A Relation on Floer Homology Groups of Homology Handles

Atsushi TOMODA
Keio University
(Communicated by Y. Maeda)

Abstract

We prove a relationship on the rank of the Floer homology groups of integral homology handles. Moreover we make a conjecture on a certain difference between these ranks.

1. Introduction

Let Σ denote a Seifert homology 3 -sphere $\Sigma\left(a_{1}, \ldots, a_{n}\right)$. By performing 0 -surgery along the n-th singular fiber k_{n} of Σ, we obtain a homology handle $\Sigma+0 \cdot k_{n}$, which is denoted by N. The Floer homology group $H F_{*}(N)$ can be calculated from that of homology 3-spheres exploiting the Floer exact triangle. In this paper we shall prove a relationship among the Floer homology groups of integral homology handles N. The main result is the following:

THEOREM 1. Let $a_{i}(i=1, \ldots, n)$ be relatively coprime positive integers, and $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ the Seifert homology 3-sphere corresponding to the data a_{i}. We denote by N and N^{*} the homology handles $\Sigma\left(a_{1}, \ldots, a_{n}\right)+0 \cdot k_{n}$ and $\Sigma\left(a_{1}, \ldots, a_{n-1}, m-a_{n}\right)+0 \cdot k_{n}$ respectively, where $m=a_{1} a_{2} \cdots a_{n-1}$. Let $b_{i}(N)$ denote the rank of the Floer homology group $H F_{i}(N)(0 \leqslant i \leqslant 7)$. We then obtain the following relationship between $b_{i}(N)$ and $b_{i}\left(N^{*}\right):$

$$
b_{2}(N)-b_{0}(N)=b_{2}\left(N^{*}\right)-b_{0}\left(N^{*}\right) .
$$

REMARK. Here, the grading on the Floer homology group $H F_{*}(N)$ is assigned from the triple $\left(\Sigma, \Sigma+(-1) \cdot k_{n}, N\right)$, where Σ denotes $\Sigma\left(a_{1}, \ldots, a_{n}\right)$; See also Theorem in Section 2.

In the last section we would like to form a conjecture on the number $b_{2}(N)-b_{0}(N)$ for $N=\Sigma\left(a_{1}, a_{2}, a_{3}\right)+0 \cdot k_{3}$. Finally we provide lists on the ranks of the Floer homology groups of N, which support our conjecture.

2. Review of floer homology groups

The Floer homology group for integral homology 3 -spheres is defined as follows; see

Floer [4]. Let M be an integral homology 3 -sphere and P the trivial $S U(2)$-bundle over M. We then obtain a chain complex $C_{*}(M)$ that is a free \mathbf{Z}-module generated by the gauge equivalence classes of flat connections on P. The chain complex has a natural $\mathbf{Z} / 8$-grading via the index theorem, which is called the Floer index. The homology group of $C_{*}(M)$ is the Floer homology group of M and denoted by $H F_{*}(M)$. We shall denote the rank of $H F_{i}(M)$ by $b_{i}(M)(0 \leqslant i \leqslant 7)$. For the details of the Floer homology group, we refer to Donaldson [2].

Floer [5] extended the Floer homology groups to integral homology handles, namely 3manifolds N whose integral homology group is isomorphic to that of $S^{2} \times S^{1}$. In order to define this homology group we need to change some conditions in the setting above. First of all the trivial $S U(2)$-bundle is replaced by a unique non-trivial $S O$ (3)-bundle Q on N. Hence there does not exist a trivial flat connection θ on Q. As a result, $H F_{*}(N)$ has no absolute grading of $\mathbf{Z} / 8$.

Consider an integral homology 3 -sphere M and a knot k in M. We obtain another integral homology 3 -sphere $M+(-1) \cdot k$ and a homology handle $M+0 \cdot k$ by (-1)- and 0 -surgery along k respectively. By handle attaching we also have suitable cobordisms X, Y, Z, whose boundary component is either $M, M+(-1) \cdot k$ or $M+0 \cdot k$. These cobordisms give rise to homomorphisms on Floer homology groups. Floer proved the following:

Theorem 2 (Floer [5], Braam-Donaldson [1]). Let $M, M+(-1) \cdot k$ and $M+0 \cdot k$ be as above. We then have the following long exact sequence of Floer homology groups:

$$
\begin{aligned}
\cdots & \rightarrow H F_{*+1}(M+0 \cdot k) \xrightarrow{Z_{*}} H F_{*}(M) \xrightarrow{X_{*}} H F_{*}(M+(-1) \cdot k) \\
& \xrightarrow{Y_{*}} H F_{*}(M+0 \cdot k) \rightarrow \cdots .
\end{aligned}
$$

Here X_{*}, Y_{*}, Z_{*} are homomorphisms induced by X, Y, Z; see[5] for the details.
The long exact sequence above is called the Floer exact triangle. Owing to the Floer exact triangle above we can determine a grading of $H F_{*}(M+0 \cdot k)$. Then we denote the rank of $H F_{i}(M+0 \cdot k)$ by $b_{i}(M+0 \cdot k)$ in the same way as in the case of homology 3 -spheres.

