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Abstract. Let A be a central arrangement of hyperplane€ndefined by the homogeneous polynomigy|.
Let D, be the Weyl algebra of rank over C and letP = Clxq, ..., xp, d;ll] be the algebra of rational functions
on the varietyY 4 = C" \ Uye4 H. Studying the structure af as aD,-module we obtain a sequence of new
D,-modules. These modules allow us to define usefuhmexes that determine the De Rham cohomology of
Y4 =C"\Upecu H. Finally we compute the Poincare seriesrof

1. Introduction

Let A = {Hy, ..., Hi} be a finite central arrangement of hyperplane€'ini.e., every
hyperplane contains the origin. For edéhe A, fix a linear forma g whose kernel ig1. The
arrangement is also defined by the homogeneous polynondigl= [ ] 4 an-

LetD, = C(x1,...,x,,0/9x1,...,0/0x,) be the Weyl algebra of rankoverC and let
P =P(A) =C[x1,...,xp, d;ll] be the algebra of rational functions 8n = C"\|Jy 4 H-

In the present work we construct a sequenc®gpfsubmodules oP and direct sum decom-
positions of the associated quotient modules. Furthermore, using this decomposition, we
compute the cohomology ringf*(Y 4) (Section 3), and the Poincaré seriesPf{Section

4). All D,-modules mentioned here are |é#;-modules. Denote the poset of intersections

of elements ofd by L = L(A) ordered by reversed inclusion, and with a rank function
defined byr(X) = codimX, X € L. Letr = r(A) = r((\yc4 H) be the rank of the max-

imal element ofL(A4), namely, the cardinality of a maximal linearly independent subset of
A* = {ay | H € A}. Then each element df can be written as a finite sum of quotients of

the form f/ ]—[’}Zla:j, where 0< h < r, {aj....,a;} is alinearly independent subset of
A m; €N, f € CIX] = Clx1, ..., x,] and]‘[?zla?j-" := 1. This allows us to obtain the
following sequence of holonomid,,-submodules of? : 0 = P_y C C[Xx] = Pp C P1 C
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-+ C P, = P, where

fml...mt

Ph:{ZW Oftfl’l, fmlmmt GC[X], ml,...,mteN}.

10y
i1 ir

ForeachX € L, = Ly (A) = {X € L(A) | r(X) = h} consider its dual subspade’ of
(CH* of dimensiom:. Let Bx+ be the set of all possible bases)tf constituted with elements
of A*. For eachX* and basiB = {«;,, ..., o} € Bx+, we define the following holonomic
D, -submodule ofP, / P,_1

f'ml-'nmh

V)?* = {Z (ﬁ modPh_1> ‘ fiT{i’;;mh e C[x], my,...,my € N} .
i1 ip

We show in Proposition 2.9 that for each baBis= By+ the D,,-modulesvf* are isomor-

phic, and after a linear change of coordinategGf)* such thatX* = (y1,..., yu), V)f* is
isomorphic, as &,-module, toMx+ = Clyn+1, ..., Y, dy;, - - -, Oy, ] whereayj = 0/0y;j.

Now let V{(“,Pd be theC-subspace of;,/ P,_1 generated by all1/[[,.z @], B € Bx+, then
the holonomicD,-module Py, / P,_1 has the following decomposition:

Py/Pp_1 = @ Z V)?* = @ Mx+ Q@c V}r(TLOd.

XeLp BeByx XeLy

It is possible to determine a basis Bf'° applying the notion of “no broken circuit”
nbc (cf. [7]) toBx+. Let Vx+ be theC-vector space generated by the set of rational forms
{1/[lyep @ | B € Bx+}, thenthe setl/ [[,.p o | B € Bx+ andB is a nbg is a basis oWy,
cf. Lemma 2.14, and we have:

THEOREM 2.19. Forl < h < r, we haveP, = EB?:O @XGL,-(A)MX* ®c Vx=. In
particular, sinceP = P,, we haveP = Py 1) Mx+ ®c Vx+.

THEOREM 2.20. For 0 < h < r, the natural mapy : Py, Mx+ ®c Vx —

Py / P,—1 is an isomorphism ob,,-modules.

This allows us to decompose the De Rham compleXfpas a direct sum of complexes
with cohomology just in one degree and 1-dimensional. Define the following cochain complex
(L5 87):

1
Ly = Ly({y1. ... D) = { Do fipi o ———dyiy dy,»s}
1<iy<--<is<n yl o yh
with (SEZ : L — L the usual differential, andt, ..., € Clyn+1, ..., Yu» yy, ..., dy,]. Thus,

cf. Corollary 3.4, the cohomology grougs*(L;;) areC -

dy1---dyy in dimension
Y1V
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h and 0 elsewhere. Now for eaghe Lj(A) we associate the following complex

Lxy= P Lilep.....a)

@y ) =X
(j1.---+Jp) Nbc

where L, ({a;,, ..., aj,}) is the same compleX; but it is just defined fofe;,, ..., aj,}.
Finally, associated to thB,,-moduleP, = P,/ Py_1, the complexC(Py) = @XGLh Lp(X)
allows us to calculate thie-th cohomology of 4.

