TOKYO J. MATH.
VoL. 29, No. 2, 2006

On g-Analogues of the Barnes M ultiple
Zeta Functions

Yoshinori YAMASAKI

Kyushu University

(Communicated by H. Midorikawa)

Abstract. In this paper, we introducg-analogues of the Barnes multiple zeta functions. We show that these
functions can be extended meromorphically to the whole plane, and moreover, tend to the Barnes multiple zeta
functions wheny 1 1 for all complex numbers.

1. [Introduction

The aim of the present paper is to introdug@nalogues of the Barnes multiple zeta
function ([3]);

G,z = Y (moit-+no+27 (Re(s)>r),
ni,...,n>0
wherews, ..., o, are complex parameters which lie on some half plane. We study an analytic

continuation of they-analogue of;, (s, z; ®). We determine especiallyrue ¢-analogues of
the Barnes multiple zeta function when = 1 (1 < i < r). Here, by a trug/-analogue, we
mean when the classical limjt ¢+ 1 of theg-analogue reproduces the original zeta function
for all s € C. Recall the Hurwitz zeta function’s case, that is, the ¢asel. LetO< g < 1
and[z], := (1 —¢% /(1 —q) forz € C. In [6] (see also [5]) we studieg-analogues of the
Hurwitz zeta functiort (s, z) := Y, o(n + z)~* defined via the;-series with two complex
variabless, ¢t € C;

. ° qtor

$,t,2) = ——— (Re(®) > 0).
Lq(s,1,2) Z iy (Re0>0
n=0

The functionfq (s, 1, z) is continued meromorphically to the whalgr-plane. We obtained the
necessary and sufficient condition for the variabdeC so thatEq (s, t, z) is atrueg-analogue

of ¢(s, z). Namely, these functiorfs}”)(s, 7) = E,, (s, s —v, z) (v € N) give trueg-analogues
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of the Hurwitz zeta function among the functions of the fofrm, o(s), z) wheregp(s) is a
meromorphic function o€. The main purpose is to generalize the results in [6] to 1.
The plan of this paper is as follows. In Section2, we defirganalogues, , (s, ¢, z)

of the Barnes multiple zeta function fa;, = 1 (1 < i < r) and give the main theorem
(Theorem 2.1). In Section3, we first study an analytic continuation ofgtamalogue
{q.r(s,t,2) and then prove the main theorem. In Section4, we study-analogue
Lq.r (s, 1, 7; @) of the multiple zeta functions for general parametersUsing the binomial
theorem, we give an analytic continuation of #fp@nalogue (Proposition4.1). In the ap-

pendix, we introduce q—analoguefq (z) of the gamma functior”(z) associated to the-
analogue;:q (s, t, z) of the Hurwitz zeta function. We first observe fundamental properties of

fq (z). The rest of the appendix is devoted to stydginalogues of the limit formula of Lerch
(Proposition A.3) and the Gauss-Legendre formula (Proposition A.5).

Throughout the paper, we assume@ < 1. We put(n],! := [n]4[n — 1], - - - [1], for
n € N. Further, for non-negative integersandn, we define they-binomial coefficient[’,f]q

by

S
nl,” @ Ong Dmn’

where(a; ¢)m = ]_[;":‘01(1 —aq') form > 1 and(a; ¢)o := 1. We denote the field of
complex numbers, the ring of rational integers and the set of positive integ€'sbandN
respectively. Also, ifQ is a set,Q p stands for the set of all elementsdhwhich satisfy the
condition P.

2. Ddfinition of g-analogues and the main theorem

Lets,r € Candz ¢ —Z<o. We study a;-analogue of the Barnes multiple zeta function

gr(S,Z)Iz Z (”ll‘i‘"'—i—nr—i-z)fs

ni,...,n;>0
defined by the following;-series;

nit+np(t—1)4-+n, (t—r+1)

[i’ll+"'+7’lr +Z]qs

q

§q,r(s’ ta Z) L=
ni,...,n,>0
The seriesg, (s, t, z) converges absolutely for Re) > r — 1. Whenr = 1, we put
$q(s,t,2) 1= 8q,1(s, ¢, 2). In view of the results in [6], we pLgt,,(fﬁ(s, 2) =g r(s,8 —V,2)

andg;”)(s, 7) == ¢4(s, s — v, 2) for v € N. The following theorem is the main result of this
paper.
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THEOREM 2.1. Lett = ¢(s) be a meromorphic function on C. Then the formula

lim {q,r(sv (P(s), Z) = {r(s, Z) (S (S C)
g1l

holdsif and only if the function ¢ (s) can bewritten as¢(s) = s — v for somev € N.

