
TOKYO J. MATH.
VOL. 29, NO. 2, 2006

D-Modules and Arrangements of Hyperplanes

Francisco James LEÓN TRUJILLO

University of Rome “La Sapienza”

(Communicated by M. Guest)

Abstract. LetA be a central arrangement of hyperplanes inCn defined by the homogeneous polynomialdA.

LetDn be the Weyl algebra of rankn over C and letP = C[x1, . . . , xn, d
−1
A ] be the algebra of rational functions

on the varietyYA = Cn \ ⋃
H∈A H . Studying the structure ofP as aDn-module we obtain a sequence of new

Dn-modules. These modules allow us to define useful complexes that determine the De Rham cohomology of
YA = Cn \ ⋃

H∈A H . Finally we compute the Poincaré series ofP .

1. Introduction

Let A = {H1, . . . , Hk} be a finite central arrangement of hyperplanes inCn, i.e., every
hyperplane contains the origin. For eachH ∈ A, fix a linear formαH whose kernel isH . The
arrangementA is also defined by the homogeneous polynomialdA = ∏

H∈A αH .
LetDn = C〈x1, . . . , xn, ∂/∂x1, . . . , ∂/∂xn〉 be the Weyl algebra of rankn overC and let

P = P(A) = C[x1, . . . , xn, d
−1
A ] be the algebra of rational functions onYA = Cn\⋃

H∈AH .
In the present work we construct a sequence ofDn-submodules ofP and direct sum decom-
positions of the associated quotient modules. Furthermore, using this decomposition, we
compute the cohomology ringH ∗(YA) (Section 3), and the Poincaré series ofP (Section
4). All Dn-modules mentioned here are leftDn-modules. Denote the poset of intersections
of elements ofA by L = L(A) ordered by reversed inclusion, and with a rank function
defined byr(X) = codimX, X ∈ L. Let r = r(A) = r(

⋂
H∈AH) be the rank of the max-

imal element ofL(A), namely, the cardinality of a maximal linearly independent subset of
A∗ = {αH | H ∈ A}. Then each element ofP can be written as a finite sum of quotients of

the formf/
∏h
j=1α

mj
ij

, where 0≤ h ≤ r, {αi1, . . . , αih } is a linearly independent subset of

A∗, mj ∈ N, f ∈ C[x] = C[x1, . . . , xn] and
∏0
j=1α

mj
ij

:= 1. This allows us to obtain the

following sequence of holonomicDn-submodules ofP : 0 = P−1 ⊂ C[x] = P0 ⊂ P1 ⊂
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· · · ⊂ Pr = P , where

Ph =
{∑ f

m1···mt
i1···it

α
m1
i1

· · ·αmtit

∣∣∣ 0 ≤ t ≤ h, f
m1···mt
i1···it ∈ C[x], m1, . . . ,mt ∈ N

}
.

For eachX ∈ Lh = Lh(A) = {X ∈ L(A) | r(X) = h} consider its dual subspaceX∗ of
(Cn)∗ of dimensionh. LetBX∗ be the set of all possible bases ofX∗ constituted with elements
of A∗. For eachX∗ and basisB = {αi1, . . . , αih } ∈ BX∗ , we define the following holonomic
Dn-submodule ofPh/Ph−1

V BX∗ =
{∑ (

f
m1···mh
i1···ih

α
m1
i1

· · ·αmhih
modPh−1

) ∣∣∣ fm1···mh
i1···ih ∈ C[x], m1, . . . ,mh ∈ N

}
.

We show in Proposition 2.9 that for each basisB ∈ BX∗ theDn-modulesV BX∗ are isomor-

phic, and after a linear change of coordinates in(Cn)∗ such thatX∗ = 〈y1, . . . , yh〉, V BX∗ is
isomorphic, as aDn-module, toMX∗ = C[yh+1, . . . , yn, ∂y1, . . . , ∂yh] where∂yj = ∂/∂yj .

Now letVmod
X∗ be theC-subspace ofPh/Ph−1 generated by all[1/∏

α∈B α], B ∈ BX∗ , then
the holonomicDn-modulePh/Ph−1 has the following decomposition:

Ph/Ph−1 =
⊕
X∈Lh

∑
B∈BX∗

V BX∗ =
⊕
X∈Lh

MX∗ ⊗C V
mod
X∗ .

It is possible to determine a basis ofVmod
X∗ applying the notion of “no broken circuit”

nbc (cf. [7]) toBX∗ . Let VX∗ be theC-vector space generated by the set of rational forms
{1/∏

α∈B α | B ∈ BX∗}, then the set{1/∏
α∈B α | B ∈ BX∗ andB is a nbc} is a basis ofVX∗ ,

cf. Lemma 2.14, and we have:

THEOREM 2.19. For 1 ≤ h ≤ r, we havePh = ⊕h
j=0

⊕
X∈Lj (A)MX∗ ⊗C VX∗ . In

particular, sinceP = Pr , we haveP = ⊕
X∈L(A) MX∗ ⊗C VX∗ .

THEOREM 2.20. For 0 ≤ h ≤ r, the natural mapψ : ⊕
X∈Lh MX∗ ⊗C VX∗ →

Ph/Ph−1 is an isomorphism ofDn-modules.

This allows us to decompose the De Rham complex forYA as a direct sum of complexes
with cohomology just in one degree and 1-dimensional. Define the following cochain complex
(L∗
h, δL∗

h
):

Lsh = Lsh({y1, . . . , yh}) =
{ ∑

1≤i1<···<is≤n
fi1···is • 1

y1 · · · yh dyi1 · · · dyis
}

with δL∗
h

: L∗
h → L∗

h the usual differential, andfi1···is ∈ C[yh+1, . . . , yn, ∂y1, . . . , ∂yh]. Thus,

cf. Corollary 3.4, the cohomology groupsH ∗(L∗
h) areC · 1

y1 · · · yh dy1 · · · dyh in dimension
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h and 0 elsewhere. Now for eachX ∈ Lh(A) we associate the following complex

Lh(X) =
⊕

〈αj1 ,...,αjh 〉=X∗
(j1,...,jh) nbc

Lh({αj1, . . . , αjh })

whereLh({αj1, . . . , αjh}) is the same complexL∗
h but it is just defined for{αj1, . . . , αjh }.

