. Gallouet [2], by H.Brezis and A. Friedman [4] and others. Nonlinear
elliptic boundary-value problems with Radon measure data have been the subject of extensive
investigations by M. F. Betta, A. Mercaldo, F. Murat and M. Porzio [1], L. Boccardo and T.
Gallouet [2], L. Boccardo, T, Gallouet and L. Orsina [3].

The strong monotonicity of the elliptic operator plays a crucial role in Boccardo and
Gallouet treatment of elliptic and parabolic problems with measure data. In contrast with the
case of Lp-data, 1 < p < ∞,the lower order terms give rise to several technical difficulties.
The Burgers equation which exhibits the nonlinear feature of the Navier-Stokes equations,
falls outside of their general framework as the elliptic part is not strongly monotone. It is

known that for the heat equation with measure data, the solution is in L∞(0, T ;L1(Ω)) ∩
Lp(0, T ;W 1,p

0 (Ω)) for 1 ≤ p < 5/4 and thus the expression
∑3
j=1 uDju may not belong

to some Banach spaces. In this paper, we shall circumvent the difficulty by assuming that g
is in H 1(0, T ) and establish an L∞(0, T ;L1(Ω)) of the time-derivative of the approximate

solutions. The estimates allow us to obtain anLq(0, T ;W−1,p(Ω)) estimate of the expression∑3
j=1 uDju.The existence of a solution of (1.1) is established in Section 2.

Time-periodic solutions of parabolic equations with measure data have not been treated
in the literature.The Poincare method, the abstract operator approach where the periodicity
of the problem is incorporated in the definition of the operator, used for Lp(Q) data with
1 < p < ∞ do not seem applicable in the case of measure data. Appropriate estimates for
the time-periodic approximate solutions are obtained by using an associated cut-off function
and not a generic one. The existence of a solution is shown in Section 3 of the paper.

Let {g, µ} be in G × U be some compact convex subsets of H 1(0, T ) × Mb(Ω). We
associate with (1.1) the cost function

J (g; µ; u0; u; t) =
∫ T

t

∫
G

| u(x, s)− χ(x, s) | dxds(1.3)

where u is a solution of (1.1) and χ ∈ L1(0, T ;L1(G)) is the observed values of u in
an interior subdomain G of Ω. Let

V (u0; t)= inf {J (g; µ; u0; u ; t) : u is a solution of (1.1),

∀{g, µ} ∈ G × U} .(1.4)

In Section 4, we shall show the existence of {g̃, µ̃} ∈ G × U such that

V (u0; t) = J (g̃; µ̃; u0; ũ; t)(1.5)

where ũ is a solution of (1.1) with source {g̃, µ̃}. The equation (1.5) allows us to determine
the source from the observed values of the solution in a fixed interior subdomain.
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2. Initial boundary-value problem

In this section, we shall establish the existence of a weak solution of (1.1). With the
Laplace operator as the main part and a quadratic nonlinearity in u and its derivative, the
equation falls outside of the framework of Boccardo and Gallouet’s treatment.

Let {u0, µ} ∈ L1(Ω)×Mb(Ω), then there exists {un0, fn} ∈ C∞
0 (Ω) with

‖fn‖L1(Ω) ≤ ‖µ‖Mb(Ω) , {un0, fn} → {u0, µ} in D′(Ω)× D′(Ω) .

Let

E(u0; g; µ) = ‖u0‖L1(Ω) + ‖g‖H 1(0,T )‖µ‖Mb(Ω) ,(2.1)

Consider the initial boundary-value problem

u′
n −∆un +

3∑
j=1

unDjun = g(t)fn in Ω × (0, T ) ,(2.2)

un(x, t) = 0 on ∂Ω × (0, T ) , un(x, 0) = un0(x) in Ω .

LEMMA 2.1. Let {u0, g, fn} be in L1(Ω)×H 1(0, T )×C∞
0 (Ω) with ‖fn‖L1(Ω) ≤

‖µ‖Mb(Ω) . Then there exists

un ∈ L2(0, T ;H 2(Ω) ∩H 1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ,

solution of (2.1) with

‖un‖L∞(0,T ;L1(Ω)) ≤ C{1+ | Ω | +E(u0; g; µ)} ,
where C is independent of n and E is defined by (2.1).