REMARK 2.2. (i) By Theorem 2.1, it is clear that the functions of the
type Y, aniteds” (s, 2)¢4")(s, z) for some holomorphic functions:\" (s, z) satisfying
IMg11d", finite a,ﬁ”)(s, z) = 1 are also trug-analogues of, (s, z). Note that they-analogue

of the Hurwitz zeta function discussed in [6] is given&j;”/) (s,2) = g“q(”)(s, 7) x gt

(i) The g-analogue of the Hurwitz zeta function studied in [10] is different from ours.
Itis not of the form of the{-) Dirichlet series and, in fact, is needed an extra term (precisely,
see [6, Corollary 2.4]).

Itis easy to see thaf (s, z) is expressed as

> (n+r—1
2.1 r(s,2) = -,
(2.1) & (s, 2) ;( L1 )(n—lrz)
To obtain a similar expression fgy (s, ¢, z), we need the following lemma.
LEMMA 2.3. (i) Forl,m € Z-o,itholdsthat
I
m—1+d m+1
(2.2) Z[ _1]qd=[ }
a—ot ™ q g

(i) For r € N, it holds that

+r—1
(23) 2 : qn1+2n2+---+rn, :qn[n r i| .
n1,....np>0 r—1 q
lll:}F""Fnr_:n

PrRoOOF The formula (2.2) is well-known (see [1], also [4]). We show the formula (2.3)
by induction orv. Itis clear that (2.3) holds for = 1. Suppose it holds for — 1. Then the
left hand side of (2.3) is equal to

n n
Z q"1+("—’11) Z q/12+2n3+~»+(r—1)n, — qn Z |:7’11:‘_V2— 2j| qnl.
q

n1=0 ng,....nr=0 n1=0
np+-4nr=n—nq

Using the formula (2.2) fok = n, m = r — 1 andd = n1, we obtain the desired formulat

PROPOSITION 2.4. It holdsthat

> -1
(2-4) {q,r(sstyZ):Z[n—i_r i| 1
q

— s
=L 1 [n+zly

n(t—r+1)
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PROOF. ltis easy to see that

Gasin=Y S 1

n=0 nq,..nr=0

(4D (nat--4n,)—(1+2n2+-+rny)

(na+---+n,+215°

nq+-+nr=n
0 (t+Dn
— q S gttt
s .
n=0 [Vl+Z]q ny,..np =0
nq+-+nr=n

Substituting ~* for ¢ into (2.3) yields

—(m42npttrn) _ —n| T 1 _ pp| Pt — 1
E q =49 =49 .
r—1 g1 r—1 q

nq,..nr =0
nq+-+nr=n

Hence we obtain the formula (2.4). O

3. Proof of the main theorem

In this section, we give a proof of Theorem 2.1. We first provide analytic continuations
of ¢, (s, z) with respect ta (see [9]) and study af, (s, ¢, z) with respect ta. Since we have
the following ladder relations

(s, 2) =& (s, 2+ D+ &-1(s,2)
(3-1) {q,r(s, t,7) = qt_r+l§q,r(sa t,z+1) + {q,rfl(sy t,2),

it is sufficient to study the analytic continuation when ®e > 0. Here we understand
o(s,z) =z~ andgg o(s, 1, 2) = [zl "

3.1. An analytic continuation of ¢.(s,z). Foreach € Z-o, we put(x); := x(x +
- (x+1-21) =T(x+1D)/I(x). Then(x); can be written aéx); = lezos(l, j)x/ where
s(l, j) is the Stirling number of the first kind. Hence we have

r r—1
n+r—=1 ), 1 N ! !
< r—1 )_n(r—l)!_(r—l)!zsa’])n _ZPF(Z)(H+Z) ’
j=0 1=0
whereP!(z) (0 <1 < r — 1) is a polynomial ir; defined by
1 r—1 ]
Loy . il
@)= ; (1)5(” J+ D
Thus, we have by (2.1)
r—1
(3.2) G(s,2) =) Pl)E(s —1,2).