Finally, associated to theDn-modulePh = Ph/Ph−1, the complexL(Ph) = ⊕
X∈Lh Lh(X)

allows us to calculate theh-th cohomology ofYA.

THEOREM 3.6. For 1 ≤ h ≤ r, there exists an isomorphism betweenHh
DR(YA) and

Hh(L(Ph)):

Hh
DR(YA) ∼= Hh(L(Ph)) =

⊕
X∈Lh

⊕
〈αj1 ,...,αjh 〉=X∗
(j1,...,jh) nbc

C · 1

αj1 · · ·αjh
dαj1 ∧ · · · ∧ dαjh .

Finally, we compute the Poincaré series ofP(A) as a function of the Poincaré polyno-
mial ofA:

THEOREM 4.4. The Poincaré series Poin(P (A), t) of the gradedDn-moduleP(A) is
equal to(1 − t)−nPoin(A, t).

Throughout the paper we follow notation, definitions and results of [8], [9] on arrange-
ments, and of [1], [3] for the Weyl algebra and its left modules.

2. The Dn-module C[x, d−1
A ]

This section is dedicated to the algebraic properties of the leftDn-moduleP = P(A) =
C[x, d−1

A ]. The main results are Theorem 2.19 and Theorem 2.20.
Due to [3, 3.2 Theorem (p. 92)], theDn-moduleP(A) is holonomic.
Recall that the rankr = r(A) of A is the cardinality of a maximal linearly independent

subset ofA∗. The following Lemma is straightforward and allows us to write in a very
convenient way every element ofP .

LEMMA 2.1. It is possible to write every element inP as a finite sum of quotients of

the formf/
∏h
j=1 α

mj
ij

, where0 ≤ h ≤ r, {αi1, . . . , αih } is a linearly independent subset of

A∗,m1, . . . ,mh ∈ N, f ∈ C[x] and
∏0
j=1 α

mj
ij

:= 1.

This Lemma inspires the following definition.

DEFINITION 2.2. Forh = 0,1, . . . , r, define theDn-submodule ofP by

Ph =
{∑ f

m1···mt
i1···it∏t
j=1α

mi
ij

∣∣∣ 0 ≤ t ≤ h, f
m1···mt
i1···it ∈ C[x], m1, . . . ,mt ∈ N

}
,

where{αi1, . . . , αit } varies over all the linearly independent subsets ofA∗ of cardinalityt.
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Hence, by Lemma 2.1, we have the following finite ascending chain ofDn-submodules
of P :

0 =: P−1 ⊆ C[x] = P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ Pr = P . (2.1)

Note that every modulePh and every quotientPh/Ph−1 is holonomic sinceP is, cf. [3, p.
86].

Our next aim is to get a decomposition ofPh/Ph−1 as a direct sum of isotropy component
Dn-modules associated to eachX ∈ Lh(A), cf. Proposition 2.10.

For eachX ∈ L(A), consider the dual subspaceX∗ of (Cn)∗ of dimensionr(X).

DEFINITION 2.3. For eachX in Lh(A), 1 ≤ h ≤ r, letBX∗ be the set of all possible
bases ofX∗ constituted with elements ofA∗, and for each basisB = {αi1, . . . , αih } in BX∗
define the holonomicDn-submodule ofPh/Ph−1

V BX∗ =
{∑ (

f
m1···mh
i1···ih

α
m1
i1

· · ·αmhih
modPh−1

) ∣∣∣ fm1···mh
i1···ih ∈ C[x], m1, . . . ,mh ∈ N

}
.

From the definition it follows thatV BX∗ is an irreducibleDn-module. Then it is cyclic

(this is also a consequence of its holonomicity). A generator forV BX∗ , as aDn-module, is the
class of 1/

∏
α∈B α, cf. Proposition 2.5.

Let X ∈ Lh and letB = {αi1, . . . , αih } be a basis forX∗. Then there exists a ba-
sis {y1 := αi1, . . . , yh := αih , . . . , yr := αir , yr+1, . . . , yn} of (Cn)∗, where{y1, . . . , yr }
is a maximal linearly independent subset ofA∗. The element[1/y1 · · · yh] in V

{y1,...,yh}
X∗

is annihilated by the linear operatorsy1, . . . , yh, ∂yh+1, . . . , ∂yn , i.e. by the leftDn-ideal
IB = Dn(y1, . . . , yh, ∂yh+1, . . . , ∂yn). Actually it is very easy to see that:

LEMMA 2.4. With the previous definitions we have

AnnDn([1/y1 · · · yh]) = IB .

The idealIB plays an important role in what follows.

PROPOSITION 2.5. LetMB be theDn-moduleDn/IB . Then we have the isomorphism
ofDn-modules

V
{y1,...,yh}
X∗ ∼= MB

∼= Dn • [1/y1 · · · yh] . (2.2)

PROOF. The first isomorphism follows from Lemma 2.4 and [3, p. 36]. The second
isomorphism follows from the exact sequence 0→ IB → Dn → Dn • [1/y1 · · · yh] → 0 . �

COROLLARY 2.6. Consider two different elementsX1,X2 in Lh, 1 ≤ h ≤ r. Then

V
B1
X∗

1
∩ V B2

X∗
2

= {[0]} for eachB1 in BX∗
1

and for eachB2 in BX∗
2
.

