Токуо J. Матн. Vol. 29, No. 2, 2006

On m-Full Powers of Parameter Ideals

Naoyuki MATSUOKA

Meiji University

(Communicated by R. Tsushima)

Abstract. Let Q be a parameter ideal in a Noetherian local ring A with the maximal ideal \mathfrak{m} . Then A is a regular local ring and \mathfrak{m}/Q is cyclic, if depth A > 0 and Q^n is \mathfrak{m} -full for some integer $n \ge 1$. Consequently, A is a regular local ring and all the powers of Q are integrally closed in A once Q^n is integrally closed for some $n \ge 1$.

1. Introduction

Let *A* be a Noetherian local ring with the maximal ideal m and $d = \dim A$. Let *I* be an ideal in *A*. Then we say that *I* is m-full if mI : x = I for some $x \in m$. The notion of m-full ideal was introduced by D. Rees and played since integrally closed ideals are m-full under a certain mild condition ([G2, Theorem (2.4)]), an important role in the analysis of integrally closed ideals (cf. [G2, GH1, GH2, GHK, HUV, MTV]).

The present purpose is to prove the following.

THEOREM 1.1. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and let Q be a parameter ideal in A. Assume that depth A > 0 and Q^n is \mathfrak{m} -full for some integer $n \ge 1$. Then the local ring A is regular and \mathfrak{m}/Q is cyclic.

This theorem provides a new sight of m-full powers of parameter ideals and gives rise to a sufficiently simple proof of the following result, which has been known if *A* is excellent and *n* is sufficiently large ([MTV, Théorème 3]) or if depth A > 0 [HUV, Corollary 2.11]).

COROLLARY 1.2. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and let Q be a parameter ideal in A. Then the following three conditions are equivalent to each other.

(1) A is a regular local ring and \mathfrak{m}/Q is cyclic.

(2) Q is integrally closed in A.

(3) Q^n is integrally closed in A for some $n \ge 1$.

When this is the case, the ideals Q^{ℓ} are integrally closed in A for all integers $\ell \geq 1$.

Received January 11, 2005

¹⁹⁹¹ Mathematics Subject Classification. Primary 13H05, Secondary 13H15.

Key words and phrases: generalized Cohen-Macaulay ring, Cohen-Macaulay ring, Gorenstein ring, regular local ring, local cohomology, m-full ideal, multiplicity.

NAOYUKI MATSUOKA

In Corollary (1.2) our contribution is the implication (3) \Rightarrow (2); the equivalence of conditions (1) and (2) is due to [G2, Theorem (3.1)] as well as the last assertion. Thus, as for the parameter ideals Q in a Noetherian local ring A, the integral closedness of *any* power of Q implies that of *all* the powers of Q and the regularity of A as well.

A global version of Corollary (1.2) is as follows. We suspect that the assumption $Ass_A A/I = Min_A A/I$ in condition (2) of Proposition (1.3) is superfluous.

PROPOSITION 1.3. Let A be a Noetherian ring. Let I be an ideal in A and assume that $\mu_A(I) = ht_A I$, where $\mu_A(I)$ and $ht_A I$ denote the number of generators and the height of I, respectively. Then the following conditions are equivalent.

(1) *I is integrally closed in A.*

(2) Ass_AA/I = Min_AA/I and Iⁿ is integrally closed in A for some integer $n \ge 1$. When this is the case, I^{ℓ} is integrally closed in A for every integer $\ell \ge 1$.

The proof of Theorem (1.1) and Corollary (1.2) shall be given in Section 3. Section 2 is devoted to some preliminaries. In our proof of Theorem (1.1), some results on Ratliff-Rush closures, FLC rings (that is, generalized Cohen-Macaulay local rings), and m-full ideals will play key roles, which we will briefly summarize in Section 2.