THEOREM 3.6. For 1 < h < r, there exists an isomorphism betweﬁﬁR(YA) and
H"(L(Pn)):

Hy V) ZH'CP) =@ @  C ————daj - Aday,.

Aj, - o
. V= J1i Jh
XeLy (ajymaj, )=X*

Finally, we compute the Poincaré seriesrRifA) as a function of the Poincaré polyno-
mial of A:

THEOREM 4.4. The Poincaré series Poi® (A), 1) of the gradedD,,-moduleP (A) is
equal to(1 — )" Poin(A, 7).

Throughout the paper we follow notation,foiétions and results of [8], [9] on arrange-
ments, and of [1], [3] for the Weyl algebra and its left modules.

2. The D,-moduleC[x, d ]

This section is dedicated to the algebraic properties of thélgfinoduleP = P(A) =
CIx, d;‘l]. The main results are Theorem 2.19 and Theorem 2.20.

Due to [3, 3.2 Theorem (p. 92)], th®,-moduleP (A) is holonomic.

Recall that the rank = r(A) of A is the cardinality of a maximal linearly independent
subset of4*. The following Lemma is straightforward and allows us to write in a very
convenient way every element #f

LEMMA 2.1. Itis possible to write every element ihas a finite sum of quotients of
the form f/ H?:l a:j, whereO < h < r, {a;....,a;} is alinearly independent subset of

At my, .. omy €N, f eClxland[[)_; ¢ = 1.
This Lemma inspires the following definition.

DEFINITION 2.2. Forh =0,1,...,r, define theD,-submodule of by

f_ml-:~n1,
Py = {Z% ‘05 t<h, 1" € CIXl, ma,...,my € N},
Hj:l“i_,

where{a;,, ..., «;, } varies over all the linearly independent subsetgldbf cardinality:.
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Hence, by Lemma 2.1, we have the following finite ascending chaib,e§ubmodules
of P:

0=P1CCX]=PpCPLCP,C---CP.=P. (2.1)

Note that every modul®, and every quotienP;,/ P,_1 is holonomic sinceP is, cf. [3, p.
86].

Our next aim is to get a decomposition®f/ P,_1 as a direct sum of isotropy component
D,-modules associated to eakhe Lj(A), cf. Proposition 2.10.

For eachX € L(A), consider the dual subspaké of (C")* of dimension-(X).

DEFINITION 2.3. ForeachX in L,(A), 1< h <r, let Bx+ be the set of all possible
bases ofX* constituted with elements od*, and for each basiB = {«;,, ..., «;,} in Bx=
define the holonomi®,,-submodule ofP, / P, 1

L
V;?* = {Z (ﬁ mod Ph1> ‘ iT}:i;nh e C[x], my,...,my € N} .
1 th

From the definition it follows thav’ £, is an irreducibleD,-module. Then it is cyclic
(this is also a consequence of its holonomicity). A generatok/@r, as aD,-module, is the
class of ¥ [],cp @, cf. Proposition 2.5.

Let X € L, and letB = {wo;,,...,;,} be a basis foX*. Then there exists a ba-
SIS{y1 1= Qigs oo Yh 1= Qiysevy Yr = iy, Yrtls - .., Ya) OF (CH*, where{ys, ..., yr}
is a maximal linearly independent subset.4f. The elemen{l/y1---y,] in V){({}"“’yh}
is annihilated by the linear operatoss, ..., yi, dy,,,. ..., dy,, i.e. by the leftD,-ideal
Ig = Dy(y1, .., Y, Oy, q» - - -» Oy,). Actually it is very easy to see that:

LEMMA 2.4. With the previous definitions we have

Annp, ([1/y1---ynl) = Ip.
The ideall plays an important role in what follows.

PROPOSITION 2.5. LetMp be theD,-moduleD,,/Ig. Then we have the isomorphism
of D,-modules

V}{(y*l ,,,,, M= M =D, e[1/y1--- yal. (2.2)

PrROOF. The first isomorphism follows from Lemma 2.4 and [3, p. 36]. The second
isomorphism follows from the exact sequence>0lg — D, — D, e[1/y1---yy] — 0.0

COROLLARY 2.6. Consider two different elemenis;, Xo> in L,, 1 < h < r. Then

fo N V)ff = {[0]} for eachBy in By: and for eachB; in Bys.