PROPOSITION 2.7. There exists an isomorphism ofDn-modules betweenMB and the
ring of polynomialsC[yh+1, . . . , yn, ∂y1, . . . , ∂yh]. This last one is an irreducible, holonomic
Dn-module, and its characteristic variety is the conormal space defined by the system of
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equationsξ1 = · · · = ξh = ξn+h+1 = · · · = ξ2n = 0, where fori = 1, . . . , h ξi = σ1(yi),
and for i = 1, . . . , n − h, ξn+h+i = σ1(∂yh+i ) ( σ1 is the symbol map of order 1, cf. [3, p.
57]).

PROOF. LetT be the automorphism ofDn defined by

T (yi)= ∂yi , T (∂yi )= −yi for 1 ≤ i ≤ h

T (yi)= yi , T (∂yi )= ∂yi for h+ 1 ≤ i ≤ n .

Recall thatC[y1, . . . , yn] ∼= Dn/J , whereJ = ∑n
1Dn · ∂yi , then it is easy to see that

T −1(J ) =
h∑
1

Dn · yi +
n∑
h+1

Dn · ∂yi = IB ,

and, by [3, p. 38], we get

MB = Dn/T −1(J ) ∼= C[y1, . . . , yn]T ∼= C[yh+1, . . . , yn, ∂y1, . . . , ∂yh] .
Thus, by [3, p. 38, p. 86],C[yh+1, . . . , yn, ∂y1, . . . , ∂yh] is an irreducible, holonomicDn-
module isomorphic toMB .

LetB be the Bernstein filtration ofDn, cf. [1], [3]. Recall that the graded algebra grBDn
is isomorphic to the polynomial ring in 2n variablesC[ξ ] = C[ξ1, . . . , ξ2n], cf. [3, p. 58].
LetΓ be a good filtration ofC[yh+1, . . . , yn, ∂y1, . . . , ∂yh] with respect toB, for example, the
induced one byB. The exact sequence 0→ IB → Dn → MB → 0 in turns implies the
following exact sequence ofC[ξ ]-modules

0 → grΓ
′
IB → grBDn → grΓMB → 0 ,

whereΓ ′ is the filtration induced byB on IB . Then grΓMB
∼= C[ξ ]

grΓ ′
IB

and

Ann(C[yh+1, . . . , yn, ∂y1, . . . , ∂yh], Γ )= AnnC[ξ ](grΓ C[yh+1, . . . , yn, ∂y1, . . . , ∂yh])
= AnnC[ξ ](grΓMB) = grΓ

′
IB

= C[ξ ](ξ1, . . . , ξh, ξn+h+1, . . . , ξ2n) .

Thus, by definition (cf. [1], [3]), the characteristic variety ofC[yh+1, . . . , yn, ∂y1, . . . , ∂yh] is
the zero set of the idealC[ξ ](ξ1, . . . , ξh, ξn+h+1, . . . , ξ2n). �

By the isomorphism (2.2) and Proposition 2.7, we have the following Corollary.

COROLLARY 2.8. There exists an isomorphism of irreducibleDn-modules

V
{y1,...,yh}
X∗ ∼= C[yh+1, . . . , yn, ∂y1, . . . , ∂yh] . (2.3)

PROPOSITION 2.9. For eachX in Lh, 1 ≤ h ≤ r, and each basisB in BX∗

(1) The vector spacesV BX∗ are isomorphic to each other asDn-modules.
(2) The idealIX∗ := IB is independent ofB.

(3) The canonical holonomicDn-moduleMX∗ := Dn/IX∗ is isomorphic toV BX∗ .
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PROOF. Fix a basisB = {αi1, . . . , αih } of X∗. There exists a basis{y1 :=
αi1, . . . , yh := αih , . . . , yr := αir , yr+1, . . . , yn} of (Cn)∗, where{y1, . . . , yr } is a maxi-
mal linearly independent subset ofA∗. Every other basisB ′ = {αj1, . . . , αjh } of X∗ satisfies
B ′ ⊂ Span{y1, . . . , yh} and{y ′

1 := αj1, . . . , y
′
h := αjh, y

′
h+1 := yh+1, . . . , y

′
n := yn} is a

basis of(Cn)∗. Associated to the basesB andB ′ we have the change of bases matrix

CB
B ′ =

(
D 0
0 In−h

)
whereD ∈ GLh(C) andIs is the unit matrix of ranks, such that the corresponding bases of
(Cn)∗ change linearly by means of

t (y ′
1, . . . , y

′
h, y

′
h+1, . . . , y

′
n) = CBB ′ t (y1, . . . , yh, yh+1, . . . , yn) , (2.4)

and the partial derivatives by
t (∂y ′

1
, . . . , ∂y ′

h
, ∂y ′

h+1
, . . . , ∂y ′

n
) = ( tCBB ′)−1 t (∂y1, . . . , ∂yh, ∂yh+1, . . . , ∂yn) . (2.5)

Then we obtainC[∂y ′
1
, . . . , ∂y ′

h
, y ′
h+1, . . . , y

′
n] = C[∂y1, . . . , ∂yh, yh+1, . . . , yn] and (1) fol-

lows by Corollary 2.8. Moreover, (2) follows from (2.4) and (2.5); and (3) follows from (2)
and Proposition 2.5. �

PROPOSITION 2.10. For 1 ≤ h ≤ r, the quotient of two consecutiveDn-modules of
sequence(2.1) has the following decomposition

Ph/Ph−1 =
⊕
X∈Lh

∑
B∈BX∗

V BX∗ =
⊕
X∈Lh

( ⊕
B∈B̃X∗

V BX∗

)
(2.6)

whereB̃X∗ is a convenient subset ofBX∗ , that is, a subset ofBX∗ such that
∑
B∈BX∗ V

B
X∗ =⊕

B∈B̃X∗ V
B
X∗ .

