Токуо J. Матн. Vol. 29, No. 2, 2006

A Relation on Floer Homology Groups of Homology Handles

Atsushi TOMODA

Keio University (Communicated by Y. Maeda)

Abstract. We prove a relationship on the rank of the Floer homology groups of integral homology handles. Moreover we make a conjecture on a certain difference between these ranks.

1. Introduction

Let Σ denote a Seifert homology 3-sphere $\Sigma(a_1, \ldots, a_n)$. By performing 0-surgery along the *n*-th singular fiber k_n of Σ , we obtain a homology handle $\Sigma + 0 \cdot k_n$, which is denoted by *N*. The Floer homology group $HF_*(N)$ can be calculated from that of homology 3-spheres exploiting the Floer exact triangle. In this paper we shall prove a relationship among the Floer homology groups of integral homology handles *N*. The main result is the following:

THEOREM 1. Let a_i (i = 1, ..., n) be relatively coprime positive integers, and $\Sigma(a_1, ..., a_n)$ the Seifert homology 3-sphere corresponding to the data a_i . We denote by N and N^* the homology handles $\Sigma(a_1, ..., a_n) + 0 \cdot k_n$ and $\Sigma(a_1, ..., a_{n-1}, m - a_n) + 0 \cdot k_n$ respectively, where $m = a_1a_2 \cdots a_{n-1}$. Let $b_i(N)$ denote the rank of the Floer homology group $HF_i(N)$ $(0 \le i \le 7)$. We then obtain the following relationship between $b_i(N)$ and $b_i(N^*)$:

$$b_2(N) - b_0(N) = b_2(N^*) - b_0(N^*).$$

REMARK. Here, the grading on the Floer homology group $HF_*(N)$ is assigned from the triple $(\Sigma, \Sigma + (-1) \cdot k_n, N)$, where Σ denotes $\Sigma(a_1, \ldots, a_n)$; See also Theorem in Section 2.

In the last section we would like to form a conjecture on the number $b_2(N) - b_0(N)$ for $N = \Sigma(a_1, a_2, a_3) + 0 \cdot k_3$. Finally we provide lists on the ranks of the Floer homology groups of N, which support our conjecture.

2. Review of floer homology groups

The Floer homology group for integral homology 3-spheres is defined as follows; see

Received February 19, 2004; revised December 9, 2005

ATSUSHI TOMODA

Floer [4]. Let *M* be an integral homology 3-sphere and *P* the trivial SU(2)-bundle over *M*. We then obtain a chain complex $C_*(M)$ that is a free **Z**-module generated by the gauge equivalence classes of flat connections on *P*. The chain complex has a natural **Z**/8-grading via the index theorem, which is called the Floer index. The homology group of $C_*(M)$ is the Floer homology group of *M* and denoted by $HF_*(M)$. We shall denote the rank of $HF_i(M)$ by $b_i(M)$ ($0 \le i \le 7$). For the details of the Floer homology group, we refer to Donaldson [2].

Floer [5] extended the Floer homology groups to integral homology handles, namely 3manifolds N whose integral homology group is isomorphic to that of $S^2 \times S^1$. In order to define this homology group we need to change some conditions in the setting above. First of all the trivial SU(2)-bundle is replaced by a unique non-trivial SO(3)-bundle Q on N. Hence there does not exist a trivial flat connection θ on Q. As a result, $HF_*(N)$ has no absolute grading of $\mathbb{Z}/8$.

Consider an integral homology 3-sphere M and a knot k in M. We obtain another integral homology 3-sphere $M + (-1) \cdot k$ and a homology handle $M + 0 \cdot k$ by (-1)- and 0-surgery along k respectively. By handle attaching we also have suitable cobordisms X, Y, Z, whose boundary component is either $M, M + (-1) \cdot k$ or $M + 0 \cdot k$. These cobordisms give rise to homomorphisms on Floer homology groups. Floer proved the following:

THEOREM 2 (Floer [5], Braam-Donaldson [1]). Let M, $M + (-1) \cdot k$ and $M + 0 \cdot k$ be as above. We then have the following long exact sequence of Floer homology groups:

$$\cdots \to HF_{*+1}(M+0\cdot k) \xrightarrow{Z_*} HF_*(M) \xrightarrow{X_*} HF_*(M+(-1)\cdot k)$$
$$\xrightarrow{Y_*} HF_*(M+0\cdot k) \to \cdots .$$