In what follows, otherwise specified, let *A* be a Noetherian local ring with the maximal ideal m and $d = \dim A$. Let $\mu_A(*)$ and $\ell_A(*)$ denote the number of generators and the length, respectively. For each ideal *I* in *A* let $ht_A(I)$ be the height of *I*. We denote by $e(A) = e_m^0(A)$ the multiplicity of *A* with respect to the maximal ideal m. Let $H_m^i(*)$ ($i \in \mathbb{Z}$) stand for the $i \frac{th}{2}$ local cohomology functor of *A* with respect to m.

2. Preliminaries

Let A be a commutative Noetherian ring and let \mathcal{F}_A denote the set of ideals in A which contain at least one nonzerodivisor in A. For each $I \in \mathcal{F}_A$ let

$$\tilde{I} = \bigcup_{n \ge 0} (I^{n+1} I^n)$$

be the Ratliff-Rush closure of I. Then $I \subseteq \tilde{I} \subseteq \bar{I}$ and $\tilde{I} = \tilde{\tilde{I}}$ (cf. [Mc, Lemma 8.2 (vi)]), where \bar{I} denotes the integral closure of I.

PROPOSITION 2.1. (1) (Y. Shimoda) Let $I \subseteq J$ be ideals in A and assume that $I^n = J^n$ for some integer $n \ge 1$. Then $I^{\ell} = J^{\ell}$ for all integers $\ell \ge n$.

(2) Let $I \in \mathcal{F}_A$ and assume that $I^n = \overline{I^n}$ for some $n \ge 1$. Then $\overline{I} = \overline{I}$ and $I^{\ell} = \overline{I}^{\ell}$ for all integers $\ell \ge n$.

PROOF. (1) Since $I^n \subseteq I^{n-1}J \subseteq J^{n-1}J = J^n$, we get $I^n = I^{n-1}J = J^n$. Therefore $I^{n+1} = II^n = I(I^{n-1}J) = I^nJ = J^nJ = J^{n+1}$. Thus $I^{\ell} = J^{\ell}$ for all $\ell \ge n$.

(2) We have $I^n = \overline{I}^n$ since $\overline{I}^n \subseteq \overline{I^n} = I^n$. Hence $\overline{I} \subseteq \widetilde{I}$ by [Mc, Lemma 8.2 (iv)] so that $\overline{I} = \overline{I}$ by [Mc, Lemma 8.2 (vi)]. The latter equality follows from assertion (1).

m-FULL POWERS OF PARAMETER IDEALS

Now let A be a Noetherian local ring with the maximal ideal m and $d = \dim A$. Let $H^i_{\mathfrak{m}}(*)$ $(i \in \mathbb{Z})$ be the local cohomology functors of A with respect to m. Then we say that A has FLC (or equivalently, A is a generalized Cohen-Macaulay local ring), if all the local cohomology modules $H^i_{\mathfrak{m}}(A)$ $(i \neq d)$ are finitely generated.

For each ideal I in A we put

$$\mathcal{R}(I) = A[It] = \bigoplus_{n \ge 0} I^n,$$

where t denotes an indeterminate. Let

$$G(I) = \mathcal{R}(I)/I\mathcal{R}(I) = \bigoplus_{n \ge 0} I^n/I^{n+1}$$

be the associated graded ring of I.

Let $G = G(\mathfrak{m})$ and $M = G_+$ the unique graded maximal ideal in G. Let $e(A) = e_{\mathfrak{m}}^0(A)$ denote the multiplicity of A. We then have the following.

PROPOSITION 2.2. (1) Suppose that A has FLC. Then A is a regular local ring, if e(A) = 1 and depth A > 0.

(2) The local ring A has FLC, if the local cohomology modules

$$H^{i}_{M}(G) = \lim_{n \to \infty} \operatorname{Ext}^{i}_{G}(G/M^{n}, G)$$

of G with respect to M are finitely generated for all $i \neq d$.