PROOF. With fn in C∞
0 (Ω), the existence of a weak solution in L2(0, T ;H 1

0 (Ω)) ∩
L∞(0, T ;L2(Ω)) of (2.2) may be obtained by using the standard Galerkin approximation

method. Since Ω is a bounded open subset of R3

‖un( ., t)‖2
L4(Ω)

≤ C‖un( ., t)‖L2(Ω)‖un( ., t)‖H 1
0 (Ω)

,

hence un is in L4(0, T ;L4(Ω)) and thus u′
n ∈ L2(0, T ;H−1(Ω)). A standard regularity

proof shows that un is in L2(0, T ;H 2(Ω)) and now the usual argument shows that the solu-
tion is unique. We shall establish the estimate of the lemma. Let

ψ(s) =



1 if 1 < s ,

s if −1 ≤ s ≤ 1 ,
−1 if s < −1

and set

φ(s) =
∫ s

0
ψ(σ)dσ .
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Multiplying (2.2) by ψ(un) and we obtain

d

dt

∫
Ω

φ(un(x, t))dx +
∫
Ω

ψ ′(un) | ∇un(x, t) |2 dx

+
3∑
j=1

∫
Ω

un(x, t)Djun(x, t)ψ(un(x, t))dx

=
∫
Ω

g(t)fnψ(un(x, t))dx .

We note that
∫
Ω

unDjunψ(un(x, t))dx =
∫
Ω

Dj

{∫ un(x,t)

0
sψ(s)ds

}
dx

=
∫
∂Ω

ej .

∫ un(x,t)

0
sψ(s)dsdσ(x) = 0(2.3)

as un = 0 on ∂Ω × (0, T ). Taking (2.3) into account, we obtain

d

dt

∫
Ω

φ(un(x, t))dx ≤ ‖g‖H 1(0,T )‖µ‖Mb(Ω) .(2.4)

Integrating between 0 and t and we get

∫
Ω

| un(x, t) | dx ≤C
{

| Ω | +
∫ t

0

∫
Ω

φ(un(x, s))dxds

}

≤C
{

| Ω | +
∫
Ω

φ(u0)dx + ‖g‖H 1(0,T )‖µ‖Mb(Ω)

}
(2.5)

≤C{| Ω | +E(u0; g; µ)} ,
where C is a constant independent of n.The lemma is proved.

LEMMA 2.2. Suppose all the hypotheses of Lemma 2.1 are satisfied. Then

‖un‖Lp(0,T ;W 1,p
0 (Ω))

≤ C{1+ | Ω | +E(u0; g; µ)}

for 1 ≤ p < 5/4 with a constant C independent of n.

PROOF. 1) Let m be a positive integer and let ψm(s) be the truncated function

ψm(s) =




1 if s > m+ 1 ,
s −m if m ≤ s ≤ m+ 1 ,
0 if −m ≤ s ≤ m,

s +m if −m− 1 ≤ s ≤ −m,
−1 if −m− 1 < s.
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Taking the pairing of (2.2) with ψm(un(x, t)) and we obtain by taking into account (2.3)∫
Ω

φm(un(x, t))dx +
∫
Ω

ψ ′
m(un(x, t)) | ∇un(x, t) |2 dx

≤
∫
Ω

φm(u
n
0(x))dx + ‖g‖H 1(0,T )‖µ‖Mb(Ω)

≤ C{1+ | Ω | +E(u0; g; µ)} .
It follows that∫

Bm

| ∇un(x, t) |2 dxdt ≤ C{1+ | Ω | +E(u0; g; µ)}(2.6)

with

Bm = {(y, t) : (y, t) in Ω × (0, T ), m ≤ un(y, t) ≤ m+ 1} .
2) Let 1 ≤ p < 5/4, then an application of the Hölder inequality gives

m | Bm | ≤
∫
Bm

| un(x, t) | dxdt

≤ ‖un‖L4p/3(Bm)
| Bm |(4p−3)/4p .(2.7)

Therefore

| Bm |≤ m−4p/3‖un‖4p/3
L4p/3(Bm)

.(2.8)

Again, an application of the Hölder inequality yields

‖∇un‖pLp(Bm) ≤ ‖∇un‖pL2(Bm)
| Bm |(2−p)/2

≤Cm−2p(2−p)/3‖un‖2p(2−p)/3
L4p/3(Bm)

{1+ | Ω | +E(u0; g; µ)} .(2.9)

We have applied the estimates (2.7)–(2.8) in the above inequality.
3) Let m0 be a fixed positive number and let ψ be the truncated function

ψ(s) =


m0 if s > m0 ,

s if −m0 ≤ s ≤ m0 ,

−m0 if s < −m0 .

Then a proof exactly as in that of Lemma 2.1 gives∫
Dm0

| ∇un |2 dxdt ≤ C{m0+ | Ω | +E(u0; g; µ)}(2.10)

with

Dm0 = {(x, t) : (x, t) in Ω × (0, T ); | un(x, t) |≤ m0} .
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An application of the Hölder inequality yields
∫
Dm0

| ∇un |p dxdt ≤ ‖∇un‖p/2L2(Dm0 )
| Ω |(2−p)/2

≤C{m0 + E(u0; g; µ)}p/4 | Ω |(4−p)/4 .(2.11)

It follows from (2.9) and (2.11) that

‖∇un‖pLp(0,T ;Lp(Ω)) ≤C(m0){1+ | Ω | +E(u0; g; µ)}

+
∞∑

m=m0

‖un‖2p(2−p)/3
L4p/3(Bm)

m−(2−p)2p/3(2.12)

≤C(m0){1+ | Ω | +E(u0; g; µ)}

+‖un‖4p/3
L4p/3(0,T ;L4p/3(Ω))

{ ∞∑
m=m0

m−4(2−p)/3
}p/2

.