PROOF. By Propositions 2.5 and 2.9(1), there exists a subsetB̃X∗ of BX∗ such that the

vector space
∑
B∈BX∗ V

B
X∗ associated toX is equal to

⊕
B∈B̃X∗ V

B
X∗ . Thus the last equality

in (2.6) holds. For two different elementsX1,X2 in Lh, it follows by Corollary 2.6 that∑
B∈BX∗

1
V B
X∗

1
∩ ∑

B∈BX∗
2
V B
X∗

2
= {[0]}. Then

⊕
X∈Lh

∑
B∈BX∗ V

B
X∗ ⊂ Ph/Ph−1. Actually, by

Lemma 2.1,Ph/Ph−1 = ⊕
X∈Lh

∑
B∈BX∗ V

B
X∗ . �

PROPOSITION 2.11. Let X in Lh, 1 ≤ h ≤ r, and letVmod
X∗ be theC-subspace of

Ph/Ph−1 annihilated byIX∗ . ThenVmod
X∗ is generated by

Umod
X∗ =

{
1∏
α∈B α

modPh−1
∣∣ B ∈ BX∗

}
.

PROOF. By Proposition 2.9(2), AnnDn([1/
∏
α∈B α]) = IX∗ if and only if B is a basis

ofX∗. Then the spaceVmod
X∗ maps into a unique component in the decomposition ofPh/Ph−1

as in (2.6) and is generated byUmod
X∗ . �
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PROPOSITION 2.12. With the above notation we have

Ph/Ph−1 ∼=
⊕
X∈Lh

MX∗ ⊗C V
mod
X∗ . (2.7)

PROOF. This follows from Propositions 2.10, 2.9(3) and 2.11. �

Our next aim is to choose a basis forVmod
X∗ . This is possible using the notion of “no

broken circuit” (nbc) for the setBX∗ , consequently forUmod
X∗ .

Fix a total order onA∗ by A∗ = {α1, α2, . . . , αk}. A subset ofA∗ is a circuit if it is a
minimally dependent set. Ano broken circuit(nbc) subsetis a subset of elements containing
no circuit with its smallest element deleted.

Throughout the rest of the paper we identify each ordered set{αl1, . . . , αls } with its s-
tuple(l1, . . . , ls ).

DEFINITION 2.13. For everyX in Lh(A), 1 ≤ h ≤ r, define theDn-module

RX∗ = MX∗ ⊗C VX∗

whereVX∗ is theC-vector space generated byUX∗ = {1/∏
α∈B α | B ∈ BX∗}.

For Cn in L0(A), defineV(Cn)∗ = C andR(Cn)∗ = C[x1, . . . , xn].
LEMMA 2.14. For X ∈ Lh(A), define

Bnbc
X∗ = {{αj1, . . . , αjh } ∈ BX∗ | (j1, . . . , jh) is a nbc} .

The corresponding setUnbc
X∗ = {1/∏

α∈B α | B ∈ Bnbc
X∗ } is a basis ofVX∗ .

PROOF. The setUnbc
X∗ generatesVX∗ : For each basis{αi1, . . . , αih } of X∗, there exist

two possibilities: If(i1, . . . , ih) is a nbc, then
1

αi1 · · ·αih
∈ Unbc

X∗ . Otherwise, there exists

anm-subtuple(j1, . . . , jm) of (i1, . . . , ih), 1 < m < h, such that(j1, . . . , jm) is a broken
circuit. Thus there exists 1≤ l < i1, such that(l, j1, . . . , jm) is a circuit. Equivalently we
have the following relationa1αj1 +· · ·+amαjm = αl , for somea1, . . . , am ∈ C. This implies
that

m∑
u=1

au

αlαj1 · · · α̂ju · · ·αjm
= 1

αj1 · · ·αjm
. (2.8)

Note that, for each 1≤ u ≤ m, the set{αl, αj1, . . . , α̂ju , . . . , αjm} is linearly independent and
Bu = ({αi1, . . . , αih } \ {αju}) ∪ {αl} is another basis ofX∗. From (2.8) we get

a1

αlαi1 · · · α̂j1 · · ·αih
+ · · · + am

αlαi1 · · · α̂jm · · ·αih
= 1

αi1 · · ·αih
. (2.9)

If each basisBu is a nbc, then
1

αi1 · · ·αih
is in 〈Unbc

X∗ 〉. Otherwise, there exists at least one

h-tuple(l1, . . . , lh) that is not a nbc. Then for each such(l1, . . . , lh) we can repeat the initial
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process, as with(i1, . . . , ih). This procedure ends after a finite number of steps because the

cardinality ofUX∗ is finite. Finally we obtain
1

αi1 · · ·αih
∈ 〈Unbc

X∗ 〉.
The setUnbc

X∗ is C-linearly independent: Suppose that∑
(i1,...,ih)∈Bnbc

X∗

ci1···ih
αi1 · · ·αih

= 0

with ci1···ih ∈ C. Let lX be the smallest among all the first entries of theh-tuples inBnbc
X∗ . Thus

we can divide the last sum as

1

αlX
·

∑
(lX,i2,...,ih)∈Bnbc

X∗

clXi2···ih
αi2 · · ·αih

+
∑

(i1,...,ih)∈Bnbc
X∗

i1 �=lX

ci1···ih
αi1 · · ·αih

︸ ︷︷ ︸
TX

= 0

or
∑
(lX,i2,...,ih)∈Bnbc

X∗
clXi2···ih
αi2 · · ·αih

+ αlX · TX = 0. So
∑
(lX,i2,...,ih)∈Bnbc

X∗
clXi2···ih
αi2 · · ·αih

= 0 within

ker(αlX ). Note that{αi2, . . . , αih } is linearly independent moduloαlX , and(i2, . . . , ih) ∈ Bnbc
Y ∗

for some subspaceY ∗ = 〈αi2, . . . , αih 〉 of X∗ obtained after removingαlX from every basis

{αlX, αi2, . . . , αih } in Bnbc
X∗ . Thus we have∑

(lX,i2,...,ih)∈Bnbc
X∗

clXi2···ih
αi2 · · ·αih

= 0 .