3. Floer homology groups of seifert homology 3-spheres

Let a_{1}, \ldots, a_{n} be positive integers which are relatively coprime. Then the Seifert homology 3 -sphere $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ is obtained as a Seifert manifold with the Seifert invariant $\left(g,\left(1, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$ which satisfies equations $g=0$ and $b_{0}+\sum_{i=1}^{n} b_{i} / a_{i}=$ $1 / a_{1} \cdots a_{n}$. The presentation of the Seifert invariant is same as in Neumann-Raymond [9]. In particular, when $n=3, \Sigma\left(a_{1}, a_{2}, a_{3}\right)$ is called a Brieskorn homology 3 -sphere and $\Sigma\left(a_{1}, a_{2}, a_{3}\right)=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbf{C}^{3} \mid z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}=0\right\} \cap S^{5}$. See [9].

We regard the i-th singular fiber corresponding to a_{i} as a knot, and denote it by k_{i}. By performing the (-1)-surgery (0 -surgery), we obtain a Seifert homology 3 -sphere
$\Sigma\left(a_{1}, \ldots, a_{n}\right)+(-1) \cdot k_{i}$ (a Seifert manifold $\Sigma\left(a_{1}, \ldots, a_{n}\right)+0 \cdot k_{i}$, resp.). It is easy to prove

$$
\begin{equation*}
\Sigma\left(a_{1}, \ldots, a_{n}\right)+(-1) \cdot k_{n}=\Sigma\left(a_{1}, \ldots, a_{n-1}, m+a_{n}\right) \tag{1}
\end{equation*}
$$

see Saveliev [10]. Furthermore, we obtain the following:
THEOREM 3. There is an orientation-reversing diffeomorphism between $\Sigma\left(a_{1}, \ldots, a_{n}\right)+0 \cdot k_{n}$ and $\Sigma\left(a_{1}, \ldots, a_{n-1}, m-a_{n}\right)+0 \cdot k_{n}$.

Proof. We first note that $\Sigma=\Sigma\left(a_{1}, \ldots, a_{n}\right)$ has a Seifert invariant $\left(g ;\left(1, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$. Then the Seifert invariant of $N=\Sigma+0 \cdot k_{n}$ is $\left(g ;\left(1, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n-1}, b_{n-1}\right),(m, r)\right)$; see Saveliev [10]. Here r is an integer that satisfies

$$
\left|\begin{array}{cc}
a_{n} & b_{n} \\
-m & r
\end{array}\right|=1
$$

and hence $r=\left(1-m b_{n}\right) / a_{n}$. Then as a corollary of Theorem 1.1. in [9], it follows that a Seifert invariant of \bar{N} is $\left(g ;\left(1,-b_{0}\right),\left(a_{1},-b_{1}\right), \ldots,\left(a_{n-1},-b_{n-1}\right),(m,-r)\right)$, where \bar{N} stands for N with the reversed orientation. Put $s=b_{0} m+\sum_{i=1}^{n-1} b_{i} a_{1} \cdots \breve{a}_{i} \cdots a_{n-1}+$ b_{n}. Then we obtain a Seifert invariant $\left(g ;\left(1,-b_{0}\right),\left(a_{1},-b_{1}\right), \ldots,\left(a_{n-1},-b_{n-1}\right)\right.$, $\left.\left(m-a_{n}, s\right)\right)$ of $\Sigma^{*}=\Sigma\left(a_{1}, \ldots, a_{n-1}, m-a_{n}\right)$. In the same way as in the case of N, we can calculate the Seifert invariant for $N^{*}=\Sigma^{*}+0 \cdot k_{n}$; the Seifert invariant is $\left(g ;\left(1,-b_{0}\right),\left(a_{1},-b_{1}\right), \ldots,\left(a_{n-1},-b_{n-1}\right),(m, t)\right)$. Here t is an integer that satisfies

$$
\left|\begin{array}{cc}
m-a_{n} & s \\
-m & t
\end{array}\right|=1
$$

and hence $t=(1-m s) /\left(m-a_{n}\right)$. It then follows that

$$
r+t=\frac{m}{a_{n}\left(m-a_{n}\right)}\left(1-m a_{n}\left(b_{0}+\sum_{i=1}^{n} \frac{b_{i}}{a_{i}}\right)\right)=0 .
$$