We have applied the Hölder inequality in (2.12).
4) Again, the Hölder inequality gives

‖un‖L4p/3(Ω) ≤ ‖un‖1/4
L1(Ω)

‖un‖3/4
L3p/(3−p)(Ω) .(2.13)

With the estimate of Lemma 2.1, we obtain

‖un‖2p(2−p)/3
L4p/3(0,T ;L4p/3(Ω))

≤C(1+ | Ω | +E(u0; g; µ))
×‖un‖p(2−p)/2

Lp(0,T ;L3p/(3−p)(Ω)) .(2.14)

The Sobolev imbedding theorem gives

‖un‖pLp(0,T ;L3p/(3−p)(Ω)) ≤ C‖un‖p
Lp(0,T ;W 1,p

0 (Ω))
.

It follows from (2.12)–(2.14) that

‖un‖pLp(0,T ;L3p/(3−p)(Ω)) ≤C{1+ | Ω | +E(u0; g; µ)}‖un‖pLp(0,T ;L3p/(3−p)(Ω))

×
{ ∞∑
m=m0

m−4(2−p)/3
}p/(2p−p)

.(2.15)

Since 1 ≤ p < 5/4 the series converges and there exists m0 such that

‖un‖pLp(0,T ;L3p/(3−p)(Ω))) ≤ C{1+ | Ω | +E(u0; g; µ)} .(2.16)

Hence (2.14) yields, by taking (2.16) into account

‖un‖2p(2−p)/3
L4p/3(0,T ;L4p/3(Ω))

≤ C{1+ | Ω | +E(u0; g; µ)}p(4−p)/2 .(2.17)
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With (2.17), the inequality (2.12) becomes

‖un‖p
Lp(0,T ;W 1,p

0 (Ω))
≤C{1+ | Ω | +E(u0; g; µ)}p(4−p)/2

×
{ ∞∑
m=m0

m−4(2−p)/3
}p/2

(2.18)

≤C{1+ | Ω | +E(u0; g; µ)}p(4−p)/2 .

The lemma is proved.

REMARK. The restriction on p , namely that 1 < p < 5/4 is needed so that 4(2 −
p)/3 > 1 for the convergence of the series in (2.15). With m0 large enough, it allows us to
take the term ‖u‖p

Lp(0,T ;L3p/(3−p)(Ω)) to the left hand side.

LEMMA 2.3. Suppose all the hypotheses of Lemma 2.1 are satisfied. Suppose further
that L(u0) is in Mb(Ω) with

L(u0) = ∆u0 −
3∑
j=1

u0Dju0 .

Then

‖u′
n‖L∞(0,T ;L1(Ω)) ≤ C{1+ | Ω | +E(u0; g; µ)+ ‖L(u0)‖Mb(Ω)} ,

where C is a constant independent of n, u0, g, µ.

PROOF. 1) Differentiating (2.2) with respect to t , we get

u′′
n −∆u′

n +
3∑
j=1

u′
nDjun = −

3∑
j=1

unDju
′
n + g ′fn in Ω × (0, T ) ,

u′
n(x, t)= 0 on ∂Ω × (0, T ) ,(2.19)

u′(x, 0)=L(un0)+ g(0)fn in Ω .

We have

‖L(un0)‖L1(Ω) + ‖g(0)fn‖L1(Ω) ≤ C{‖L(u0)‖Mb(Ω) + ‖g‖H 1(0,T )‖µ‖Mb(Ω)} ,
where C is a constant independent of n, µ, g and of u0. Moreover

L(un0) → L(u0) in D′(Ω) .

2) Let ψ(s) be the function of Lemma 2.1. Taking the pairing of (2.19) with
ψ(u′

n(x, t)), we obtain

d

dt

∫
Ω

φ(u′
n(x, t))+

∫
Ω

ψ ′(u′
n) | ∇u′

n(x, t) |2 dx
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+
3∑
j=1

∫
Ω

u′
nDjunψ(u

′
n(x, t))dx(2.20)

+
∫
Ω

un(x, t)

3∑
j=1

Dju
′
n(x, t)ψ(u

′
n(x, t))dx

≤ ‖g‖H 1(0,T )‖µ‖Mb(Ω) .

3) We have∫
Ω

u′
n(x, t)Djun(x, t)ψ(u

′
n(x, t))dx = −

∫
Ω

Dju
′
n(x, t)un(x, t)ψ(u

′
n(x, t))dx

−
∫
Ω

u′
n(x, t)un(x, t)Djψ(u

′
n(x, t))dx .