Here X_*, Y_*, Z_* *are homomorphisms induced by* X, Y, Z*; see*[5] *for the details.*

The long exact sequence above is called the Floer exact triangle. Owing to the Floer exact triangle above we can determine a grading of $HF_*(M + 0 \cdot k)$. Then we denote the rank of $HF_i(M + 0 \cdot k)$ by $b_i(M + 0 \cdot k)$ in the same way as in the case of homology 3-spheres.

3. Floer homology groups of seifert homology 3-spheres

Let a_1, \ldots, a_n be positive integers which are relatively coprime. Then the Seifert homology 3-sphere $\Sigma(a_1, \ldots, a_n)$ is obtained as a Seifert manifold with the Seifert invariant $(g, (1, b_0), (a_1, b_1), \ldots, (a_n, b_n))$ which satisfies equations g = 0 and $b_0 + \sum_{i=1}^n b_i/a_i =$ $1/a_1 \cdots a_n$. The presentation of the Seifert invariant is same as in Neumann-Raymond [9]. In particular, when n = 3, $\Sigma(a_1, a_2, a_3)$ is called a Brieskorn homology 3-sphere and $\Sigma(a_1, a_2, a_3) = \{(z_1, z_2, z_3) \in \mathbb{C}^3 | z_1^{a_1} + z_2^{a_2} + z_3^{a_3} = 0\} \cap S^5$. See [9].

We regard the *i*-th singular fiber corresponding to a_i as a knot, and denote it by k_i . By performing the (-1)-surgery (0-surgery), we obtain a Seifert homology 3-sphere

A RELATION ON FLOER HOMOLOGY GROUPS OF HOMOLOGY HANDLES

 $\Sigma(a_1, \dots, a_n) + (-1) \cdot k_i \text{ (a Seifert manifold } \Sigma(a_1, \dots, a_n) + 0 \cdot k_i, \text{ resp.). It is easy to prove}$ $\Sigma(a_1, \dots, a_n) + (-1) \cdot k_n = \Sigma(a_1, \dots, a_{n-1}, m + a_n), \tag{1}$

see Saveliev [10]. Furthermore, we obtain the following:

THEOREM 3. There is an orientation-reversing diffeomorphism between $\Sigma(a_1, \ldots, a_n) + 0 \cdot k_n$ and $\Sigma(a_1, \ldots, a_{n-1}, m - a_n) + 0 \cdot k_n$.

PROOF. We first note that $\Sigma = \Sigma(a_1, \ldots, a_n)$ has a Seifert invariant $(g; (1, b_0), (a_1, b_1), \ldots, (a_n, b_n))$. Then the Seifert invariant of $N = \Sigma + 0 \cdot k_n$ is $(g; (1, b_0), (a_1, b_1), \ldots, (a_{n-1}, b_{n-1}), (m, r))$; see Saveliev [10]. Here r is an integer that satisfies

$$\begin{vmatrix} a_n & b_n \\ -m & r \end{vmatrix} = 1 \,,$$

and hence $r = (1 - mb_n)/a_n$. Then as a corollary of Theorem 1.1. in [9], it follows that a Seifert invariant of \overline{N} is $(g; (1, -b_0), (a_1, -b_1), \dots, (a_{n-1}, -b_{n-1}), (m, -r))$, where \overline{N} stands for N with the reversed orientation. Put $s = b_0m + \sum_{i=1}^{n-1} b_i a_1 \cdots \check{a_i} \cdots a_{n-1} + b_n$. Then we obtain a Seifert invariant $(g; (1, -b_0), (a_1, -b_1), \dots, (a_{n-1}, -b_{n-1}), (m - a_n, s))$ of $\Sigma^* = \Sigma(a_1, \dots, a_{n-1}, m - a_n)$. In the same way as in the case of N, we can calculate the Seifert invariant for $N^* = \Sigma^* + 0 \cdot k_n$; the Seifert invariant is $(g; (1, -b_0), (a_1, -b_1), \dots, (a_{n-1}, -b_{n-1}), (m, t))$. Here t is an integer that satisfies

$$\begin{vmatrix} m-a_n & s \\ -m & t \end{vmatrix} = 1 \,,$$

and hence $t = (1 - ms)/(m - a_n)$. It then follows that

$$r + t = \frac{m}{a_n(m - a_n)} \left(1 - ma_n \left(b_0 + \sum_{i=1}^n \frac{b_i}{a_i} \right) \right) = 0.$$