PROOF. (1) The local ring A is unmixed since A has FLC and depth A > 0 (cf. [SV, Appendix, Proposition 16]). Hence A is regular by [N, Theorem 40.6].

(2) See [G1, Proposition (3.1)]).

The notion of m-full ideal was introduced by D. Rees, who showed that every integrally closed ideal I is m-full, provided I is not nilpotent and the residue class field A/m of A is infinite [G2, Theorem (2.4)]). The readers may consult [G2] about basic results on m-full ideals. Here let us note two of them, which we later need to prove Theorem (1.1).

PROPOSITION 2.3. Let I be an ideal in A and assume that I is m-full. Then the following assertions hold true.

(1) Let J be an ideal in A. Assume $I \subseteq J$ and $\ell_A(J/I) < \infty$. Then $\mu_A(I) \ge \mu_A(J)$.

(2) Assume that A/I is an Artinian Gorenstein local ring. Then \mathfrak{m}/I is cyclic.

PROOF. (1) See [G2, Lemma (2.2) (2)].

(2) Let $x \in \mathfrak{m}$ such that $\mathfrak{m}I : x = I$. Then $I : \mathfrak{m} = (\mathfrak{m}I : x) : \mathfrak{m} = (\mathfrak{m}I : \mathfrak{m}) : x \supseteq I : x$ so that $I : \mathfrak{m} = I : x$. Thus we get the exact sequence

$$0 \to [I:\mathfrak{m}]/I \to A/I \xrightarrow{x} \to A/I \to A/[I+(x)] \to 0$$

Hence $\ell_A(A/[I + (x)]) = \ell_A([I : \mathfrak{m}]/I) = 1$ because A/I is Gorenstein. Thus $\mathfrak{m} = I + (x)$, whence \mathfrak{m}/I is cyclic.

NAOYUKI MATSUOKA

3. Proofs of Theorem 1.1 and Corollary 1.2

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A$. Let Q be a parameter ideal in A.

PROOF OF THEOREM 1.1. Passing to the local ring $A[X]_{\mathfrak{m}A[X]}$ where X is an indeterminate over A, we may assume that the residue class field $k = A/\mathfrak{m}$ of A is infinite. Let \mathfrak{q} be a minimal reduction of \mathfrak{m} . Hence \mathfrak{q} is a parameter ideal in A and $\mathfrak{m}^{r+1} = \mathfrak{q}\mathfrak{m}^r$ for some $r \ge 0$ (such an ideal \mathfrak{q} must exist because the field $k = A/\mathfrak{m}$ is infinite), and then $\mathcal{R}(\mathfrak{m})$ is a module-finite extension of $\mathcal{R}(\mathfrak{q})$. Let

$$\varphi: \mathcal{R}(\mathfrak{q})/\mathfrak{m}\mathcal{R}(\mathfrak{q}) \to \mathcal{R}(\mathfrak{m})/\mathfrak{m}\mathcal{R}(\mathfrak{m})$$

be the homomorphism of graded *k*-algebras induced from the inclusion $\mathcal{R}(q) \subseteq \mathcal{R}(m)$. Hence the homomorphism φ is also finite. We put

$$P = \mathcal{R}(\mathfrak{q})/\mathfrak{m}\mathcal{R}(\mathfrak{q})$$
 and $G = \mathcal{R}(\mathfrak{m})/\mathfrak{m}\mathcal{R}(\mathfrak{m})$

For each integer $i \ge 0$ let $P_i = q^i/mq^i$ and $G_i = m^i/m^{i+1}$ denote the homogeneous components of P and G of degree i. Then because q is a parameter ideal in A, the ring P is the polynomial ring with d variables over the field k. Therefore φ is a monomorphism since φ is finite and dim $P = \dim G = d$.