Therefore∫
Ω

{unDjun}′ψ(u′
n(x, t))dx = −

∫
Ω

un(x, t)u
′
n(x, t)Dju

′
n(x, t)ψ

′(u′
n(x, t))dx

= −
∫
Ω

un(x, t)Dj

{∫ u′
n(x,t)

0
sψ ′(s)ds

}
dx

=
∫
Ω

Djun(x, t)

{ ∫ u′
n(x,t)

0
sψ ′(s)ds

}
dx .

A simple calculation yields

∣∣∣∣
∫ u′

n(x,t)

0
sψ ′ds

∣∣∣∣ ≤ 1 .

It follows that

3∑
j=1

∣∣∣∣
∫
Ω

{u′
nDjun + unDju

′
n}ψ(u′

n(x, t))dx |≤ C‖un( ., t)‖W 1,p
0 (Ω)

| Ω |1/q .

The inequality (2.20) becomes

∫
Ω

φ(u′
n(x, t))dx +

∫ t

0

∫
Ω

ψ ′(u′
n(x, s)) | ∇u′

n(x, s) |2 dxds

≤
∫
Ω

φ(u′
n(x, 0))dx + C‖un‖Lp(0,T ;W 1,p(Ω)) + ‖g‖H 1(0,T )‖µ‖Mb(Ω) .

Therefore

‖u′
n( ., t)‖L1(Ω) ≤C

{
1 +

∫
Ω

φ(u′
n(x, t))dx

}
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≤C{1 + ‖L(u0)‖Mb(Ω) + E(u0; g ; µ)+ ‖un‖Lp(0,T ;W 1,p(Ω))}(2.21)

≤C{1 + ‖L(u0)‖Mb(Ω)+ | Ω | +E(u0; g; µ)}
by taking into account the estimate of Lemma 2.2 �

LEMMA 2.4. Suppose all the hypotheses of Lemma 2.3 are satisfied. Then

‖
3∑
j=1

unDjun‖Lp(0,T ;W−1,p(Ω)) ≤ C{1+ | Ω | +‖L(u0)‖Mb(Ω) + E(u0; g; µ)}

with 1/p + 1/q = 1 and 1 ≤ p < 5/4 where C is a constant independent of n, u0, g, µ.

PROOF. With 1 < p < 5/4, the Sobolev imbedding theorem implies that

W
1,q
0 (Ω) ⊂ L∞(Ω) , 1/p + 1/q = 1 .

The assertion is an immediate consequence of the equation and of the estimates of Lem-
mas 2.2, 2.3. �

The main result of the section is the following theorem.

THEOREM 2.1. Let {u0, g, µ} be in L1(Ω) × H 1(0, T ) × Mb(Ω) with L(u0) ∈
Mb(Ω). Then there exists a solution u of (1.1) with

‖u‖L∞(0,T ;L1(Ω)) + ‖u‖
Lp(0,T ;W 1,p

0 (Ω))
+ ‖u′‖L∞(0,T ;L1(Ω))

≤ C{1+ | Ω | +‖L(u0)‖Mb(Ω) + E(u0; g; µ)}
for 1 < p < 5/4, where E is defined by (2.1). Moreover

‖
3∑
j=1

uDju‖Lp(0,T ;W−1,p(Ω)) ≤ C{1+ | Ω | +‖L(u0)‖Mb(Ω) + E(u0; g; µ)}

with L as in Lemma 2.3.

PROOF. Let un be as in Lemmas 2.1–2.4. Then from the estimates of Lemmas 2.1–2.4
and from Aubin’s theorem (see, e.g.,[6, Chapt.1,5]), we get by taking subsequences

{un, u′
n} → {u, u′}

in

{(L∞(0, T ;L1(Ω))weak∗ ∩ Lp(0, T ;Lp(Ω)) ∩ (Lp(0, T ;W 1,p
0 (Ω))weak}

×(L∞(0, T ;L1(Ω))weak∗ .

Furthermore un(x, t) → u(x, t) a.e in Ω × (0, T ).
From Lemma 3.4 we have by taking subsequences

3∑
j=1

unDjun → F weakly in Lp(0, T ; (W−1,p(Ω)) .
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We shall follow the proof of Aubin’s theorem and show that

F =
3∑
j=1

uDju .

Since un ∈ L2(0, T ;H 2(Ω) ∩H 1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), we have

3∑
j=1

∫ T

0

∫
Ω

unDjunv(x, t)dxdt = −1

2

3∑
j=1

∫ T

0

∫
Ω

u2
n(x, t)Dj v(x, t)dxdt

→ 〈F, v〉 ∀v ∈ Lq(0, T ;W 1,q
0 (Ω) ∩H 2(Ω)) .