Thus we obtain $t=-r$. Therefore, N^{*} is diffeomorphic to \bar{N} preserving the orientations.
Fintushel and Stern [3] proved that the Floer index of every non-trivial flat connection over a Brieskorn homology 3 -sphere Σ is even. Therefore the boundary operator ∂ of $C_{*}(\Sigma)$ is trivial, so that we have $H F_{*}(\Sigma)=C_{*}(\Sigma)$. Kirk and Klassen [7] and Saveliev [10] proved the same fact for every Seifert homology 3-sphere. Moreover, Saveliev proved that it also holds for the homology handle obtained from a Seifert homology 3 -sphere by 0 -surgery along a singular fiber k. He also proved that its Floer exact triangle is a splitting exact sequence:

$$
0 \rightarrow H F_{*}(\Sigma) \xrightarrow{X_{*}} H F_{*}(\Sigma+(-1) \cdot k) \xrightarrow{Y_{*}} H F_{*}(\Sigma+0 \cdot k) \rightarrow 0 .
$$

This gives rise to an equality:

$$
\begin{equation*}
b_{i}(\Sigma+0 \cdot k)=b_{i}(\Sigma+(-1) \cdot k)-b_{i}(\Sigma) \text { for } i=0, \ldots, 7 \tag{2}
\end{equation*}
$$

Frøyshov [6] further proved that $H F_{i}(\Sigma)$ is isomorphic to $H F_{i+4}(\Sigma)$, so that we obtain $b_{0}(\Sigma)=b_{4}(\Sigma)$ and $b_{2}(\Sigma)=b_{6}(\Sigma)$. Then Taubes' theorem [13] implies $b_{0}(\Sigma)+b_{2}(\Sigma)=$ $b_{4}(\Sigma)+b_{6}(\Sigma)=\lambda(\Sigma)$, where $\lambda(\Sigma)$ is the Casson invariant of Σ. Also exploiting the identities above, Saveliev [11] proved

$$
\begin{equation*}
b_{2}(\Sigma)-b_{0}(\Sigma)=b_{6}(\Sigma)-b_{4}(\Sigma)=\bar{\mu}(\Sigma), \tag{3}
\end{equation*}
$$

where $\bar{\mu}$ is Neumann's $\bar{\mu}$-invariant [8] of Σ. On the other hand Neumann [8] proved that every Seifert homology 3 -sphere $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ satisfies

$$
\begin{equation*}
\bar{\mu}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)= \pm \bar{\mu}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, 2 m \pm a_{n}\right)\right) \tag{4}
\end{equation*}
$$

Let N be $\Sigma\left(a_{1}, \ldots, a_{n}\right)+0 \cdot k_{n}$. With $b_{i}(N)$, we have the following result. When we fix $a_{1}, a_{2}, \ldots, a_{n-1}$, then $b_{0}(N)+b_{2}(N)$ is independent of a_{n}. On the other hand, $b_{2}(N)-b_{0}(N)$ depends only on a_{n}; See Saveliev [12] p. 156.

4. Proof of main theorem and observation

We shall denote $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ by Σ and $\Sigma\left(a_{1}, \ldots, a_{n-1}, m-a_{n}\right)$ by Σ^{*}. Also we denote $\Sigma+0 \cdot k_{n}$ by N and $\Sigma^{*}+0 \cdot k_{n}$ by N^{*}.

As we observed, the triples $\left(\Sigma, \Sigma+(-1) \cdot k_{n}, N\right)$ and $\left(\Sigma^{*}, \Sigma^{*}+(-1) \cdot k_{n}, N^{*}\right)$ determines an absolute grading of $H F_{*}(N)$ and $H F_{*}\left(N^{*}\right)$ respectively.