Thus we obtain t = -r. Therefore, N^* is diffeomorphic to \overline{N} preserving the orientations. \Box

Fintushel and Stern [3] proved that the Floer index of every non-trivial flat connection over a Brieskorn homology 3-sphere Σ is even. Therefore the boundary operator ∂ of $C_*(\Sigma)$ is trivial, so that we have $HF_*(\Sigma) = C_*(\Sigma)$. Kirk and Klassen [7] and Saveliev [10] proved the same fact for every Seifert homology 3-sphere. Moreover, Saveliev proved that it also holds for the homology handle obtained from a Seifert homology 3-sphere by 0-surgery along a singular fiber k. He also proved that its Floer exact triangle is a splitting exact sequence:

$$0 \to HF_*(\Sigma) \xrightarrow{X_*} HF_*(\Sigma + (-1) \cdot k) \xrightarrow{Y_*} HF_*(\Sigma + 0 \cdot k) \to 0.$$

This gives rise to an equality:

$$b_i(\Sigma + 0 \cdot k) = b_i(\Sigma + (-1) \cdot k) - b_i(\Sigma)$$
 for $i = 0, ..., 7$. (2)

ATSUSHI TOMODA

Frøyshov [6] further proved that $HF_i(\Sigma)$ is isomorphic to $HF_{i+4}(\Sigma)$, so that we obtain $b_0(\Sigma) = b_4(\Sigma)$ and $b_2(\Sigma) = b_6(\Sigma)$. Then Taubes' theorem [13] implies $b_0(\Sigma) + b_2(\Sigma) = b_4(\Sigma) + b_6(\Sigma) = \lambda(\Sigma)$, where $\lambda(\Sigma)$ is the Casson invariant of Σ . Also exploiting the identities above, Saveliev [11] proved

$$b_2(\Sigma) - b_0(\Sigma) = b_6(\Sigma) - b_4(\Sigma) = \bar{\mu}(\Sigma), \qquad (3)$$

where $\bar{\mu}$ is Neumann's $\bar{\mu}$ -invariant [8] of Σ . On the other hand Neumann [8] proved that every Seifert homology 3-sphere $\Sigma(a_1, \ldots, a_n)$ satisfies

$$\bar{\mu}(\Sigma(a_1,\ldots,a_n)) = \pm \bar{\mu}(\Sigma(a_1,\ldots,a_{n-1},2m\pm a_n)).$$
(4)

Let *N* be $\Sigma(a_1, \ldots, a_n) + 0 \cdot k_n$. With $b_i(N)$, we have the following result. When we fix $a_1, a_2, \ldots, a_{n-1}$, then $b_0(N) + b_2(N)$ is independent of a_n . On the other hand, $b_2(N) - b_0(N)$ depends only on a_n ; See Saveliev [12] p. 156.

4. Proof of main theorem and observation

We shall denote $\Sigma(a_1, \ldots, a_n)$ by Σ and $\Sigma(a_1, \ldots, a_{n-1}, m - a_n)$ by Σ^* . Also we denote $\Sigma + 0 \cdot k_n$ by N and $\Sigma^* + 0 \cdot k_n$ by N^* .

As we observed, the triples $(\Sigma, \Sigma + (-1) \cdot k_n, N)$ and $(\Sigma^*, \Sigma^* + (-1) \cdot k_n, N^*)$ determines an absolute grading of $HF_*(N)$ and $HF_*(N^*)$ respectively.