PROPOSITION 2.7. There exists an isomorphism bf,-modules betweei z and the
ring of polynomialC[ys41, . .., Y, 0y, - - ., 0y, 1. This last one is an irreducibjéolonomic
D,-module and its characteristic variety is the conormal space defined by the system of
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equationst] = --- =&, = &pqpy1 = --- = &2y = O,wherefori = 1,...,h & = o1(yi),
andfori =1,...,n —h, & 1p1; = 01(9y,,;) (o1 is the symbol map of order, tf. [3, p.
57)).
PROOF. Let7 be the automorphism dp, defined by
T (yi) =0y, , T(dy;,)=—Yi for 1<i<h
TOi)=yi, T (3y,) = 9y, for h+1<i<n.
Recall thaCly1, ..., y.] = D,/J, whereJ = "7 D, - 9,,, then it is easy to see that

h n
T =) Du-yi+ ) Du-dy =1Is.
1 h+1

and, by [3, p. 38], we get

Mp = Dn/T_l(J) =Clyt,....mlT = C[Yh-i-l’ <5 Vns ayl, cee ayh] .

Thus, by [3, p. 38, p. 86]C[yr+1, - Yns 0y;s ..., Dy, ] iS @n irreducible, holonomi®,,-
module isomorphic td/p.

Let B be the Bernstein filtration ab,,, cf. [1], [3]. Recall that the graded algebr&dp,,
is isomorphic to the polynomial ring inn2variablesC[¢] = C[&1, ..., &2,], cf. [3, p. 58].
Let I be a good filtration €[y, 41, ..., ¥u, dy;, . . ., 9y, 1 With respect ta3, for example, the
induced one by3. The exact sequence® Ig — D, — Mp — 0in turns implies the
following exact sequence @f&]-modules

0— gl I — g®D, — g Mz — 0,
Cl¢]

———— and
grlIp

wherel™ is the filtration induced by3 on I3. Then gf Mp =

ANNCLYR41, - -+ s Yns Dygs - - - Dy, 1y T') = ANNge (@ CLYR41, -« - s Yns Dy - - -5 Dy, )
=Annc[g](ngMB) = ng/IB
=CIE11, -+ &y Snthrs - - 620)
Thus, by definition (cf. [1], [3]), the characteristic variety@fy; 41, ..., yn, 3y, ..., Iy, 1 1S
the zero set of the ide®I[£](&1, . . ., &, Enthtt, - - s E2n). O
By the isomorphism (2.2) and Proposition 2.7, we have the following Corollary.

COROLLARY 2.8. There exists an isomorphism of irreducilibg-modules
VL = Clypia, o Yus Oy By ] (2.3)

ProPOSITION 2.9. ForeachX in Ly, 1< h < r,and each basi® in By

(1) The vector spaceﬁf* are isomorphic to each other d3,-modules.

(2) Theideallx+ := Ip is independent oB.

(3) The canonical holonomi®,-moduleMy+ := D, /Ix+ is isomorphic toV J..



434 FRANCISCO JAMES LEON TRUJILLO

PrROOF. Fix a basisB = {uj,,...,q;,} of X*. There exists a basi¢y; :=
Qigs vy Yh 1= Qiyy vy Yr 1= O, Yrogd, - .-, Yn} OF (C)*, where{yy, ..., y-} is a maxi-
mal linearly independent subset.df. Every other basi®’ = {«},, ..., «,} of X* satisfies
B' C Sparyy, ..., yp} and{y] 1= oy, ..., ¥y = Qs Vyyq i= Yhls - o Yy 2= Ya) IS @

basis of(C")*. Associated to the basé#sand B’ we have the change of bases matrix

D 0
B _
ct=(5,°%)

whereD € GL,(C) andl is the unit matrix of ranl, such that the corresponding bases of
(C"* change linearly by means of

"o Ype Vit oo 90 = Ch 'YLy oy Vb Yhe Lo - -2 V) » (2.4)
and the partial derivatives by
[@ygoeees By By ey ) = (FCED) T @Bygs s By Dypygs o By,) - (2.5)
Then we obtairC[ay/l, e 8y1/1, y,/1+l, coosyn] = Cldy,, ..., dy,, Y1, - .., yal @and (1) fol-
lows by Corollary 2.8. Moreover, (2) follows from (2.4) and (2.5); and (3) follows from (2)
and Proposition 2.5. ]

PROPOSITION 2.10. For1 < h < r, the quotient of two consecutivg,-modules of
sequencé2.1) has the following decomposition

Py/Pp_1 = @ Z V)?* = @ ( @ V)?*) (2.6)

XeLy BeByx XeLy BEEX*

wheregx* is a convenient subset Bfy+, that is a subset of3x+ such thatZBeBx* V}f* =
~ B
@BEBX* VX*'

PROOF. By Propositions 2.5 and 2.9(1), there exists a suBsetof Bx+ such that the
vector space_ ., V. associated t is equal todp BeBys VE.. Thus the last equality
in (2.6) holds. For two different elemeni;, X» in Ly, it follows by Corollary 2.6 that
ZBeBxi V)ff A ZBeBxi V;f; = {[01}. Theny ey, Ypen,. Vi~ € Pu/Pa-1. Actually, by

Lemma 2.1P/Ph-1 = Dxer, X peBy. Vi .