We now look at the \mathfrak{m} -full ideal Q^n . Then

$$\mu_A(\mathfrak{m}^n) \le \mu_A(\mathcal{Q}^n) = \binom{d+n-1}{d-1} = \mu_A(\mathfrak{q}^n)$$

by Proposition (2.3) (1), so that the monomorphism φ induces an isomorphism

$$P_n = \mathfrak{q}^n/\mathfrak{m}\mathfrak{q}^n \to G_n = \mathfrak{m}^n/\mathfrak{m}^{n+1}$$

of vector spaces over k. Hence $\mathfrak{m}^n = \mathfrak{q}^n + \mathfrak{m}^{n+1}$ and so $\mathfrak{m}^n = \mathfrak{q}^n$ by Nakayama's lemma. Thus $\mathfrak{m}^{\ell} = \mathfrak{q}^{\ell}$ for all integers $\ell \ge n$ by Proposition (2.1) (1). Hence the homomorphism $\varphi: P \to G$ induces an isomorphism between the vector spaces P_{ℓ} and G_{ℓ} over k and so

$$\ell_A(\mathfrak{m}^{\ell}/\mathfrak{m}^{\ell+1}) = \ell_A(\mathfrak{q}^{\ell}/\mathfrak{m}\mathfrak{q}^{\ell}) = \binom{d+\ell-1}{d-1}$$

for every $\ell \ge n$. Thus $e(A) = e_m^0(A) = 1$ by definition. Let $C = \text{Coker } \varphi$. Then $\dim_k C < \infty$ since $C_\ell = (0)$ if $\ell \ge n$. Therefore because the ring *P* is the polynomial ring over *k*, thanks to the exact sequence

$$0 \to P \xrightarrow{\varphi} \to G \to C \to 0$$

of finitely generated graded *P*-modules, we get $H_M^i(G) = (0)$ for all $i \neq 0, d$, where $M = G_+$. Hence by Proposition (2.2) (2) the local ring *A* has FLC, so that the local ring *A* is regular by Proposition (2.2) (1) because e(A) = 1 and depth A > 0.

m-FULL POWERS OF PARAMETER IDEALS

Since A/Q is an Artinian Gorenstein local ring, to see that \mathfrak{m}/Q is cyclic, by Proposition (2.3) (2) it is enough to show that Q is \mathfrak{m} -full. Let $x \in \mathfrak{m}$ such that $\mathfrak{m}Q^n : x = Q^n$ and let $a \in \mathfrak{m}Q : x$. Then $x(aQ^{n-1}) = (xa)Q^{n-1} \subseteq \mathfrak{m}Q^n$ whence $aQ^{n-1} \subseteq \mathfrak{m}Q^n : x = Q^n$. Therefore $a \in Q^n : Q^{n-1} = Q$ because Q is generated by an A-regular sequence. Thus $\mathfrak{m}Q : x = Q$ and so Q is \mathfrak{m} -full.

We are in a position to prove Corollary (1.2). The last assertion and the equivalence of conditions (1) and (2) in Corollary (1.2) are due to [G2, Theorem (3.1)]. Let us include brief proofs of the last assertion and the implication $(2) \Rightarrow (1)$ for the sake of completeness.

PROOF OF COROLLARY 1.2. We may assume that $d = \dim A > 0$. Passing to the local ring $A[X]_{\mathfrak{m}A[X]}$ where X is an indeterminate over A, we may also assume that the residue class field $k = A/\mathfrak{m}$ of A is infinite.