PROOF OF THEOREM 1. The equations (2) and (1) imply

$$b_2(N) - b_0(N) = b_2(\Sigma + (-1) \cdot k_n) - b_2(\Sigma) - b_0(\Sigma + (-1) \cdot k_n) + b_0(\Sigma)$$

 $= b_2(\Sigma(a_1, ..., a_{n-1}, m + a_n)) - b_2(\Sigma) - b_0(\Sigma(a_1, ..., a_{n-1}, m + a_n))$
 $+ b_0(\Sigma)$

and

$$b_2(N^*) - b_0(N^*) = b_2(\Sigma^* + (-1) \cdot k_n) - b_2(\Sigma^*) - b_0(\Sigma^* + (-1) \cdot k_n) + b_0(\Sigma^*)$$

= $b_2(\Sigma(a_1, \dots, a_{n-1}, 2m - a_n)) - b_2(\Sigma^*)$
 $- b_0(\Sigma(a_1, \dots, a_{n-1}, 2m - a_n)) + b_0(\Sigma^*).$

Therefore, by (3) we obtain

$$b_2(N) - b_0(N) = \bar{\mu}(\Sigma(a_1, \dots, a_{n-1}, m + a_n)) - \bar{\mu}(\Sigma)$$

and

$$b_2(N^*) - b_0(N^*) = \bar{\mu}(\Sigma(a_1, \dots, a_{n-1}, 2m - a_n)) - \bar{\mu}(\Sigma^*)$$

= $\bar{\mu}(\Sigma(a_1, \dots, a_{n-1}, 2m - a_n)) - \bar{\mu}(\Sigma(a_1, \dots, a_{n-1}, 2m - (m + a_n))).$

Applying the formula (4), we have

$$b_2(N) - b_0(N) = b_2(N^*) - b_0(N^*)$$

A RELATION ON FLOER HOMOLOGY GROUPS OF HOMOLOGY HANDLES

EXAMPLE 1. We shall denote $\Sigma(4, 5, a_3)$ by Σ and $\Sigma + 0 \cdot k_3$ by N. The table 1 is about the ranks of $HF_*(\Sigma)$, $HF_*(\Sigma + (-1) \cdot k_3)$, and $HF_*(N)$. In the Table 1 we only list (b_0, b_2, b_4, b_6) since b_1, b_3, b_5 and b_7 are equal to zero.

TABLE 1. The ranks of $HF_*(\Sigma)$, $HF_*(\Sigma + (-1) \cdot k_3)$, and $HF_*(N)$

а	$b_i(\varSigma)$	$b_i(\varSigma + (-1) \cdot k_3)$	$b_i(N)$
1	(0,0,0,0)	(6,9,6,9)	(6,9,6,9)
3	(1,1,1,1)	(8,9,8,9)	(7,8,7,8)
7	(2,3,2,3)	(10,10,10,10)	(8,7,8,7)
9	(4,3,4,3)	(11,11,11,11)	(7,8,7,8)
11	(4,4,4,4)	(11,12,11,12)	(7,8,7,8)
13	(5,5,5,5)	(13,12,13,12)	(8,7,8,7)
17	(7,6,7,6)	(14,14,14,14)	(7,8,7,8)
19	(9,6,9,6)	(15,15,15,15)	(6,9,6,9)
-			

The Table 2 shows the difference $b_2 - b_0$ of $HF_*(N)$. The Theorem 1 says that the second row $b_2 - b_0$ of the table is symmetric with respect to $10 = 4 \cdot 5/2$.

TABLE 2. A difference $b_2(N) - b_0(N)$									
<i>a</i> ₃	1	3	7	9	11	13	17	19	
$b_2(N) - b_0(N)$	3	1	-1	1	1	-1	1	3	

The following conjecture comes from numerous calculations of Floer homology groups based on a computer. The calculations are divided into two parts. The former one is the program to determine the SU(2)-representation space of the fundamental group. The latter one is to calculate the Floer index for every representation according to Fintushel-Stern's formula (see [3]) and to apply the Floer exact triangle.

CONJECTURE 1. Let a_1, a_2 be coprime positive odd integers and a_3 be the largest integers satisfying $(a_1, a_3) = (a_2, a_3) = 1$ and $a_3 \leq (a_1a_2 - 1)/2$. Put $N = \Sigma(a_1, a_2, a_3) + 0 \cdot k_3$. Then it holds that

$$b_2(N) - b_0(N) = 0$$
.