PrROPOSITION 2.11. LetX inL,, 1 < h < r, and IetV{(‘lOd be theC-subspace of
Py/Py—1 annihilated byx+. Thenv°dis generated by

upei— |

o mod Pj,_1 ‘ B e Bx*}.
aeB

PROOF. By Proposition 2.9(2), Anp, ([1/ [ [,cp «]) = Ix+ if and only if B is a basis
of X*. Then the spacef{(“,?d maps into a unigue component in the decompositioA,gfP, —1
asin (2.6) and is generated bf'°. o
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ProPOSITION 2.12. With the above notation we have

Pi/Pi1= P Mx+ @c ved, (2.7)
XeLy
PrRooF This follows from Propositions 2.10, 2.9(3) and 2.11. O

Our next aim is to choose a basis fﬁﬂ"". This is possible using the notion of “no
broken circuit” (nbc) for the seBx+, consequently fab/T°d.

Fix a total order ond* by A* = {a1, a2, ..., or}. A subset ofA* is a circuit if it is a
minimally dependent set. Ao broken circuitinbc) subseis a subset of elements containing
no circuit with its smallest element deleted.

Throughout the rest of the paper we identify each orderedoggt. . ., o, } with its s-
tuple(ly, ..., ).

DEFINITION 2.13. ForevenX in L;(A), 1< h <r, define theD,,-module

Rx+ = Mx= ®c Vx+

whereVy- is theC-vector space generated by« = {1/ [[,cp@ | B € Bx+}.
ForC"in Lo(A), defineV(cry» = CandRcry+ = Clxq, ..., x,].

LEMMA 2.14. For X € L;,(A), define

BYC = {{aj,...,aj} € Bx+ | (ji,..., jn) isanbg.

The corresponding sétf>® = {1/ [T,cp @ | B € BYS is a basis ofys.

PrROOF. The seru;gE:C generated/x+: For each basi¢w;,, ..., «;,} of X*, there exist
two possibilities: If(i1, ..., iy) is a nbc, then——— € Z/l;’}*ic. Otherwise, there exists

all .. alh
anm-subtuple(j1, ..., jm) of (i1,...,in), 1 < m < h, such that(j1, ..., j,) is a broken
circuit. Thus there exists ¥ [ < i3, such thatl, ji, ..., j,) IS a circuit. Equivalently we
have the following relationia j, + - - - +anaj, = oy, forsomeay, ..., a, € C. Thisimplies
that
m a 1

— = : (2.8)
=1 alajl.”aju ”'ajm a]la./

u

Note that, for each ¥ u < m, the sefey, «jy, ..., a@j,, ..., «j,}is linearly independent and
B, = ({aiy, ..., 0} \ {ej, D) U {oy} is another basis of*. From (2.8) we get
ai am 1

alail...ajl...aih alail...ajm...aih ail...aih

. . 1 . . .
If each basisB, is a nbc, then———— is in (L{,QEC). Otherwise, there exists at least one
all ... alh

h-tuple(l1, ..., 1) thatis not a nbc. Then for each su@h, . . ., [;) we can repeat the initial
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process, as witldi1, .. ., iy). This procedure ends after a finite number of steps because the
- e . . 1 nbc
cardinality ofi/x+ is finite. Finally we obtain———— € (U/y3").
ail PR aih
The set/"%¢is C-linearly independent: Suppose that

Ciq.ii
2 1th — 0
all DY aih
(il,.-.,ih)65§3°

with ¢;;..;, € C. Letlx be the smallest among all the first entries of Akiiples int‘ﬁC. Thus
we can divide the last sum as

1 Z Clyigin_ 4 Z Civvin__ _
Oll Oli . al al ... al

X (Uxsigs.sin) BT 2 " (1) €BTRC ! "

i1#ly
Tx
ClXiZ"'ih Clxigmih CLs
or : : nbe ————— + oy, - Tx = 0. So ; ; nbe ————— = 0 within
Z(lx,zz,...,u.)el%x* iy -0ty X Z(lx,zz,...,zh)eBx* iy 0,

ker(ouy ). Note that{a,, . . ., «;, } is linearly independent modulg, , and(iz, . . ., iy) € B;}E’C
for some subspacE* = («;,, ..., q;,) of X* obtained after removing;, from every basis
{ory, iy, - .., i, } in BRC, Thus we have