(3) \Rightarrow (2) We will show that *A* is a regular local ring and *Q* is integrally closed. Let $W = H^0_{\mathfrak{m}}(A)$, B = A/W, and $\mathfrak{n} = \mathfrak{m}/W$. Then $Q^n B$ is integrally closed in *B* because $W \subseteq \sqrt{(0)}$ and Q^n is integrally closed in *A*. Hence by Theorem (1.1) the local ring *B* is regular because depth B > 0 and $Q^n B$ is \mathfrak{n} -full. We must show that W = (0). Since $W \subseteq \sqrt{(0)}$, we have $W \subseteq \overline{Q^n} = Q^n$. Let $\ell > 0$ be an integer and assume that $W \subseteq Q^\ell$. Let $Q = (a_1, a_2, \ldots, a_d)$ and choose $w \in W$. We write $w = \sum_{|\alpha|=\ell} c_\alpha \mathbf{a}^\alpha$ with $c_\alpha \in A$, where $\mathbf{a}^\alpha = a_1^{\alpha_1} a_2^{\alpha_2} \cdots a_d^{\alpha_d}$ and $|\alpha| = \sum_{i=1}^d \alpha_i$ for each $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_d)$ with $0 \le \alpha_i \in \mathbf{Z}$. Let $\bar{\mathbf{x}}$ denote the image in *B*. Then

$$\sum_{|\alpha|=\ell} \overline{c_{\alpha}} \,\overline{a_1}^{\alpha_1} \overline{a_2}^{\alpha_2} \cdots \overline{a_d}^{\alpha_d} = \overline{w} = 0 \,.$$

Since the system $\overline{a_1}, \overline{a_2}, \ldots, \overline{a_d}$ of parameters in *B* forms a regular sequence, we get $\overline{c_\alpha} \in QB$ for every $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_d)$ with $|\alpha| = \ell$. Thus $c_\alpha \in Q + W$ so that $w \in (Q^{\ell+1} + WQ^{\ell}) \cap$ $W = (Q^{\ell+1} \cap W) + WQ^{\ell}$. Consequently, $W = Q^{\ell+1} \cap W \subseteq Q^{\ell+1}$ by Nakayama's lemma. Hence $W \subseteq \bigcap_{\ell>0} Q^{\ell} = (0)$ and so the local ring *A* is regular.

Because Q^n is integrally closed, we have $\overline{Q} = \widetilde{Q}$ by Proposition (2.1) (2). The ideal Q is generated by a regular sequence, whence

$$\tilde{Q} = \bigcup_{n \ge 0} (Q^{n+1} : Q^n) = Q \,,$$

so that we have $\overline{Q} = \overline{Q} = Q$.

 $(2) \Rightarrow (1)$ Thanks to the above proof, A is a regular local ring. Hence \mathfrak{m}/Q is cyclic by Proposition (2.3) (2) because Q is \mathfrak{m} -full and A/Q is an Artinian Gorenstein local ring.

(1) \Rightarrow the last assertion. We may assume that $d \ge 2$. Since \mathfrak{m}/Q is cyclic by our assumption, we may choose a regular system a_1, a_2, \ldots, a_d of parameters of A so that $Q = (a_1, \ldots, a_{d-1}, a_d^q)$ for some $q \ge 1$. Let

$$S = \mathcal{R}(Q)[t^{-1}] = A[a_1t, \dots, a_{d-1}t, a_d^q t, t^{-1}]$$

NAOYUKI MATSUOKA

be the extended Rees algebra of Q (here t denotes an indeterminate over A). Let $u = t^{-1}$. Then G(Q) = S/uS. We must show that S is an integrally closed integral domain. We firstly recall that the sequence $a_1, \ldots, a_{d-1}, a_d^q$ is regular. Hence the associated graded ring G(Q) is the polynomial ring with d indeterminates over A/Q, that is

$$\mathbf{G}(Q) = (A/Q)[\overline{a_1t}, \dots, \overline{a_{d-1}t}, a_d^q t]$$

and the elements $\{\overline{a_i t}\}_{1 \le i \le d-1}$ and $\overline{a_d^q t}$ are algebraically independent over A/Q, where $\bar{*}$ denotes the image in G(Q). In particular, the ring G(Q) is Cohen-Macaulay. Hence the ring S is also Cohen-Macaulay because u is a nonzero divisor in S.