Proof of Theorem 1. The equations (2) and (1) imply

$$
\begin{aligned}
b_{2}(N)-b_{0}(N)= & b_{2}\left(\Sigma+(-1) \cdot k_{n}\right)-b_{2}(\Sigma)-b_{0}\left(\Sigma+(-1) \cdot k_{n}\right)+b_{0}(\Sigma) \\
= & b_{2}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, m+a_{n}\right)\right)-b_{2}(\Sigma)-b_{0}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, m+a_{n}\right)\right) \\
& +b_{0}(\Sigma)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{2}\left(N^{*}\right)-b_{0}\left(N^{*}\right)= & b_{2}\left(\Sigma^{*}+(-1) \cdot k_{n}\right)-b_{2}\left(\Sigma^{*}\right)-b_{0}\left(\Sigma^{*}+(-1) \cdot k_{n}\right)+b_{0}\left(\Sigma^{*}\right) \\
= & b_{2}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, 2 m-a_{n}\right)\right)-b_{2}\left(\Sigma^{*}\right) \\
& -b_{0}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, 2 m-a_{n}\right)\right)+b_{0}\left(\Sigma^{*}\right) .
\end{aligned}
$$

Therefore, by (3) we obtain

$$
b_{2}(N)-b_{0}(N)=\bar{\mu}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, m+a_{n}\right)\right)-\bar{\mu}(\Sigma)
$$

and

$$
\begin{aligned}
b_{2}\left(N^{*}\right)-b_{0}\left(N^{*}\right) & =\bar{\mu}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, 2 m-a_{n}\right)\right)-\bar{\mu}\left(\Sigma^{*}\right) \\
& =\bar{\mu}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, 2 m-a_{n}\right)\right)-\bar{\mu}\left(\Sigma\left(a_{1}, \ldots, a_{n-1}, 2 m-\left(m+a_{n}\right)\right)\right)
\end{aligned}
$$

Applying the formula (4), we have

$$
b_{2}(N)-b_{0}(N)=b_{2}\left(N^{*}\right)-b_{0}\left(N^{*}\right)
$$

Example 1. We shall denote $\Sigma\left(4,5, a_{3}\right)$ by Σ and $\Sigma+0 \cdot k_{3}$ by N. The table 1 is about the ranks of $H F_{*}(\Sigma), H F_{*}\left(\Sigma+(-1) \cdot k_{3}\right)$, and $H F_{*}(N)$. In the Table 1 we only list $\left(b_{0}, b_{2}, b_{4}, b_{6}\right)$ since b_{1}, b_{3}, b_{5} and b_{7} are equal to zero.

Table 1. The ranks of $H F_{*}(\Sigma), H F_{*}\left(\Sigma+(-1) \cdot k_{3}\right)$, and $H F_{*}(N)$

a	$b_{i}(\Sigma)$	$b_{i}\left(\Sigma+(-1) \cdot k_{3}\right)$	$b_{i}(N)$
1	$(0,0,0,0)$	$(6,9,6,9)$	$(6,9,6,9)$
3	$(1,1,1,1)$	$(8,9,8,9)$	$(7,8,7,8)$
7	$(2,3,2,3)$	$(10,10,10,10)$	$(8,7,8,7)$
9	$(4,3,4,3)$	$(11,11,11,11)$	$(7,8,7,8)$
11	$(4,4,4,4)$	$(11,12,11,12)$	$(7,8,7,8)$
13	$(5,5,5,5)$	$(13,12,13,12)$	$(8,7,8,7)$
17	$(7,6,7,6)$	$(14,14,14,14)$	$(7,8,7,8)$
19	$(9,6,9,6)$	$(15,15,15,15)$	$(6,9,6,9)$

The Table 2 shows the difference $b_{2}-b_{0}$ of $H F_{*}(N)$. The Theorem 1 says that the second row $b_{2}-b_{0}$ of the table is symmetric with respect to $10=4 \cdot 5 / 2$.

TABLE 2. A difference $b_{2}(N)-b_{0}(N)$

a_{3}	1	3	7	9	11	13	17	19
$b_{2}(N)-b_{0}(N)$	3	1	-1	1	1	-1	1	3

The following conjecture comes from numerous calculations of Floer homology groups based on a computer. The calculations are divided into two parts. The former one is the program to determine the $S U(2)$-representation space of the fundamental group. The latter one is to calculate the Floer index for every representation according to Fintushel-Stern's formula (see [3]) and to apply the Floer exact triangle.