By induction on dimX∗, we shall proveclXi2···ih = 0 for all (lX, i2, . . . , ih) in Bnbc
X∗ and

TX = 0. In fact, letZX∗ = {Y ∗ ⊂ X∗ | Y ∗ = 〈αi2, . . . , αih 〉 if (lX, i2, . . . , ih) ∈ Bnbc
X∗ } and

fix oneY ∗ in ZX∗ . Then we may divide the last sum to get∑
(lY ,i3,...,ih)∈Bnbc

Y∗

clXlY i3···ih
αi3 · · ·αih

+ αlY

( ∑
(i2,...,ih)∈Bnbc

Y∗
i2 �=lY

clXi2···ih
αi2 · · ·αih

︸ ︷︷ ︸
TY

+
∑

〈αj2 ,...,αjh 〉=Z∗
Z∗∈ZX∗ \{Y∗}

clXj2···jh
αj2 · · ·αjh

)
= 0 .

Then
∑
(lY ,i3,...,ih)∈Bnbc

Y∗
clXlY i3···ih
αi3 · · ·αih

= 0 within ker(αlY ). By induction on dimX∗, since

dimY ∗ < dimX∗, clXlY i3···ih = 0 for all (lY , i3, . . . , ih) in Bnbc
Y ∗ , andTY = 0. But this is

true for everyY ∗ in ZX∗ . Thus,clXi2···ih = 0 for all (lX, i2, . . . , ih) in Bnbc
X∗ . This implies that

TX = 0. ThusαlX appears in every basis inBnbc
X∗ andUnbc

X∗ is linearly independent. �

COROLLARY 2.15. LetX ∈ Lh, 1 ≤ h ≤ r, and letlX be the smallest among all the

first entries ofh-tuples(i1, . . . , ih) such that{αi1, . . . , αih } ∈ BX∗ . ThenB ∈ Bnbc
X∗ if and only

if αlX ∈ B.
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LEMMA 2.16. LetX,Y be two elements inLh, 1 ≤ h ≤ r. ThenX �= Y if and only if
VX∗ ∩ VY ∗ = {0}.

PROOF. AssumeX∗ �= Y ∗. Suppose that there exists a non-zero elementυ in VX∗∩VY ∗ .

Since[υ] = υ modPh−1 belongs toMX∗ ⊗ Vmod
X∗ ∩MY ∗ ⊗ Vmod

Y ∗ = {[0]}, thenυ belongs to
Ph−1. This is a contradiction. �

The next two lemmas enable us to write theDn-moduleP as a direct sum of theRX∗ .

LEMMA 2.17. Fix I = (i1, . . . , ih) andJ = (j1, . . . , js) such thath + s = n and
consider a polynomialf in C[yi1, . . . , yih , ∂yj1 , . . . , ∂yjs ]. Then

(a) If f is such thatf • 1

yj1 · · · yjs
= 0, thenf ≡ 0.

(b) If f · ∂yjl • 1

yj1 · · · yjs
= 0 for some1 ≤ l ≤ s, thenf ≡ 0.

More generally, if the subset{α1, . . . , αs} of Span{yj1, . . . , yjs } is linearly independent,

then(a) and(b) hold with
1

α1 · · ·αs instead of
1

yj1 · · · yjs
.

PROOF. We start to show (a) by induction ons: If f ∈ C[y1, . . . , yn] (s = 0), then it is
clear thatf ≡ 0. Now lets > 0. If there is no 1≤ u ≤ s such that deg∂yju f = m > 0, then

it is also clear thatf ≡ 0, otherwisef can be written as

Qm∂
m
yju

+Qm−1∂
m−1
yju

+ · · · +Q1∂yju +Q0

whereQm, . . . ,Q0 ∈ C[yi1, . . . , yih , ∂yj1 , . . . , ∂̂yju , . . . , ∂yjs ] andQm �= 0. Thusf •
1

yj1 · · · yjs
= 0 is equivalent to

(
(−1)mm!
ym+1
ju

Qm + (−1)m−1(m− 1)!
ymju

Qm−1 + · · · + 1

yju
Q0

)
• 1

yj1 · · · ŷju · · · yjs
= 0

or

((−1)mm!Qm + (−1)m−1(m− 1)!yjuQm−1 + · · · + ymjuQ0) • 1

yj1 · · · ŷju · · · yjs
= 0 .

Denote byf̃ the operator that acts on
1

yj1 · · · ŷju · · · yjs
in the last equation. Note that̃f

belongs toC[yi1, . . . yih , yju, ∂yj1 , . . . , ∂̂yju , . . . , ∂yjs ]. By induction ons we havef̃ ≡ 0.

ThenQm = 0 andf ≡ 0.
In order to prove (b), note thatf · ∂yjl = ∂yjl · f . Again, by induction ons, if s = 0 then

f = 0. Fors > 0, if there is no 1≤ u ≤ s such that deg∂yju f = m > 0, then it is also clear
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thatf · ∂yjl • 1

yj1 · · · yjs
= 0 impliesf = 0, otherwisef · ∂yjl can be written as

(Qm∂yjl )∂
m
yju

+ (Qm−1∂yjl )∂
m−1
yju

+ · · · + (Q1∂yjl )∂yju + (Q0∂yjl )

whereQm, . . . ,Q0 ∈ C[yi1, . . . , yih , ∂yj1 , . . . , ∂̂yju , . . . , ∂yjs ] andQm �= 0. If l �= u then

againQ′
p = Qp∂yjl ∈ C[yi1, . . . , yih , ∂yj1 , . . . , ∂̂yju , . . . , ∂yjs ] for p = 0,1, . . . ,m, and the

result follows from (a). Otherwisef · ∂yjl • 1

yj1 · · · yjs
= 0 is equivalent to

((−1)m+1(m+ 1)!Qm + (−1)mm!yjuQm−1 + · · · − ymjuQ0) • 1

yj1 · · · ŷju · · · yjs
= 0

and again the result follows from (a) and induction ons.
The general case follows by induction ons and from relations (2.4) and (2.5). �

LEMMA 2.18. LetX in Lh, 1 ≤ h ≤ r. The natural map ofDn-modulesφX : RX∗ =
MX∗ ⊗C VX∗ → P, m⊗ υ �→ m • υ, is injective.