=0
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Recall also the Euler-Maclaurin summation formula (see, e.g., [1, p.619]x Rore Z
satisfyinga < b, aC*-function f (x) on[a, co), and an arbitrary integew > 0, we have

Zf(n) / Fdx + 2 (F @+ )

M
33 +Z @ +1),(f“‘>(b) A
1 M+1 pb
~ e | B @,

whereBy is the Bernoulli number ang (x) is the periodic Bernoulli polynomial defined by
Br(x) = Bir(x — |x]) with x| being the largest integer not exceedingPutting f (x) :=
(x +z)~*, we obtain

1 1 M By
_ —s+1 | & _—s + —s—k
’(s,2) = - 17 + 52 +k2=; T 1)!(s)kz

_%/0 By1(0)(x +2) =M 1gx .

(3.4)

Since Rgz) > 0, the equation (3.4) gives an analytic continuation of the Hurwitz zeta func-
tion ¢ (s, z) to the region Rés) > —M. Therefore, by (3.2) and (3.4), we obtain the following

ProrPosITION 3.1. ForanyintegersM; > 0(0 <! <r — 1), we have

r—1

6 (5. 2) = Z - P! (Z) LA ZP ()

=0

B 11 el
+Zﬂ02&iw“WM+w

B Z 2 PL@)s = D

o0
B' —S+l—M[—1d )
O 1) /0 M+1(0)(x +2) X

This gives an analytic continuation of ¢,(s, z) to the region Re(s) > M where M :=
max—M; +1|0<[ <r—1}. O

3.2.  Ananalytic continuation of ¢, (s, t, z). Itis easy to see that

[n+r - 1] B 1;[ q " 4 g — g
r—1 1, r—l]q j=1 1-¢g




418 YOSHINORI YAMASAKI

r—1

=5 1] H( n+2lg —q" e = jlg) = Zq"“ OR @+ 2l
- 1=0
whereP] .(z) (0 < <r —1)is a function ot defined by
! (_1);’7171 mi+-+my_1_
Py (@)= T > q [z —mily--- [z —mr_1-1]y

T ol<my<e<my_1_j<r—1

forO</<r—2andP;; l(z) = 1/[r — 1],4!. Therefore we have by (2.4)

r—1
(3.5) Cr(s.t.2) =Y Pl (s —11—1.2).
=0

For example, we have

gq,Z(S:ty Z) = {q(s - 17t_ 17 Z) _q[Z - 1]q§q(s1t7 Z)v

$q.3(5,1,2) = {¢g(s —2,t—=2,2)

1
1+¢
—(qlz = 1y + q%lz = 20)¢e(s — Lt — 1, 2)
+q3z — Uylz — 21424, 1, 2)} -

We now recall the analytic continuation gf(s, ¢, z) proved in [6]. LetN € N. Put f, (x) :=
g*' (1 — g*+%)~%, Define the polynomiab®(s) (0 < & < j) in s by the following equation:

di S
A =g" )7} = dogg) 3 ()X — g T

e=0
By the Leibniz rule, we have
k Koo .
fP@) = (ogq) g™ > i, HAL— g cf(s. ) =) (j)r"—f b (s) .
e=0 j=¢

Choosingf (x) = f;(x) andM = N in (3.3), we have

11— —q*\ """ (logg)*
Cq(svfa@—g(l_q) Zz(k+1)' k(s: < ) 1-9)F

k=1 ¢=0
(- (logg)N (1 — ¢)*
(N + 1)

(3.6) +A-9)°I 0(s t,z) +

N+1

N+1
X Z C?\]«l»]_(s? t)Iq’: (ss t7 Z) )

e=0
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where
00 ~
I (s.1,2) = /0 Bp(0)g™ (1 — g™ )7 dx.
Note thatBo(x) = 1. Recall now the Fourier expansion Bf, (x) (see, e.g., [11, p. 191]);