Z Clyip-in 0

Uiy =+ - iy,
(Ux.ig....in) EBYC

By induction on dink*, we shall provecyy,..., = 0 for all (Ix,i2,...,iz) in B;‘(EC and
Tx = 0. Infact, letZx« = {Y* C X* | Y* = (&, ..., ) if (Ux, iz, ...,in) € B and
fix oneY* in Zx+. Then we may divide the last sum to get

Z Clxlyiz--iy, + oo < Z Clyio---ip, i Z Cly jo-jn ) -0
_— y _— — | = 0U.
iy Ay (Y . .

(0779 (0779 (07 Ajyr oo
(ly .i3,....ip)eBME s (i9ip) B 2 th @yt )=2% 2 Th
in#ly Z*EZX*\(Y*]
Ty
Clylyigi - . . . .
ThenY ;. ;. i hegnbe ——2—% = 0 within kerle,). By induction on dink*, since
(Iy,i3,....in)eByx iy + Y

dimy* < dimX*, ¢;yyiz.i, = O for all (Iy,iz,...,i) in BQE’C, and7y = 0. But this is
true for everyY* in Zx«. Thus,ciyi,...i, = 0 forall (Ix, iz, ..., i) In B;}BC. This implies that
Tx = 0. Thusw;, appears in every basis B2 andi/2Cis linearly independent. O

COROLLARY 2.15. LetX € Lj,1 < h <r, and letlx be the smallest among all the
first entries ofi-tuples(iy, . . ., iy) such thaf{w;,, ..., @, } € Bx+. ThenB € B;}bf if and only
if 7, € B.
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LEMMA 2.16. LetX,Y betwoelementsin,, 1 <h <r. ThenX # Y if and only if
Vx+ N Vyx = {0}.

PROOF. AssumeX* # Y*. Suppose that there exists a non-zero elemémt/x« N\ Vy+.
Since[v] = v mod P,_1 belongs taMx+ @ VI°9N My« @ V{1°d = {[0]}, thenv belongs to
P,_1. Thisis a contradiction. O

The next two lemmas enable us to write thg-moduleP as a direct sum of th® x«.

LEMMA 2.17. Fix I = (i1,...,ip) andJ = (j1,..., js) such thath + s = n and

consider a polynomiaf in Cly;,, ..., yi,. Ay s - Oy . Then
1
(@) If fissuchthatf e —— =0,thenf =0.
1
(b) If f- ayjl e ———— =0forsomel </ <s,thenf =0.
Yin Vi
More generallyif the subsefay, . .., oy} of Spary;,, ..., y; } is linearly independent

1 1
then(a) and(b) hold with——— instead of———
al...as y]ly]s

PROOF We start to show (a) by induction anlf f € Clys, ..., yv,] (s = 0), thenitis
clear thatf = 0. Now lets > 0. If there is no 1< u < s such that deg/ f =m > 0, then

itis also clear thayf = 0, otherwisef can be written as
Qud)! 4+ Qm-18y "+ -+ Q1dy;, + Qo

where Q. ..., Q0 € Clyiy.....Yiy:yj oo Dy, ondy, 1 and @ # 0. Thus f e

1 . .
= 0 is equivalent to

yjl e y]\
(=1)"m! (=)™ Lm — 1) 1 1
( it Ym T o On-1+-+—0Q0)e —— =0
jll yju ju jl o y]u e yj:
or
m m—1 m 1
(=D"m!Qm + (D" (m — D!y, Om-1+---+yj Qo) ¢ —————— =0.
yjl...yju ...yjs
- 1 . . ~
Denote by f the operator that acts or————— in the last equation. Note that

Yie- Y Vs
belongs toCLyi;. - . Yiy» ¥ju» dyj,+ -+ Dy, - -» Dy, 1. By induction ons we havef = 0.
ThenQ,, =0andf = 0.

In order to prove (b), note that - dy;, = dy;, - f- Again, by induction on, if s = 0 then
f =0. Fors > 0, if there is no 1< u < s such that degju f =m > 0, then itis also clear
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that f - dy;, ® -=0 implies f = 0, otherwisef - dy,, can be written as

yjl o yjs
(Qmdy )3, + (Qm-18y, DO+ + (010, + (Qody)

where Q. ... Q0 € Clyiy. ... Yiys dyj oo Dy n dy 1 ANdQp # 0. I 1 # u then
againQ’, = Qpdy;, € Clig, -+, Vi, dy;s v dyjs--, 3y 1for p=0,1,....m, and the

. 1 . .
result follows from (a). Otherwis¢ - Oy, ¢ ————— = 0 is equivalent to
Yin o Vis
1
(=" m + D!1Qm + (=)"mly;, Om-1+ -+ — ¥ Qo) ¢ ———=——— =0

yjl...yju ...yjs
and again the result follows from (a) and inductionson
The general case follows by induction eand from relations (2.4) and (2.5). O

LEMMA 2.18. LetXin Ly, 1<h <r. The natural map oD, -modulespx : Rx+ =
Myx+ ®c Vx+» — P, m ® v — m e v, iS injective.