PROOF. Let {y1, . . . , yn} be a basis of(Cn)∗ such thatX∗ = 〈y1, . . . , yh〉. By Lemma

2.14,RX∗ can be written asC[yh+1, . . . , yn, ∂y1, . . . , ∂yh] ⊗C 〈Unbc
X∗ 〉 = ⊕

B∈Bnbc
X∗ MX∗ ⊗C

(1/
∏
α∈B α). Then the mapφX is injective if and only if for eachB ∈ Bnbc

X∗ the map

φBX : MX∗ ⊗C (1/
∏
α∈B α) → P is injective, i.e., ifQ • (1/∏

α∈B α) = 0, whereQ ∈
C[yh+1, . . . , yn, ∂y1, . . . , ∂yh] andB ∈ Bnbc

X∗ , thenQ = 0. This follows from Lemma 2.17.�

THEOREM 2.19. For 1 ≤ h ≤ r, we have

Ph =
h⊕
j=0

⊕
X∈Lj (A)

RX∗ .

In particular, sinceP = Pr , we haveP = ⊕
X∈L(A) RX∗ .

PROOF. This is an immediate consequence of Lemma 2.18 and the definition ofPh. �

REMARK. M. Brion and M. Vergne [2], and H. Terao [10], have studied the action of
C[∂] onP . Horiuchi and Terao [5] have also studied the naturally double filtration ofP by
the degrees of the denominators and numerators.

THEOREM 2.20. For 0 ≤ h ≤ r, the natural map induced byφX,
ψ : ⊕

X∈Lh RX∗ → Ph/Ph−1,m⊗ υ �→ [m • υ], is an isomorphism ofDn-modules.

PROOF. It follows from Proposition 2.12 that theDn-morphismψ is surjective. In
order to see thatψ is injective, it is sufficient to show thatψX : RX∗ → Ph/Ph−1 is injective
for eachX ∈ Lh. Recall thatAX = {H ∈ A | H ⊆ X}. Let dAX

= ∏
α∈A∗

X
α be the

homogeneous polynomial that defines the subarrangementAX. Define theDn-submodule

PX of P by C[x, d−1
AX

]. By Lemma 2.1,PX admits a finite ascending chain similar to one of
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(2.1) toP . Then, the mapψX is injective if and only if the mapψX : RX∗ → PXh /P
X
h−1 is

injective, i.e.,VX∗∩PXh−1 = {0}. Suppose that there exists a non-zero elementv in VX∗∩PXh−1.

Let {y1, . . . , yn} be a basis of(Cn)∗ such thatX∗ = 〈y1, . . . , yh〉, thenυ can be written as

υ =
∑

B∈Bnbc
X∗

cB∏
α∈B α

=
∑ aj1···js

α
m1
j1

· · ·αmsjs
,

where the first sum belongs toVX∗ , the second toPXh−1, cB ∈ C, 0 ≤ s ≤ h − 1,
aj1···js ∈ C[y1, . . . , yn], {αj1, . . . , αjs } is a linearly independent subset of Span{y1, . . . , yh} ∩
A∗
X andm1, . . . ,ms ∈ N. It is clear that

∑
B∈Bnbc

X∗
(cB/

∏
α∈B α) mod Ph−1 �= [0] and

∑
(aj1···js /α

m1
j1

· · ·αmsjs ) modPh−1 = [0]. This is a contradiction. �

COROLLARY 2.21. If X ∈ Lh, 1 ≤ h ≤ r, then the set of cosets

{1/∏
α∈B α modPh−1 | B ∈ Bnbc

X∗ } is a C-basis ofVmod
X∗ .

DEFINITION 2.22. LetA be an arrangement inCn of rank r. Define the holonomic
Dn-moduleP = P(A) = ⊕r

h=0 Ph, associated to the arrangementA and isomorphic to
P(A), as follows: letP0 = P0 = C[x1, . . . , xn], and for 1≤ h ≤ r

Ph = Ph/Ph−1 ∼=
⊕
X∈Lh

RX∗ =
⊕
X∈Lh

MX∗ ⊗C 〈Unbc
X∗ 〉 ∼=

⊕
X∈Lh

M
a(X∗)
X∗

wherea(X∗) :=dimVX∗ is equal to|Unbc
X∗ |, the multiplicity ofMX∗ .

3. Complexes and cohomology of YA

We begin by defining some useful cochain complexesL∗
h, G∗

h andH∗
h. The first complex

Lh, cf. (3.1), is associated to every basisB ∈ BX∗ , X ∈ Lh, and then we get a complex
L(Ph) = ⊕

X∈Lh
⊕

B∈Bnbc
X∗ Lh(B) associated toPh. The cohomology ofL(Ph) is theh-th

De Rham cohomology ofYA, cf. Theorem 3.6 (see also [9], Theorem 3.26, Theorem 3.43
and Theorem 5.90).