27+/—1nx
(3.7) Bur)=-m! > =

£ m=2.
nezvioy 2T/ =1m)™

Putu = ¢**%. Then we have

—zt

0 4q
(38) 1 O(S,I,Z)Z—@qu(t, —S+1),

q,

—27'[le}’12 q —zt

(2nv Inym logq

(39) IM.(s.1,2) =
neZ\{0

bygz0n+t,—s—e+1) m=>2),

whereé = 2r+/—1/logqg. Hereb,(«, B) is the incomplete beta function defined by the
integral

by(a, B) = /w w1 —uwftdu (0 <Rew) <1).
0

This integral converges absolutely for Re > 0. Hence the functioh,, («, 8) is holomor-
phic for Re(e) > 0 and for allg € C. Note that if Rg8) > 0, we have ling,—1 by (a, B) =
B(a, B) where Ba, B) is the beta function. Further, for any integét > 2, repeated use of
integration by parts yields

bu(a. B) = Z( 1y (’?’ R (T G

1(=B)n-1
(@)n-1

(3.10)

+ (=N~ bpl@+N —1,8—N +1).

As a function ofu, this expression gives an analytic continuatiorbpf«, 8) to the region
Re(a) > 1 — N’. Hence the functions(?,o(s, t,2) andlgfg(s, t, z) are meromorphically con-

tinued to the region R@) > 1 — N’ for any integetN’ > 2. Let M > 0 be an arbitrary large
integer. Using the expressions (3.8) and (3.9), and applying the formula (3.40)t0 7, z)
with N := M — N + 1 > 2, we see that the formula (3.6) can be written as

A, 1 1—q2>"’
(5.11) Cq(s,t,2) = 1097 by (t, s+1)+2(1_q

+ Dy(s.t,z: N, M) + D5(s.t.z: N, M) + D3(s.1,2: N, M) ,
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where
N &k —s—& k
By+1 1-g4° (logg)
DY, t,z; N, M) : = — C(s,t ,
g(8:1:2 ) ;Z(k+1)!c’<(s )<1—q 1-q)r
=1e=0
ey (VL g (5. DG+ e)i-1g? T

2 . [
DistiNeM)i= 2 D0 D G A gen+ 0y

e=0 I=1 neZ\{(0}

X(]__qZ —s—e+1-1 (|qu)N
1-¢g (1—q)t

N+1 (_1)M+l z(M—N)

i1, D6 +e)m-—ng

D3 s, t, N, M) : =
q( : gneg\:{m (2~ _1n)N+l (1_q)M7N(5n +m-nN

(|qu)N+l /oo eZn\/_lnqu(H»MN)(l _ qx+z)—5—s—M+Ndx

1-9)* Jo l—gq ’
The equation (3.11) gives an analytic continuatiorgaf, ¢, z) to the region Ré¢r) > 1 —
N’ = N — M. Note that, by the faoi’,;(s, t) = (s)r and (3.7) again, we have

N
. Bi+1 —s—k
3.12 lim D(s, 1, 2; N, M) = K,
(3.12) lim Dy (s. 1, 2 ) 321 T
M
. Bi11 —s—1
3.13 lim D2(s,t,z; N, M) = sz,
(313 lim D] 1:%1““)’()1
. Ky oo
(3.14) Iqernng(s,t,z; N, M) = —%/0 Byi1(x)(x +2) "M 1gx .

Therefore, by (3.5) and (3.11), we obtain the following

PROPOSITION 3.2. For anyintegers N; > land M; > N;+10 <1 <r—1),we
have

AL-gqr VS —2(—1) r—1-1
lg.r(s.1,2) = =0 Y P @q A=) et — L —s + 14+ 1)
=0
1 r—1 1_— qz —s+l  r—1
1 1 1 .
+5 ;’ Pq,r(z)< - ) + ;’ Pl @D s — 1,1 —1,2; Nj, M)

r—=1
+ Z Pl (2)D3(s — 1.t —1,z; Nj, M)
1=0

r—=1
+ Z Pl (@D3(s — 1.t — 1,2, N;, M) .
1=0



ON ¢g-ANALOGUES OF THE BARNES MULTIPLE ZETA FUNCTIONS 421

This gives an analytic continuation of ¢, (s, t, z) to the region Re(r) > M’ where M’ :=
max{N; — M;+1|0<]<r—1}. O