PROOF. Let{yi,..., y,} be abasis ofC")* such thatX* = (y1, ..., y»). By Lemma
2.14, Rx+ can be written a€lyj1, - - -, yu, dyy, - - - » Oy, ] B¢ (URY) = D pepue Mx- ®c
(1/T1,ep@)- Then the mappy is injective if and only if for eachB e BIC the map
¢85 : Mx» ®c (1/[[,ep) — P is injective, i.e., ifQ o (1/[[,cp@) = 0, whereQ ¢
ClYh+1, -+ Yns Oyy, ..., 0y, ] @ndB € B;}BC, thenQ = 0. This follows from Lemma 2.170

THEOREM 2.19. For1l < h <r,we have

h
th@ @ Ry~ .

j=0 XEL_,‘(.A)
In particular, sinceP = P, we haveP = Py 4, Rx+ -
PrROOF. This is an immediate consequence of Lemma 2.18 and the definitiBn dafl

REMARK. M. Brion and M. Vergne [2], and H. Terao [10], have studied the action of
C[a] on P. Horiuchi and Terao [5] have also studied the naturally double filtratioR bfy
the degrees of the denominators and numerators.

THEOREM 2.20. For 0 < h < r, the natural map induced bypy,
v EBXeL,, Rx+ — Py/Py_1, m ® v — [m e v], is an isomorphism ob, -modules.

PrROOF. It follows from Proposition 2.12 that th®,-morphismv; is surjective. In
order to see that is injective, it is sufficient to show thaky : Rx+ — P,/ Py_1 IS injective
for eachX e L,. Recall thatdy = {H € A| H C X}. Letdy, = HaeA§°‘ be the
homogeneous polynomial that defines the subarrangeptgnt Define theD,,-submodule
PX of P by C[x, d;&]. By Lemma 2.1,PX admits a finite ascending chain similar to one of



D-MODULES AND ARRANGEMENTS OF HYPERPLANES 439

(2.1) to P. Then, the mapyy is injective if and only if the mapy : Rx — PX/PX | is
injective, i.e.,Vx-NPX | = {0}. Suppose that there exists a non-zero elemen¥’y-N P ;.
Let{y1,..., y,} be a basis ofC")* such thatX* = (y1, ..., y;), thenv can be written as

_ ajl...js
=2 Haega ot el

BeBY® il Js

where the first sum belongs tdy«, the second taP* ;, cy € C,0 < s < h — 1,

aj...j; € Cly1, ..., vl oy, ..., o } is alinearly independent subset of Span . . ., ys} N

Ay andmy,...,my; € N. |Itis clear that > (cg/[[yep®) mod P,_1 # [0] and
BEB;‘(ZC

Z(ajl...js/a;ql . «a:.'zs) mod P,_1 = [0]. This is a contradiction. O

COROLLARY 2.21. If X € Ly, 1 < h < r, then the set of cosets
{1/ [yep@ Mod Py_1 | B € B is aC-basis ofv{i>d.

DEFINITION 2.22. LetA be an arrangement i@" of rankr. Define the holonomic
D,-moduleP = P(A) = ),_Px, associated to the arrangemetitand isomorphic to

P(A), as follows: letPg = Py = C[x1, ..., x,],andforl< h <r
Ph = Ph/thl = @ Ryx+ = @ M x+« ®C uan @ Ma(X )
XeLy XeLy XeLy

wherea(X*) :=dimVy- is equal tolt/5>¢, the multiplicity of M.

3. Complexesand cohomology of Y 4

We begin by defining some useful cochain comple&gs G, and?;. The first complex
Ly, cf. (3.1), is associated to every basise By+, X € L;, and then we get a complex
L(Pn) = Dxer, EBBGBEECC;[(B) associated t@,. The cohomology of2(P;) is the h-th
De Rham cohomology of 4, cf. Theorem 3.6 (see also [9], Theorem 3.26, Theorem 3.43
and Theorem 5.90).

Fix i, 0 < h < n, we define the following cochairomplexes (3.1), (3.2) and (3.3).