The pairing between Lp(0, T ;W 1,p
0 (Ω) ∩H 2(Ω)) and its dual, is denoted by 〈 . , .〉.

On the other hand we have

u2
n(x, t) → u2(x, t) a.e. in Ω × (0, T ) .

and

lim
n→∞

∫ T

0

∫
Ω

{
3∑
j=1

unDjun}vdxdt = lim
n→∞

∫ T

0

∫
Ω

−1

2
u2
n

3∑
j=1

Djvdxdt

→ 〈F, v〉 .
Let

QN = {(x, t) : (x, t) ∈ Ω × (0, T ), | (u2
n(x, t)− u2(x, t)) |≤ 1, for n ≥ N} .

Then QN is an increasing sequence of measurable sets and meas(QN) → meas(Q) as
N → ∞ with Q = Ω × (0, T ). Let v be in C∞

0 (Q) with support in QN0 , then by the
Lebesgue convergence theorem

∫ T

0

∫
Ω

(u2
n − u2)

3∑
j=1

Djvdxdt → 0 .

Since

lim
n→∞

∫ T

0

∫
Ω

unv

3∑
j=1

Djundxdt = lim
n→∞

∫ T

0

∫
Ω

−1

2
u2
n

3∑
j=1

Djvdxdt

= 〈F, v〉, v ∈ C∞
0 (Q), supp(v) ⊂ QN0 ,

the expression u2 ∑3
j=1Djv is integrable on Ω × (0, T ). Thus,

∫ T

0

∫
Ω

−1

2
u2(x, t)

3∑
j=1

Djv(x, t)dxdt = 〈F, v〉
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for v ∈ C∞
0 (Q) with support in QN0 . Since QN are increasing and meas(QN) → T | Ω |,

we get

〈F , v〉 = −1

2

∫ T

0

∫
Ω

u2(x, t)

3∑
j=1

Djv(x, t)dxdt ∀v ∈ C∞
0 (Q) .

On the other hand we have

〈F, v〉 = lim
n→∞

∫ T

0

∫
Ω

{unv′ − ∇un.∇v + gfnv}dxdt

=
∫ T

0

∫
Ω

{uv′ − ∇u.∇v}dxdt +
∫ T

0
g µ(v( ., t))dt

= −1

2

∫ T

0

∫
Ω

u2(x, t)

3∑
j=1

Djv(x, t)dxdt ∀v ∈ C∞
0 (Q) .

It follows that

F =
3∑
j=1

uDju in D′(Q) .

Now it is straightforward to check that u satisfies the equation (1.1) in

Lp(0, T ; (W−1,p(Ω)). The stated estimates are immediate consequences of those of Lem-
mas 2.1–2.4. �

3. Time periodic solution

In this section, we shall establish the existence of a time-periodic weak solution of (1.2).
Time-periodic solutions of nonlinear parabolic equations with measure data do not seem to
have been treated in the literature.

Let fn be as in Section 2 and consider the time periodic problem

u′
n −∆un +

3∑
j=1

unDjun = g(t)fn(x) in Ω × (0, T )(3.1)

un(x, 0) = 0 on ∂Ω × (0, T ) , un(x, 0) = un(x, T ) in Ω .

With fn ∈ H 1(Ω), the existence of a time-periodic solution un in L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H 1

0 (Ω) ∩H 2(Ω)) is known and can be established by several methods (e.g. by the
Poincare’s method as in J. Lions’ book [6], chapter 4, p. 482–489). We shall now establish
some crucial estimates of un in terms of ‖g‖H 1(0,T ) and of ‖µ‖Mb(Ω).
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LEMMA 3.1. Let {g, µ, fn} be as in Lemma 2.1. Then there exists a solution un in

L2(0, T ;H 1
0 (Ω)∩H 2(Ω))∩L∞(0, T ;L2(Ω)) of (3.1) with u′

n ∈ L2(0, T ;L2(Ω)).More-
over

‖un( ., T )‖L1(Ω) ≤ C{1+ | Ω | +E(g; µ)}
with

E(g; µ) = ‖g‖H 1(0,T )‖µ‖Mb(Ω) ,

where C is a constant independent of n, g, µ, fn and

E(g; µ) = ‖g‖H 1(0,T )‖µ‖Mb(Ω) .

PROOF. 1) Since un is in C(0, T ;L2(Ω)) , there exists γn such that

sup
r∈[T/3,T ]

‖un( ., r)‖L1(Ω) = ‖un( ., γn)‖L1(Ω)

for some γn ∈ [T/3, T ]. Let ζ(t) be a C1(R)-function with ζ(t) = 0 for | t |≤
1 − ε , ζ(t) = 1 for | t |≥ 1 with 0 ≤ ζ(t) ≤ 1. Set

ζn(t) = ζ(tγ−1
n ) .