3.3. Proof of Theorem2.1. Note the following lemma.
LEmMMA 3.3. It holdsthat

; ! _ pl
I(}rTTl P, (2) = P.(2).
PrROOF. By the definition OfPé’r(z), it is sufficient to show

(- > (z—=m1)---(z—mr_1-1)

1<mi<--<mp_1_<r—1

r—=1 ,.
= Z (;>s(r, Jj+ 1)(—Z)'i_l .
k=l

Notice that the left hand side of (3.15) is equal to the coefficient/ah the polynomial
pr(x) = H;;i(x —(z = j))inx. Sincep, (x) = (x — z);/(x — 2), we have

(3.15)

r—1 r=1 r-1 ,.

P = 5 + D=2 = Z<Z (f)w i+ 1><—z)fl)x’.
j=0 1=0 N j=I
Hence the desired formula follows. O

We are ready to prove the main theorem.

PROOF OF THEOREM 2.1. We first show the sufficiency. Let= s — v forv €
N. Notice that, by (3.5), we havg,(fﬁ(s, ) = Zl’;()l Pé),(z)gq(”)(s —1,z7). Hence, by [6,
Theorem 21], Lemma 3.3 and (3.2), we have

r—1

lim ¢;0(s.2) = D P (@6 =19 =&(5.) (5 €0).
! 1=0

We next show the necessity. Suppose that,{ig, (s, f, z) exists and satisfies
limg1184.-(s, £, 2) = ¢ (s, 2) forall s € C with some meromorphic function= ¢(s). Then,
by Proposition 3.1, Proposition 3.2, Lemma 3.3, (3.12), (3.13) and (3.14), it is necessary to
hold

(1—gr P ! 1-1
Pl (g A=) T byt — 1 —s + 1+ D)
=0

l
P (2) s HA+L
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Assume Rés) < 1. Since lim;1(1 — ¢)* =Y /logq diverges, it is necessary to hold

r—1
(3.16) mz Pl (g A= q) byt =1, —s+1+1) =0.
=0

Notice that limy41b4:(t =1, —s +1+1) =Bt -, —s+I/+Dforall/ (O < <r —1).
Further, since the left hand side of (3.16) isequalto Br + 1, —s +r) = I'(t — r +
DI (—s+r)/'(t —s+ 1), we haver —s + 1 € Zo, whencer = ¢(s) = s — v for some
positive integen € N in the region Rés) < 1. Sinceyp(s) is meromorphic orC, we have
o(s) =s —vforall s € C. This proves the theorem. O

4. Remarkson g-analoguesof ¢, (s, z; ).

We introduce here g-analogue of the Barnes multiple zeta functigiis, z; w) for a
general parametes := (w1, ..., ;). Assumew; > 0(1 <i < r)and Rez) > 0. We
define ag-analogue ot; (s, z; ) by the series

Cor(50 02 @) = Z qn1w1t+n2w2(1*1)+~“+nrwr(t*r+l)
q,r\Ws by 4, [I’lla)1+"'+nr0)r+Z]qs

n,....,ny>0

We put;,,(fﬁ(s, 2 w) = L r(s,5 —v,z;w) forv € N. The serieg, (s, t, z; @) converges
absolutely for Rét) > r — 1. Itis clear thatf, (s, t,2) = ¢;,-(s,1,2; 1) wherel, =
(1,1,...,1). By the following proposition¢, (s, ¢, z; @) is continued meromorphically to
e e’

the wholes, t-plane. The proof can be obtained by the similar way to [5, Proposition 1] and
[6, Proposition 2.9].