The complex of rational differential forms dfy:

0 1 n—1 n

5 8 8 5
Cr=Liyt, ooy 0— L0 5 0f 5 02— .. ot e 50
(3.1)
where
1

£0=C[yh Lyevees VnsOypgyenny Oy, ] ® ,
h + ns Oy1 M

1
dy,-l/\uo/\dyis}, s=1,....n,
Yh

Ly = { > Sigis ®

1<iy<--<is<n



440 FRANCISCO JAMES LEON TRUJILLO

Sigiy € ClYn+1, .-+, Yns 0yq, - .., 3y, ], @and the differentiad; : £, — L, is the usual differ-
ential.
A subcomplex ofC:

80 81 81171 5h
Gi:0—gl Sgl 5g - ... gt igh 5o (3.2)
where
G%=C[o 1 !
= s -5 0y, @ s
h 1 Y/ V1 Y
QZ={ > Jiy-i, ® dyiM“‘Adyir}, r=1...,h,
1<ii<--<ir<h o Yh

fiyir € Cl0y,, ..., 0y,], and the differentiadg : G, — Gy, is the usual differential.
Finally, the De Rham subcomplex @~

50 51 Snfhfl n—h
Hi: 0— HY B HE BHZ2 — . T oy 0 (3.3)

where
HI(’)l == C[yh+17 MR ] yn] )

HZ:: Z f,'l...,'tdy,'l/\---/\dy,'t}, t=1....,n—h,

h+1<iy<--<i;<n
firi, € Clyn+t1, - -, ynl, and the differentiady, : H, — Hy, is the usual differential.

LEmMMA 3.1. The compley, has cohomology

1 . .
C.———dyiA---Adyy, indimensiom,

H*(Gp) = Y1t Yh
0 elsewhere
_ : _ 1 0 0 _ xh
PROOF Forr = 0 : Letw = f e € G, Ifdgow = Y/ 4(f-
Y1 Yn
dy) dy; = 0, then we havedw A (dy1---dy; ---dyn) = (=1 7X(f - 3y,) o
Y1 Yh

dyi---dy, =0forall1l <i < h. Itis possibleifand only if f-9,,) e
Y1 Yn Yi--Yh

By Lemma 2.17 (b), we havg = 0. Thus, we have kes3) = {0} and HO(Gy,) = 0.

=0.

1 .
ForO<r <h:Letw = Zl<i1<~»<i <p firi, ¢ ———dy;, - - - dy;, be an element in
- = Y1+ Yh

1 i
gy If 5&“’ = Zlgll<»~<l,<l,+1§h(Z;il(_l)'l 1f11..f,-...1,+1 “0y;) e Vi dyp ---dy,, =
0, where{l, 17 ..., 1,41} is equal to somégiy, ..., i}, then, as for the case= 0, we

‘ 1
have(Z;j(—1)’711”11...17---1 ViV

H_l-ﬁyj)o =0foralll<li <--- <l <ly1 <h.
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By Lemma 2.17, this is possible if and onIyE;j(—1)1'—1]‘11,”,;__%+1 -9y, = 0. This last
equality is true if and only iff;,..;,, = Oforall1 <iy < --- < i, < h. Thus we have again
that ke(é’g) ={0}andH"(Gy) =0forO<r < h.

Finally, forr = i, §%(w) = O for allw € G;'. Thus kets) = Gy'. Since

_ _ 1
Im@sg™ = {(fl-ayl—f2~ay2+~-~+(—1>" L 9y, ” dy1--~dyh},

*Yh

1
1 Yh
LEMMA 3.2. The comple#{, has cohomology

we obtainH" (G),) = C- 5 dy1---dyp . ]

C indimensiorD,

H™(Hn) = { 0 elsewhere

PROOF. This is a consequence of the fact th&i is a subcomplex of the De Rham
complex2pr(C"~") onC' . O

PrROPOSITION 3.3. There exists the following relation between the compl&xes,
andHh:

Ly =Gn @c Hp .

PrRoOF We will prove, cf. [4], that:
1) L, =B, .-G, & H) (= (Grn ®c Hp)*), and
(2) 8% =85 (Gn ®c Hi)* — (Gn ®c Ha)* ™

To prove (1), note that every monomial Of;....;(Vhs1,-..s Yn, dyp-..50y,) @
) o . 1
dy dy: c ES: Ci m.ny/h#—l“.ylna./l...a./h ° 4dy dyrdyr
Yi---Vh 1 ! he CJrn Yh41 n Yy1 Vh Y1V i1 ir i1
. ; ; 1
dyi,, cjj, € C, can be written as<aﬁ 0y e dyi, - - -dy,»,> ®c
’ yl ... yh

(Cjyjn y:j:ll oy dyi, ,, - -dyi,), where the first factor belong t and the second t}, ™"

SoL; € P,.,—, 9, ®c Hj,. The second inclusion is obvious.