Then we have

ζn(t) = 0 for 0 ≤ t ≤ γn(1 − ε) ; ζn = 1 for γn ≤ t

with

‖ζn‖C1(R) ≤C‖ζ‖C1(R){1 + γ−1
n }

≤C‖ζ‖C1(R)(1 + 3T −1) ,

where C is a constant independent of n.
2) Let ψ(s) be the truncated function of Lemma 2.1 and similarly let φ be as in that

lemma. Multiplying the equation (3.1) by ζn(t) and taking the pairing with ψ(un) we obtain

ζn
d

dt

∫
Ω

φ(un(x, t)) dx +
∫
Ω

ζnψ
′(un) | ∇(un) |2 dx

≤ −
3∑
j=1

∫
Ω

ζn(t)unDj (un)ψ(un)dx

+C{1+ | Ω | +E(g; µ)} .
We have

3∑
j=1

∫
Ω

ζn(t)unDj (un)ψ(un)dx =
3∑
j=1

∫
Ω

ζnunDj (un)ψ(un)dx
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= ζn(t)

∫
Ω

3∑
j=1

Dj

{∫ un

0
sψ(s)ds

}
dx

= ζn(t)

3∑
j=1

∫
∂Ω

ej .

{∫ un(x,t)

0
sψ(s)ds

}
dσ = 0 .

Thus we get, by integrating from Tε = T (1 − ε)/3 to r

ζn(r)

∫
Ω

ψ(un(x, r))dx ≤
∫ r

Tε

∫
Ω

ζ ′
n(s)φ(un(x, s))dxds

+C{1+ | Ω | +E(g; µ)} .
It follows that

ζn(r)‖un( ., r)‖L1(Ω) ≤ C({1+ | Ω | +E(g;µ)} +
∫
Ω

φ(un(x, r))dx)

≤ C{1+ | Ω | +E(g; µ)} +
∫ r

Tε

∫
Ω

‖ζ‖C1(R) | un(x, s) | dxds

Hence

sup
r∈[T (1−ε)/3, t ]

‖ζn(r)un( ., r)‖L1(Ω) ≤ C{1+ | Ω | +E(g; µ)}

+C
∫ t

Tε

‖un( ., s)‖L1(Ω)dxds .

Thus,

ζn(γn)‖un( ., γn)‖L1(Ω) ≤C{1+ | Ω | +E(g; µ)}

+C
∫ t

Tε

‖un( ., s)‖L1(Ω)dxds .

Since ζn(γn) = 1, we deduce that

‖un( ., t)‖L1(Ω) ≤ ‖un( ., γn)‖L1(Ω)

≤C{1+ | Ω | +E(g; µ)} + C

∫ t

Tε

‖un( ., s)‖L1(Ω)ds(3.2)

for Tε = T (1 − ε)/3 ≤ t . It follows from the Gronwall lemma that

‖un( ., t)‖L1(Ω) ≤ C{1+ | Ω | +E(g; µ)}
for all t with Tε ≤ t ≤ T . Therefore

‖un( ., T )‖L1(Ω) ≤ C{1+ | Ω | +E(g; µ)} .(3.3)
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Since the solution is periodic in time, we obtain

‖un( ., 0)‖L1(Ω) = ‖un( ., T )‖L1(Ω) ≤ C{1+ | Ω | +E(g; µ)} ,(3.4)

where C is a constant independent of n, g, µ. Repeating the proof of Lemma 2.1 and using
(3.4) for the L1(Ω)-estimate of un(x, 0) we get the assertion.

LEMMA 3.2. Suppose all the hypotheses of Lemma 3.1 are satisfied and let un be a
solution of (3.1). Then

‖un‖Lp(0,T ;W 1,p
0 (Ω))

≤ C{1+ | Ω | +E(g; µ)}

for 1 ≤ p < 5/4, where C is a constant independent of n, g; µ.
PROOF. The proof is exactly the same as that of Lemma 2.2 with the L1(Ω)-estimate

of un(x, 0) replaced by (3.4).

LEMMA 3.3. Suppose all the hypotheses of Lemma 3.1 are satisfied and suppose fur-
ther that g(0) = g(T ). Let un be a solution of (3.1), then

‖u′
n‖L∞(0,T ;L1(Ω)) ≤ C{1+ | Ω | +E(g; µ)} ,

where C is a constant independent of n, g, µ.

PROOF. 1) Let ζn be as in Lemma 3.1 with un replaced by u′
n , then we obtain by

differentiating (3.1) with respect to t

ζn(t)u
′′
n −∆(ζnu

′
n)− ζ ′

nu
′
n = −

3∑
j=1

{ζnu′
nDjun + unDj (ζnu

′
n)}

+ζng ′fn in Ω × (0, T ) ,(3.5)

u′
n(x, t) = 0 on ∂Ω × (0, T ) , u′(x, 0) = u′(x, T ) in Ω .