ProPOSITION 4.1. (i) Thefunction ¢, (s, t, z; @) can be written as

@1 etz =0-q"' ). <S e 1>q’z [Ja—q@it7tt)=t,

1=0 ! j=1

This gives a meromorphic continuation of ¢, , (s, ¢, z; ®) to the whole s, -plane with simple
polesatr € j —1+Z<o+6;Z (1< j <r). Hereé; :=2nrv/—-1/(w;l0gq).
(i)  Thefunction {5,”,) (s, z; ) can bewritten as

N (s+1-1 : ;
(4.2) é.q(vr)(s’ Zw)=(1— q)s Z < >qlz 1_[(1 _ qw_/(.sfvfj+l+l))fl.

l
1=0 j=1
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This gives a meromor phic continuation of ;;,”,) (s, z; w) to thewhole plane C with simple poles

at the pointsin

JH+8&Z\0} (jeZwo 1<i<r),
Jj+éZ (l<j=<v, 1l<i=r),
v+j+86Z (1<j<r—1 j+1<i<r).

In particular, the poles of gé,”,)(s, z; w) onthereal axisaregivenby s = 1,2,...,r,r +
1,...,r+v—1.
(i) Letm € Z>g. Then we have

L (om.z ) = 1—q)™" {Z(—l)’(';’)q’z [[a—gommrmmny=
=0 j=1
(4.3)

gD S SO 0 =200 ey
logg = +m+v—-—2Dlw

j=1
J#l

ProoF. The formula (4.1) is obtained by the binomial theorem, whence (4.2) imme-

diately follows. The formula (4.3) is derived from the fagt+ m)/(1 — g©¢+™) =
—1/(w;logq) + O(s +m) ass — —m. |

These facts motivate the

CONJECTURE 4.2. Lett = ¢(s) beameromorphic function on C. Then the formula

lim ¢g.-(s, 9(s), 2 @) = & (s,2; @) (s € C)
q11

holdsif and only if the function ¢ (s) can bewritten as¢(s) = s — v for somev € N.

In fact, sincer1(s, z; @) = @™°¢ (s, z/w) andg, 1(s, 1, 23 ®) = [w];  L40 (s, t, z/w) for
w > 0, Conjecture 4.2 is true far= 1 by (3.4) and (3.11).
A. An associated g-analogue of the gamma function

In this appendix, we introduce ganalogue of the gamma function defined via ¢he
analogue of the Hurwitz zeta function:

X (n+z)(s—1)

P . 1 Z2(s—1 q
8g(s.2) = ¢V (s.2) x g7 = g wrar Re®>D.
Note that by (3.1), we have
N 5 qz(s—l)
(Al) é‘l](‘n Z) =§q(saz+1)+

[Z]qs
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Imitating the Lerch formula [8] (the zeta regularization)

s:O_ \/Z ’

we define eq-analoguefq (z) of the gamma function by

i( )
E)sgs,Z

0 ~
_agl](‘L 1)

fq (2) := exp(%fq (s, 2)

)

Then the functiorfq (z) is well-defined as a single valued meromorphic function. Indeed, let

s=0

Eq (s, 2) = ao(z; q) + a1(z; q)s + az(z; q)s> + - --

be the Taylor expansion ét,(s, z) arounds = 0. Note thalfq (s, z) is holomorphic at = 0.
Assume Ré&z) > 0. Then, by Proposition 4.fq (s, z) has the following expression;

o0
5 s+n—1 qz(s—l-i-n)
(A.2) Cq(s,Z)=(1—q)SZ( " )m-
n=0
Hence one can calculate the coefficientz; ¢) by the same manner performed in [7] as
o0 —
1 q(n Dz 1 1-z1-9) 1
1q) = _— —+——— g %lo
ai(z; q) an_qnil s 1—q7 q aq
(A.3) n=2
— q + i log(1—¢q).
1-—qg logg

Thereforefq (z) is meromorphic in the region Re) > 0. If —1 < Re(z) < 0, by the ladder
relation (A.1), we have

Z

4 >+a1(z+1;q).
l-gq

ai1(z;q) =q “logq* —q~* |Og<
Hence we have
(A4) () = (@2l ™ Tz +1).