In order to show (2), we will show that f = r + ¢ for some 0< r < h then
Sgenloren = Orlgren - It follows from the respective definition diggr , 3. . dg
andsyy. O

COROLLARY 3.4. The complexX;, = L;({y1, ..., yn}) has cohomology

1

c._—
H*(Lh({y1, ..., yn})) = NARERRY)
0 elsewhere

dy1---dyy, indimensiom,
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PrROOF. Thanks to Proposition 3.3 and the algebraic Kiinneth formula for the coho-
mology of a tensor product of two complexes, we have tatl,) = P, ,,_, H (Grn) ®c
H'(H},). Hence, the result follows from Lemmas 3.1 and 3.2. O

DerINITION 3.5. Foreach subspadgin L, define the following complex:

Lixy= @ Lulejy,...q,b
{ajl,...,ajh}EBntic

X

wherel;, ({ay, ..., aj,}) is the same comple&; defined in(3.1) but for the set of generators
{aj, ..., aj,} of X*. Associated to th®,-moduleP, = Py, Rx+, define the complex

LPw = P Lix).

XeLy

Finally define the compleX(P) = L(P(A)) = é},_o L(Py) associated to th®,-module
P, cf. Definition 2.22.

Notice thatL(P) is the algebraic De Rham complex bf.
THEOREM 3.6. For 1 < h < r, there exists an isomorphism betwef , (Y 4) and

H"(L(Pp)):

Hi Y ZH'CP) =@ @  C ———dajr-nda,.

oin v O
J1 Jh
XeLy {O(,‘l ..... aj, }EB;&C

PROOF. Fix a subspac& € L;(A). By Corollary 3.4, the associated compléx(X)
has cohomology non-null only in dimensian|t is

1
J1 Jh

Therefore, the compleR(P),) = @xah Ly (X) has nonzero cohomology only in dimension
h. SinceY 4 is a smooth affine variety it follows, by [6, Theorem 1], tﬂalgR(YA) =
H"(L(Pp)). m
COROLLARY 3.7. Leth,(Y 4) be the Betti numbers of4, 1 < i < r. Then we have
ba(Ya) = Y a(X*).
XeLy
PROOF. ltis a consequence of Theorem 3.6 that
ranngR(YA) = rankH"(L(Py)) = Z IB;}ECI = Z IU)'}ECI = Z a(X®),
XeLy XeLy XeLy

where the last equality holds by Definition 2.22. |
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4, ThePoincaréseriesof P(A)

In this last section we compute the Poincaré series ofxhenodule P (A).

DEFINITION 4.1, IfM = € M; is a graded vector space with divfy < +oo for all
i>0

i > 0, we define the Poincaré seriesifby

(e.¢]
Poin(M, 1) =) _(dimM;)t".
i=0
From Definition 2.13 and Lemma 2.16 and 2.14, we have the following Lemma.

LEMMA 4.2. Let.A be an arrangement of hyperplanes. Define the finite dimensional
gradedC-vector space

V(A) =@ EB Vs .

h=0 XeLy

Then the set

wulJ Y upe

h=1XeL,
is a basis ofV (A).
We must express the dimensionof (= |Z/{§}E’°|) by using the Mébius function in one vari-

ableu (X) defined in [9]. Recall that the Poincaré polynomialdfs combinatorially defined

by usingu: Poin(A, 1) = 3 (—=1)" X u (X)X,
XelL

THEOREM 4.3. (se€[7], [5]) For X € L, we havadimVy: = (-1)"®),(X), and the
Poincaré series PoifV (A), t) of the spacé/ (A) is equal to PoilA, 7).

By Theorem 2.19, the dimension of the gradegkmodule P(A) is infinite. Then its
Poincaré series is a formal power series. THiefang theorem gives a combinatorial formula
forit.

THEOREM 4.4. The Poincaré series Poi® (A), 1) of the gradedD,,-moduleP (A) is
equal to(1 — ) "Poin(A, ).

PrROOF. According to Theorem 2.19, we have
Poin(P(A), 1) = Y Poin(Rx+t) = Y  Poin(Myx,t)Poin(Vx+,1).
XeL XeL

Since theC-algebraM x+ is isomorphic to the polynomial algebra withvariables, we have
Poin(Mx+, 1) = (1—t)~". Moreover, by the definition aPoin(Vx«, 1) = dimVy«"X) and
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by Theorem 4.3, we havRoin(Vy«, 1) = (—1)" @ u(X)" X, Thus

Poin(P(A), 1) = Z(l — )= PO (X)X
Xel

={1-1t""Poin(A,1).

By Theorem 2.20, we have the following Corollary.

COROLLARY 4.5. The Poincaré seriesPoin(P(A),t) of P(A) is equal to
Poin(P(A), 1).
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