Let *P* be a prime ideal in *S* with $ht_S P = 1$. We will show that the localization S_P of *S* is a discrete valuation ring. We may assume that $u \in P$ (because the ring $S[u^{-1}] = A[t, t^{-1}]$ is regular). Then $P = (\mathfrak{m}, u)S = (a_1, a_2, \ldots, a_d, u)S$, since P/uS is a unique minimal prime ideal in the polynomial ring G(Q). Hence $P = (a_d, u)S$ because $a_i = a_i t \cdot u$ for all $1 \leq i \leq d - 1$. Therefore $PS_P = a_dS_P$ because $a_d^q t \notin P = (\mathfrak{m}, u)S$ and $u = a_d^q/(a_d^q t)$. Hence S_P is a discrete valuation ring with the regular parameter a_d . Thus the Cohen-Macaulay ring *S* satisfies Serre's condition (\mathbb{R}_1), so that *S* is an integrally closed integral domain. Hence Q^n is integrally closed in *A* for every integer $n \geq 1$, which completes the proof of Corollary (1.2).

Before closing this paper let us note a brief proof of Proposition (1.3). We suspect the assumption that $Ass_A A/I = Min_A A/I$ in condition (2) is superfluous.

PROOF OF PROPOSITION 1.3. (1) \Rightarrow (2) and the last assertion. This is due to [G2, Theorem (1.1)].

(2) \Rightarrow (1) Assume that $I \neq \overline{I}$ and choose $P \in \operatorname{Ass}_A \overline{I}/I$. Then $P \in \operatorname{Ass}_A A/I = \operatorname{Min}_A A/I$. Hence the ideal IA_P is a parameter ideal in the local ring A_P because $\operatorname{ht}_A I = \mu_A(I)$. Since

$$(IA_P)^n = I^n A_P = \overline{I^n} A_P = \overline{I^n} A_P = \overline{(IA_P)^n},$$

by Corollary (1.2) the local ring A_P is regular and $IA_P = \overline{IA_P} = \overline{I}A_P$. This is impossible.

References

- [G1] S. GOTO, Noetherian local rings with Buchsbaum associated graded rings, J. Alg. 86 (1984), 336–384.
- [G2] S. GOTO, Integral closedness of complete-intersection ideals, J. Alg. 108 (1987), 151–160.
- [GH1] S. GOTO and F. HAYASAKA, Finite homological dimension and primes associated to integrally closed ideals, Proc. Amer. Math. Soc. 130 (2002), 3159–3164.
- [GH2] S. GOTO and F. HAYASAKA, Finite homological dimension and primes associated to integrally closed ideals II, J. Math. Kyoto Univ. 42-4 (2002), 631–639.

m-FULL POWERS OF PARAMETER IDEALS

- [GHK] S. GOTO, F. HAYASAKA and S. KASUGA, Towards a theory of Gorenstein m-primary integrally closed ideals, J. HERZOG and V. VULETESCU (eds.): *Commutative Algebra, Singularities and Computer Algebra*, The Proceedings of NATO Advanced Research Workshop: Sinaia (Romania) (2002), 159–177.
- [HUV] S. C. HUNEKE, B. ULRICH and W. V. VASCONCELOS, On the structure of certain normal ideals, Compositio Mathematica 84 (1992) 25–42.
- [Mc] S. MCADAM, Asymptotic Prime Divisors, Lecture Notes in Math. vol. 1023, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1983).
- [MTV] M. MORALES, N. V. TRUNG and O. VILLAMAYOR, Sur la fonction de Hilbert-Samuel des clôtures intégrales des puissances d'idèaux engendrés par un système de paramètres, J. Alg. 129 (1990), 96–102.
- [N] M. NAGATA, Local Rings, Interscience (1962).
- [SV] J. STÜCKRAD and W. VOGEL, Buchsbaum Rings and Applications, Springer-Verlag (1986).

Present Address: DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, HIGASHI-MITA, TAMA-KU, KAWASAKI-SHI, KANAGAWA, 214–8571 JAPAN. *e-mail*: matsuoka@math.meiji.ac.jp