Conjecture 1. Let a_{1}, a_{2} be coprime positive odd integers and a_{3} be the largest integers satisfying $\left(a_{1}, a_{3}\right)=\left(a_{2}, a_{3}\right)=1$ and $a_{3} \leqslant\left(a_{1} a_{2}-1\right) / 2$. Put $N=\Sigma\left(a_{1}, a_{2}, a_{3}\right)+$ $0 \cdot k_{3}$. Then it holds that

$$
b_{2}(N)-b_{0}(N)=0 .
$$

REMARK. We checked that Conjecture 1 is true if $a_{1}+a_{2} \leqslant 50$. We also see that the assumption in Conjecture 1 is essential. For example, we have $b_{2}(N)-b_{0}(N)=2$ for $N=\Sigma(3,11,14)+0 \cdot k_{3}$ while $b_{2}\left(N^{\prime}\right)-b_{0}\left(N^{\prime}\right)=1$ for $N^{\prime}=\Sigma(2,5,3)+0 \cdot k_{3}$.

Example 2. We shall exhibit a couple of lists below which support Conjecture1. Here $\Sigma=\Sigma\left(3,5, a_{3}\right)$ and $N=\Sigma+0 \cdot k_{3}$. In the Table 3 we list only $\left(b_{0}, b_{2}, b_{4}, b_{6}\right)$ as in the Table 1.

Table 3. The ranks of $H F_{*}(\Sigma), H F_{*}\left(\Sigma+(-1) \cdot k_{3}\right)$, and $H F_{*}(N)$

a_{3}	$b_{i}(\Sigma)$	$b_{i}\left(\Sigma+(-1) \cdot k_{3}\right)$	$b_{i}(N)$
1	$(0,0,0,0)$	$(3,5,3,5)$	$(3,5,3,5)$
2	$(1,0,1,0)$	$(4,5,4,5)$	$(3,5,3,5)$
4	$(1,1,1,1)$	$(5,5,5,5)$	$(4,4,4,4)$
7	$(2,2,2,2)$	$(6,6,6,6)$	$(4,4,4,4)$
8	$(2,2,2,2)$	$(6,6,6,6)$	$(4,4,4,4)$
11	$(3,3,3,3)$	$(7,7,7,7)$	$(4,4,4,4)$
13	$(4,3,4,3)$	$(7,8,7,8)$	$(3,5,3,5)$
14	$(5,3,5,3)$	$(8,8,8,8)$	$(3,5,3,5)$

Table 4. A difference $b_{2}(N)-b_{0}(N)$

a_{3}	1	2	4	7	8	11	13	14
$b_{2}(N)-b_{0}(N)$	2	2	0	0	0	0	2	2

References

[1] P. J. Braam and S. K. Donalson, Floer's work on instanton homology, knots and surgery, The Floer memorial volume, Progr. Math. 133 Birkhauser (1995), 195-256.
[2] S. K. Donaldson, Floer homology groups in Yang-Mills theory, Cambridge University Press (2002).
[3] R. Fintushel and R. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London. Math. Soc. 61 (3) (1990), 109-137.
[4] A. Floer, An instanton-invariant for 3-manifolds, Commun. Math. Phys. 118 (2) (1988), 215-240.
[5] A. Floer, Instanton homology, surgery, and knots, Geometry of low-dimensional manifolds 1, London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990), 97-114.
[6] K. A. FrøYShov, Equivariant aspects of Yang-Mills Floer theory, Topology 41 (3) (2002), 525-552.
[7] P. A. Kirk and E. P. Klassen, Representation spaces of Seifert fibered homology spheres, Topology, 30 (1) (1991), 77-95.
[8] W. D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math. 788, Springer-Verlag (1980), 125-144.
[9] W. D. Neumann and F. Raymond, Seifert Manifolds, Plumbing, $\bar{\mu}$-Invariant and Orientation Reversing Maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), Lecture Notes in Math. 664, Springer-Verlag (1978), 163-196.
[10] N. Saveliev, Adding relations to instanton homology groups of Seifert fibered homology spheres, Russian Acad. Sci. Sb. Math. 77 (1994), 497-510.
[11] N. SAVELIEV, Floer homology of Brieskorn homology spheres, J. Differential Geom. 53 (1) (1999), 15-87.
[12] N. SavELIEV, Invariants for Homology 3-Spheres, Springer-Verlag (2002).
[13] C. H. Taubes, Casson's invariant and gauge theory, J. Differential Geom. 31 (2) (1990), 547-599.

Present Address:
Department of Mathematics, Keio University,
Hiyoshi, Kонокu-ku, Yoкоhama, Kanagawa, 223-8522 Japan.
e-mail: ton@math.keio.ac.jp