Let ψ be the truncated function of Lemma 2.1 and let φ be as in that lemma. Then we
have

ζn(t)
d

dt

∫
Ω

φ(u′
n(x, t)) dx +

∫
Ω

ζn(t)ψ
′(u′

n(x, t)) | ∇u′
n(x, t) |2 dx

≤ −
3∑
j=1

ζn(t)

∫
Ω

{u′
nDjunψ(u

′
n)+ unDj (u

′
n)ψ(u

′
n)}dx

+C{1+ | Ω | +E(g; µ)} .
Consider the expression

∫
Ω

{u′
nDjun + unDj (u

′
n)}ψ(u′

n)dx .
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A simple integration by parts yields
∫
Ω

{u′
nDjun + unDj (u

′
n)}ψ(u′

n)dx =
∫
Ω

un(x, t)u
′
n(x, t)Dj (ψ(u

′
n(x, t))dx

=
∫
Ω

un(x, t)u
′
n(x, t)ψ

′(u′
n(x, t))Dju

′
n(x, t)dx

=
∫
Ω

un(x, t)Dj

{ ∫ u′
n(x,t)

0
sψ ′(s)ds

}
dx

= −
∫
Ω

Djun(x, t)

{∫ u′
n

0
sψ ′(s)ds

}
dx .

Therefore∣∣∣∣
∫
Ω

{u′
nDjun + unDju

′
n}ψ(u′

n)dx

∣∣∣∣ ≤ C‖Djun‖Lp(Ω) | Ω |1/q

as
∣∣∣∣
∫ u′

n(x,t)

0
sψ ′(s)ds

∣∣∣∣ ≤ 1 .

We have used the property that ψ ′(s) = 1 for | s |≤ 1 and ψ ′(s) = 0 for | s |〉1. Thus,

ζn(t)
d

dt

∫
Ω

φ(u′
n(x, t))dx ≤C{1+ | Ω | +E(g; µ)}

+C‖un( ., t)‖W 1,p (Ω) | Ω |1/q .(3.6)

Integrating between Tε = T (1 − ε)/3 and r and we get

ζn(r)‖u′
n( ., r)‖L1(Ω) ≤C

{
1+ | Ω | +

∫ r

Tε

ζn(s)φ(u
′
n(x, s))dxds

}

≤
∫ r

Tε

∫
Ω

ζ ′
n(s)φ(u

′
n(x, s))dxds + C{1+ | Ω | +E(g; µ)}(3.7)

+C‖un‖Lp(0,T ;W 1,p(Ω)) .

Taking into account the estimate of Lemma 3.2, we obtain

sup
r∈[Tε, t ]

{ζn(r)‖u′
n( ., r)‖L1(Ω)} ≤C{1+ | Ω | +E(g; µ)}

+C‖ζ‖C1(R)

∫ r

Tε

‖u′
n( , s)‖L1(Ω)ds .(3.8)

Thus,

‖u′
n( ., t)‖L1(Ω) ≤ ζn(γn)‖u′

n( ., γn)‖L1(Ω)
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= ‖u′
n( ., γn)‖L1(Ω) = sup

r∈[Tε,t ]
‖u′
n( ., r)‖L1(Ω)(3.9)

≤ C{1+ | Ω | +E(g; µ)} + C

∫ t

Tε

‖u′
n( ., s)‖L1(Ω)ds .

An application of the Gronwall lemma yields

‖u′
n( ., t)‖L1(Ω) ≤ C{1+ | Ω | +E(g; µ)}, t ∈ [Tε, T ] .

Since u′
n is periodic in time, we get

‖u′
n( ., 0)‖L1(Ω) = ‖u′

n( ., T )‖L1(Ω)

≤ C{1+ | Ω | +E(g; µ)} .
Now a proof as of that of Lemma 3.3 gives

‖u′
n‖L∞(0,T ;L1(Ω)) ≤ C{1+ | Ω | +E(g; µ)} .

LEMMA 3.4. Suppose all the hypotheses of Lemmas 3.1–3.3 are satisfied. Then

‖
3∑
j=1

unDjun‖Lq(0,T ;W−1,q (Ω)) ≤ C{1+ | Ω | +E(g; µ)} ,

with 1 < p < 5/4 and 1/p + 1/q = 1, where C is a constant independent of g, µ, n.

PROOF. It is an immediate consequence of the estimates of Lemmas 3.2, 3.3.

THEOREM 3.1. Let {g, µ} be in H 1(0, T ) ×Mb(Ω) with g(0) = g(T ). Then there
exists a time-periodic solution u of (1.1) with

‖u‖L∞(0,T ;L1(Ω)) + ‖u‖
Lp(0,T ;W 1,p

0 (Ω))
+ ‖u′‖L∞(0,T ;L1(Ω)) ≤ C{1+ | Ω | +E(g; µ)} ,

where C is a constant independent of g, µ and with 1 < p < 5/4.