This gives a meromorphic continuation Eg(z) to the region Ré¢z) > —1. Repeating the

same procedure, we see tlfa(z) can be extended as a meromorphic functiorCon
From Theorem 2.1, by the Lerch formula, we have immediately

(A.5) im,(zx) =T (¢ —Z>0).
g1l

Moreover,fq (z) satisfies the following properties.
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ProrPoOSsITION A.1. Wehave

(A.6) Fyz+1) = (g 2! Ty,
(A7) =1,
d? -
(A.8) 22 logly(z+1) >0 (z>0).
In particular, for a positive integer n, we have
(A.9) Fyn+ 1) = g~ Zhaakt™ Tkl
k=1

PrROOF. By the definition offq (z), (A.7) is obvious. The formula (A.6) is clear from
(A.4). The assertion (A.9) follows from (A.6) and (A.7) by induction. To show the inequality
(A.8), take the logarithm of ; (z):

o0 qu(nfl) _ qnfl

log Fy(x) =)~ g1+l
(A.10) n=2
g *1-(1-¢q2) -1 1-g'
logg + ———log(1—gq).
1—q)2 qlogq 14 gd—gq

We calculate as

d2 _ o (n— 1)2 q(Z+l)(n*l) (|(")gq)2q7Z
= _logl,(z + 1) = (logq)?
422 gl,(z+1) = (logq) nZZ n 1—gn1t (1_q)2

wheren, (z) := (logg)(1 — (1 —-¢)(z+ 1)) — (1 —¢q)log(1—g) + 2(1 — g). Therefore, it
suffices to show thag, (z) > 0 forall0 < ¢ < 1if z > 0, and this is indeed true. In fact,

since%nq(z) < 0for0 < ¢ < 1, we conclude thaj, (z) > limg4114(z) = 0. Hence the
proposition follows. O

REMARK A.2. One can find the similar formulas to (A.6), (A.7) and (A.8) in the
analogue of the Bohr-Morellup theorem for the Jackgegamma function in [2]. It has not
yet been clarified that these prapes characterize the functidﬁ,(z).

By the expression (A.2) agaigy (s, z) has the following Laurent expansion aroune-

1:
A1l ; _a-1 1 OGs—1) (Re 0
(A.11) Cq(s,Z)—logqs_—l+yq(Z)+ (s—1 (Re(z) >0,
where

N a" N G ) (D)
(A.12) yq(z)._;[n]q+(1 q)< i+ 054 )
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We next show @-analogue of the Lerch limit formula [8]:

1 r’
A.13 li —— ) =——=(2).
(A.13) Sm(((s, 9= 1) 7@

PropPosITION A.3. It holdsthat

-1 1 q-17,
(A14) y,(z) = I|m (€q(s z) — Iogq . 1) 09q 7, (z) +Cy(z) (Re(z) >0,

where

et nz
q

1 ¢ 1., logg 1—; 11—
C i= + =2 1-(@1- z
¢(2) nE_l " i, q 1 q( A1-q92q *+

logg

—¢'Flog(1—¢) —

— 1
Tlog1—g) + <—z+ —)(1—q)
logg 2
and limg41 C4(z) = 0. Put y, := y,(1). Then we have, in particular, lim,41y, = y where
y = 0.577215 .. denotesthe Euler constant.
PrOOF. By (A.10), we have

|qu ( qzn o 1 qnz )
- ~1
)= 1- g\ & ], ; n+1nl,

ISt

(A.15)
A=+ Q- (1-¢g)2)logq g

(1-q)7?
Plugging (A.12) into (A.15), we obtain the formula (A.14). It is straightforward to show the

factlim,41 C,4(z) = 0 when Rez) > 0. Hence we have li;y1 v, = y by the limit formulas
(A.5), (A.13) and the fact§’(1) = 1, I''(1) = —y. This completes the proof. a

lo
logq + 299 1= jog (1 - ¢).
1-g¢g

REMARK A.4. Theg-analogue of the Lerch limit formula obtained in this paper is
different from the one given in [7].

As a final remark, we give @-analogue of the Gauss-Legendre formula.

ProrPoOSITION A.5. Let N € N. Then we have

N = (1 = (N-1\~x
[N]z[zl N ]"qu (ﬁ) e Tyw (T)Fq(Nz)

N . 1 _ N-1
= Iyn (@) yn Z+ﬁ P Y z+T .

PROOF. The proof is straightforward from (A.10). |
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