REMARK. We checked that Conjecture 1 is true if $a_1 + a_2 \leq 50$. We also see that the assumption in Conjecture 1 is essential. For example, we have $b_2(N) - b_0(N) = 2$ for $N = \Sigma(3, 11, 14) + 0 \cdot k_3$ while $b_2(N') - b_0(N') = 1$ for $N' = \Sigma(2, 5, 3) + 0 \cdot k_3$.

EXAMPLE 2. We shall exhibit a couple of lists below which support Conjecture 1. Here $\Sigma = \Sigma(3, 5, a_3)$ and $N = \Sigma + 0 \cdot k_3$. In the Table 3 we list only (b_0, b_2, b_4, b_6) as in the Table 1.

ATSUSHI TOMODA

<i>a</i> 3	$b_i(\Sigma)$	$b_i(\varSigma+(-1)\cdot k_3)$	$b_i(N)$
1	(0,0,0,0)	(3,5,3,5)	(3,5,3,5)
2	(1,0,1,0)	(4,5,4,5)	(3,5,3,5)
4	(1, 1, 1, 1)	(5,5,5,5)	(4,4,4,4)
7	(2,2,2,2)	(6,6,6,6)	(4,4,4,4)
8	(2,2,2,2)	(6,6,6,6)	(4,4,4,4)
11	(3,3,3,3)	(7,7,7,7)	(4,4,4,4)
13	(4,3,4,3)	(7,8,7,8)	(3,5,3,5)
14	(5,3,5,3)	(8,8,8,8)	(3,5,3,5)

TABLE 3. The ranks of $HF_*(\Sigma)$, $HF_*(\Sigma + (-1) \cdot k_3)$, and $HF_*(N)$

TABLE 4. A difference $b_2(N) - b_0(N)$

<i>a</i> ₃	1	2	4	7	8	11	13	14
$b_2(N) - b_0(N)$	2	2	0	0	0	0	2	2

References

- P. J. BRAAM and S. K. DONALSON, Floer's work on instanton homology, knots and surgery, *The Floer memorial volume*, Progr. Math. 133 Birkhauser (1995), 195–256.
- [2] S. K. DONALDSON, Floer homology groups in Yang-Mills theory, Cambridge University Press (2002).
- [3] R. FINTUSHEL and R. STERN, Instanton homology of Seifert fibred homology three spheres, Proc. London. Math. Soc. 61 (3) (1990), 109–137.
- [4] A. FLOER, An instanton-invariant for 3-manifolds, Commun. Math. Phys. 118 (2) (1988), 215–240.
- [5] A. FLOER, Instanton homology, surgery, and knots, *Geometry of low-dimensional manifolds* 1, London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990), 97–114.
- [6] K. A. FRØYSHOV, Equivariant aspects of Yang-Mills Floer theory, Topology 41 (3) (2002), 525–552.
- [7] P. A. KIRK and E. P. KLASSEN, Representation spaces of Seifert fibered homology spheres, Topology, 30 (1) (1991), 77–95.
- [8] W. D. NEUMANN, An invariant of plumbed homology spheres, *Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979)*, Lecture Notes in Math. **788**, Springer-Verlag (1980), 125–144.
- [9] W. D. NEUMANN and F. RAYMOND, Seifert Manifolds, Plumbing, μ-Invariant and Orientation Reversing Maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), Lecture Notes in Math. 664, Springer-Verlag (1978), 163–196.
- [10] N. SAVELIEV, Adding relations to instanton homology groups of Seifert fibered homology spheres, Russian Acad. Sci. Sb. Math. 77 (1994), 497–510.
- [11] N. SAVELIEV, Floer homology of Brieskorn homology spheres, J. Differential Geom. 53 (1) (1999), 15-87.
- [12] N. SAVELIEV, Invariants for Homology 3-Spheres, Springer-Verlag (2002).
- [13] C. H. TAUBES, Casson's invariant and gauge theory, J. Differential Geom. 31 (2) (1990), 547–599.

Present Address: DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY, HIYOSHI, KOHOKU-KU, YOKOHAMA, KANAGAWA, 223–8522 JAPAN. *e-mail*: ton@math.keio.ac.jp