PROOF. Let un be a time-periodic solution of (3.1). With the estimates of Lemmas
3.1–3.4, a proof identical to that of Theorem 2.1 gives the stated result.

4. An optimization problem: inverse problem

Let G be the compact convex subset of L2(0, T ) given by

G = {g : ‖g‖H 1(0,T ) ≤ 1}
and let U be the closed convex subset of Mb(Ω) defined by

U = {µ : ‖µ‖Mb(Ω) ≤ 1} .
We denote by χ, an L1(0, T ;L1(G))-function, representing the observed values of a

solution u of the initial boundary-value problem (1.1) in an interior subregion G ofΩ. With
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the control {g; µ} ∈ G × U , we associate with (1.1) the cost function

J (g; µ; u0; u; τ ) =
∫ T

τ

∫
G

| u(x, t)− χ(x, t) | dxdt(4.1)

where u is a solution of (1.1). The value function V (u0; τ ) of (1.1)–(4.1) is defined by

V (u0; τ )= inf{J (g; µ; u0; u; τ ) : ∀u solution of (1.1),

∀g ∈ G, ∀µ ∈ U} .(4.2)

For the initial boundary-value problem (1.1), we have the following result.

THEOREM 4.1. Let u0, L0 be in Mb(Ω)) and let χ be a L1(0, T ;L1(G))-function.
Then there exists {g̃, µ̃ } in G × U and a solution ũ of (1.1) with

V (u0; τ ) = J (g̃; µ̃; u0; ũ; τ ) .
Moreover

{ũ, ũ′} ∈ L∞(0, T ;L1(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω))× L∞(0, T ;L1(Ω)) .

It is an inverse problem as we try to find the source µ̃ , the intensity of the source g̃ from
the observed values of the solution in an interior subdomain.

PROOF. With u0 as in the theorem, we know from Theorem 2.1 that there exists a
solution u of (1.1) for any given {g, µ} in G × U . Let {gn; µn} be a minimizing sequence of
the optimization problem (4.2) with

V (u0; τ ) ≤ J ( gn; µn; u0; un; τ ) ≤ V (u0; τ )+ 1/n .

From the estimates of Theorem 2.1, we have

‖un‖Lp(0,T ;W 1,p
0 (Ω))

+ ‖un‖L∞(0,T ;L1(Ω)) + ‖u′
n‖L∞(0,T ;L1(Ω))

≤ C{1+ | Ω | +E(u0; gn; µn)+ ‖Lu0‖Mb(Ω)} .
Furthermore

‖
3∑
j=1

unDjun‖Lq(0,T ;W−1,q (Ω)) ≤ C{1+ | Ω | +E(u0; g; µ)+ ‖L(u0)‖Mb(Ω)} .

2) Thus there exists a subsequence such that

{un, u′
n; gn, µn} → {ũ, ũ′, g̃, µ̃}

in

(Lp(0, T ;W 1,p
0 (Ω)))weak ∩ (L∞(0, T : L1(Ω)))weak∗ ∩ Lp(0, T ;Lp(Ω))

× (L∞(0, T ;L1(Ω)))weak∗ × (H 1(0, T ))weak ∩ L2(0, T )
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×D′(Ω) .

Furthermore

3∑
j=1

unDjun → F weakly in Lq(0, T ;W−1,q(Ω)) .

A proof as in that of Theorem 2.1 shows that

F =
3∑
j=1

ũDj ũ in D′(Q) with Q = Ω × (0, T ) .

It is clear that ũ is a solution of (1.1) with the controls {g̃, µ̃} and we have

V (u0; τ ) = J ( g̃; µ̃; u0; ũ; τ ), τ ∈ [0, T ].
The theorem is proved.
For the time periodic problem of Section 3, we have a similar result.

THEOREM 4.2. Let χ be a function in L1(0, T ;L1(G)), where G is an interior open
subset of Ω. There exists {g̃, µ̃} ∈ G × U and ũ such that

ũ′ −∆ũ+
3∑
j=1

ũDj ũ= g̃µ̃ in Ω × (0, T ) ,(4.3)

ũ(x, t) = 0 on ∂Ω × (0, T ) , ũ(x, 0) = ũ(x, T ) in Ω

with {ũ, ũ′} in

L∞(0, T ;L1(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω))× L∞(0, T ;L1(Ω))

and

J (ũ; g̃; µ̃; τ ) = inf{J (u; g; µ) : u is a solution of (4.3), ∀g ∈ G, ∀µ ∈ U} .
where the cost function J is defined by (4.1).

PROOF. We use the estimates of Theorem 3.1 instead of those of Theorem 2.1 and the
proof is the same as that of Theorem 4.1.
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