Fix h, 0 ≤ h ≤ n, we define the following cochain complexes (3.1), (3.2) and (3.3).
The complex of rational differential forms onYA:

L∗
h = L∗

h({y1, . . . , yh}) : 0 −→ L0
h

δ0
L−→ L1

h

δ1
L−→ L2

h −→ · · · −→ Ln−1
h

δn−1
L−→ Lnh

δnL→ 0
(3.1)

where

L0
h = C[yh+1, . . . , yn, ∂y1, . . . , ∂yh] • 1

y1 · · · yh ,

Lsh =
{ ∑

1≤i1<···<is≤n
fi1···is • 1

y1 · · · yh dyi1 ∧ · · · ∧ dyis
}

, s = 1, . . . , n ,
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fi1···is ∈ C[yh+1, . . . , yn, ∂y1, . . . , ∂yh], and the differentialδL : Lh → Lh is the usual differ-
ential.

A subcomplex ofLh:

G∗
h : 0 −→ G0

h

δ0
G−→ G1

h

δ1
G−→ G2

h −→ · · · −→ Gh−1
h

δh−1
G−→ Ghh

δhG−→ 0 (3.2)

where

G0
h = C[∂y1, . . . , ∂yh] • 1

y1 · · · yh ,

Grh =
{ ∑

1≤i1<···<ir≤h
fi1···ir • 1

y1 · · · yh dyi1 ∧ · · · ∧ dyir
}

, r = 1, . . . , h ,

fi1···ir ∈ C[∂y1, . . . , ∂yh], and the differentialδG : Gh → Gh is the usual differential.

Finally, the De Rham subcomplex onCn−h:

H∗
h : 0 −→ H0

h

δ0
H−→ H1

h

δ1
H−→ H2

h −→ · · · −→ Hn−h−1
h

δn−h−1
H−→ Hn−h

h

δn−hH−→ 0 (3.3)

where

H0
h = C[yh+1, . . . , yn] ,

Ht
h =

{ ∑
h+1≤i1<···<it≤n

fi1···it dyi1 ∧ · · · ∧ dyit
}

, t = 1, . . . , n− h ,

fi1···it ∈ C[yh+1, . . . , yn], and the differentialδH : Hh → Hh is the usual differential.

LEMMA 3.1. The complexGh has cohomology

H ∗(Gh) =
 C · 1

y1 · · · yh dy1 ∧ · · · ∧ dyh in dimensionh ,

0 elsewhere.

PROOF. For r = 0 : Let ω = f • 1

y1 · · · yh ∈ G0
h. If δ0

Gω = ∑h
i=1(f ·

∂yi ) • 1

y1 · · · yh dyi = 0, then we haveδ0
Gω ∧ (dy1 · · · d̂yi · · · dyh) = (−1)i−1(f · ∂yi ) •

1

y1 · · · yh dy1 · · · dyh = 0 for all 1 ≤ i ≤ h. It is possible if and only if(f ·∂yi )•
1

y1 · · · yh = 0.

By Lemma 2.17 (b), we havef = 0. Thus, we have ker(δ0
G) = {0} andH 0(Gh) = 0.

For 0< r < h : Letω = ∑
1≤i1<···<ir≤h fi1···ir • 1

y1 · · · yh dyi1 · · · dyir be an element in

Grh. If δrGω = ∑
1≤l1<···<lr<lr+1≤h(

∑r+1
j=1(−1)j−1fl1···l̂j ···lr+1

·∂yj )•
1

y1 · · · yh dyl1 · · · dylr+1 =
0, where{l1, . . . , l̂j , . . . , lr+1} is equal to some{i1, . . . , ir }, then, as for the caser = 0, we

have(
∑r+1
j=1(−1)j−1fl1···l̂j ···lr+1

· ∂yj ) • 1

y1 · · · yh = 0 for all 1 ≤ l1 < · · · < lr < lr+1 ≤ h.
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By Lemma 2.17, this is possible if and only if
∑r+1
j=1(−1)j−1fl1···l̂j ···lr+1

· ∂yj = 0. This last

equality is true if and only iffi1···ir = 0 for all 1 ≤ i1 < · · · < ir ≤ h. Thus we have again
that ker(δrG) = {0} andHr(Gh) = 0 for 0< r < h.

Finally, for r = h, δhG(ω) = 0 for allω ∈ Ghh . Thus ker(δhG) = Ghh . Since

Im(δh−1
G ) =

{
(f1 · ∂y1 − f2 · ∂y2 + · · · + (−1)h−1fh · ∂yh) • 1

y1 · · · yh dy1 · · · dyh
}
,

we obtainHh(Gh) = C · 1

y1 · · · yh dy1 · · · dyh . �

LEMMA 3.2. The complexHh has cohomology

H ∗(Hh) =
{

C in dimension0 ,
0 elsewhere.

PROOF. This is a consequence of the fact thatHh is a subcomplex of the De Rham

complexΩDR(Cn−h) on Cn−h. �

PROPOSITION 3.3. There exists the following relation between the complexesLh, Gh
andHh:

Lh = Gh ⊗C Hh .

PROOF. We will prove, cf. [4], that:
(1) Lsh = ⊕

r+t=s Grh ⊗C Ht
h (= (Gh ⊗C Hh)

s ), and

(2) δsL = δsG⊗H : (Gh ⊗C Hh)
s → (Gh ⊗C Hh)

s+1.

To prove (1), note that every monomial offi1···is (yh+1, . . . , yn, ∂y1, . . . , ∂yh) •
1

y1 · · · yh dyi1 · · · dyis ∈ Lsh: cj1···jny
jh+1
h+1 · · · yjnn ∂j1y1 · · · ∂jhyh • 1

y1 · · · yh dyi1· · · dyir dyir+1 · · ·

dyis , cj1···jn ∈ C, can be written as

(
∂
j1
y1 · · · ∂jhyh • 1

y1 · · · yh dyi1 · · · dyir
)

⊗C

(cj1···jny
jh+1
h+1 · · · yjnn dyir+1 · · · dyis ), where the first factor belong toGrh and the second toHs−r

h .

SoLsh ⊆ ⊕
r+t=s Grh ⊗C Ht

h. The second inclusion is obvious.
In order to show (2), we will show that ifs = r + t for some 0 ≤ r ≤ h then

δsG⊗H|Gr⊗Ht = δsL|Gr⊗Ht . It follows from the respective definition ofδG⊗H , δL , δG
andδH. �

COROLLARY 3.4. The complexLh = Lh({y1, . . . , yh}) has cohomology

H ∗(Lh({y1, . . . , yh})) =
C · 1

y1 · · · yh dy1 · · · dyh in dimensionh,

0 elsewhere.
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PROOF. Thanks to Proposition 3.3 and the algebraic Künneth formula for the coho-
mology of a tensor product of two complexes, we have thatHs(Lh) = ⊕

r+t=s H r(Gh) ⊗C

Ht(Hh). Hence, the result follows from Lemmas 3.1 and 3.2. �

DEFINITION 3.5. For each subspaceX in Lh, define the following complex:

Lh(X) =
⊕

{αj1 ,...,αjh }∈Bnbc
X∗

Lh({αj1, . . . , αjh})

whereLh({αj1, . . . , αjh }) is the same complexL∗
h defined in(3.1) but for the set of generators

{αj1, . . . , αjh } of X∗. Associated to theDn-modulePh ∼= ⊕
X∈Lh RX∗ , define the complex

L(Ph) =
⊕
X∈Lh

Lh(X) .

Finally define the complexL(P) = L(P(A)) = ⊕r
h=0 L(Ph) associated to theDn-module

P , cf. Definition 2.22.

Notice thatL(P) is the algebraic De Rham complex ofYA.

THEOREM 3.6. For 1 ≤ h ≤ r, there exists an isomorphism betweenHh
DR(YA) and

Hh(L(Ph)):
Hh
DR(YA) ∼= Hh(L(Ph)) =

⊕
X∈Lh

⊕
{αj1 ,...,αjh }∈Bnbc

X∗

C · 1

αj1 · · ·αjh
dαj1 ∧ · · · ∧ dαjh .

PROOF. Fix a subspaceX ∈ Lh(A). By Corollary 3.4, the associated complexLh(X)
has cohomology non-null only in dimensionh. It is

Hh(Lh(X)) =
⊕

{αj1 ,...,αjh }∈Bnbc
X∗

C · 1

αj1 · · ·αjh
dαj1 ∧ · · · ∧ dαjh .

Therefore, the complexL(Ph) = ⊕
X∈Lh Lh(X) has nonzero cohomology only in dimension

h. SinceYA is a smooth affine variety it follows, by [6, Theorem 1], thatHh
DR(YA)

∼=
Hh(L(Ph)). �

COROLLARY 3.7. Letbh(YA) be the Betti numbers ofYA, 1 ≤ h ≤ r. Then we have

bh(YA) =
∑
X∈Lh

a(X∗) .

PROOF. It is a consequence of Theorem 3.6 that

rankHh
DR(YA) = rankHh(L(Ph)) =

∑
X∈Lh

|Bnbc
X∗ | =

∑
X∈Lh

|Unbc
X∗ | =

∑
X∈Lh

a(X∗) ,

where the last equality holds by Definition 2.22. �
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4. The Poincaré series of P(A)

In this last section we compute the Poincaré series of theDn-moduleP(A).

DEFINITION 4.1. IfM = ⊕
i≥0

Mi is a graded vector space with dimMi < +∞ for all

i ≥ 0, we define the Poincaré series ofM by

Poin(M, t) =
∞∑
i=0

(dimMi)t
i .

From Definition 2.13 and Lemma 2.16 and 2.14, we have the following Lemma.

LEMMA 4.2. LetA be an arrangement of hyperplanes. Define the finite dimensional
gradedC-vector space

V (A) =
r⊕
h=0

⊕
X∈Lh

VX∗ .

Then the set

{1} ∪
r⋃
h=1

⋃
X∈Lh

Unbc
X∗

is a basis ofV (A).

We must express the dimension ofVX∗ (= |Unbc
X∗ |) by using the Möbius function in one vari-

ableµ(X) defined in [9]. Recall that the Poincaré polynomial ofA is combinatorially defined

by usingµ: Poin(A, t) = ∑
X∈L

(−1)r(X)µ(X)tr(X).

THEOREM 4.3. (see[7], [5]) For X ∈ L, we havedimVX∗ = (−1)r(X)µ(X), and the
Poincaré series Poin(V (A), t) of the spaceV (A) is equal to Poin(A, t).

By Theorem 2.19, the dimension of the gradedDn-moduleP(A) is infinite. Then its
Poincaré series is a formal power series. The following theorem gives a combinatorial formula
for it.

THEOREM 4.4. The Poincaré series Poin(P (A), t) of the gradedDn-moduleP(A) is
equal to(1 − t)−nPoin(A, t).

PROOF. According to Theorem 2.19, we have

Poin(P (A), t) =
∑
X∈L

Poin(RX∗, t) =
∑
X∈L

Poin(MX∗, t)Poin(VX∗ , t) .

Since theC-algebraMX∗ is isomorphic to the polynomial algebra withn variables, we have

Poin(MX∗, t) = (1− t)−n. Moreover, by the definition ofPoin(VX∗, t) = dimVX∗ tr(X) and
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by Theorem 4.3, we havePoin(VX∗, t) = (−1)r(X)µ(X)tr(X). Thus

Poin(P (A), t) =
∑
X∈L

(1 − t)−n(−1)r(X)µ(X)tr(X)

= (1 − t)−nPoin(A, t) .

�

By Theorem 2.20, we have the following Corollary.

COROLLARY 4.5. The Poincaré seriesPoin(P(A), t) of P(A) is equal to
Poin(P (A), t).
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