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Shape Derivative of Energy Functional in an Infinite Elastic Strip
with a Semi-Infinite Crack
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Abstract. Inthispaper we study linear elasticity equationsin an infinite elastic strip with a semi-infinite crack.
We find the derivative of the energy functional as the crack shifts with an angle. Then we obtain the formula given
by surface force and the angle.

1. Introduction

Analysis of fracture phenomena has been a major subject of solid mechanics from the
mathematical viewpoint since Griffith’'s work [6]. The important parameter in fracture me-
chanics “energy release rate” (first in [6]) isthe variation of energy with respect to the crack
growth in a straight line, which depends only on the coefficients of leading terms of the as-
ymptotic solution of fields near the moving crack tip. There are many pieces of research
on the variation of energy by the tangential perturbation of cracks asin [2, 4, 5, 11, 13].
Non-tangential perturbation becomes very interested in shape sensitivity analysis of cracks.
Because, in shape sensitivity analysis, results say that shape functional depends only on the
normal component of the perturbation (see e.g. Theorem 2.27 (P. 59) in [14] by Sokolowski
and Zolésio), however in fracture, the importance is in shape sensitivity in tangentia direc-
tion. The singularity at the crack tip is the leading cause of the difference. In [8] Khludnev,
Ohtsuka and Sokolowski studied the shape derivative under unilatera boundary conditions
considered at the crack faces, which implies non-penetration between the crack face. Asa
general perturbation of the crack is given, they derived the derivative of the energy functional
with respect to the perturbation parameter. In this paper we consider linear elasticity equa-
tionsin an infinite elastic strip with a semi-infinite crack under the free traction condition on
the crack. Then, we show herethat the derivative of the energy functional changesin arbitrary
direction, and derive the formula given by surface force and the angle.

In section 2 we introduce our result for stationary problem. This problem leads to a
singular integra equation by the potential theory (see for example, [1], [9]). By proving
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the compactness of the singular integral operator and using the results of [7] and [10], the
existence of a unique solution is proved by the Fredholm alternative.

In section 3, using the result of [3], we consider a boundary value problem for shifted
crack with an angle from the initial crack. And we can solve the problem by virtue of the
method in [7].

In section 4, following [11] and [12], we derive the derivative of energy functional with
respect to diding parameter represented by the surface force and the angle.

2. Preéliminaries

By u = (ui)i=12,3, € = (&ij)i, j=1,2.3 and o = (0i;)i, j=1,2,3 We denote the displacement
vector, the strain tensor and the stress tensor, respectively. The linear elasticity equations for
a homogeneous isotropic material consist of the constitutive law (Hooke's law)

0ij = 2ueij + rekdij, i, j=1,2,3 (1)
and the equilibrium conditions without any body forces

0 .
chr,-jzo, i,j=123. 2
Here and in what follows we use the summation convention. A and ;1 are Lamé constants, §;
isthe Kronecker’s delta. The strain-displacement relation is given by

1
gij = E(ui’j +uji), uij=odu, i,j=1273. (©))

In the state of a plane strain, third component u3 of the displacement u is zero, while the
components u1 and u» are functions of x; and x2 only, hence ¢;3 = 0, 613 = 023 = 0. Let
2 ={(x1,x2) | x1 € R, —a < x2 < a} (a > 0) beastripin R?, representing a homogeneous
elagtic plate. Then (2) gives the system of equations

A@)u=0 4)
foru = (u1,up)", where A(dy) = A(5%, -2),
pEZ+ A+ wEE (A + ik
O+ ek uE? 4+ (L + 2

We assume the shearing strain .« > 0 and the modulus of compression 31 + 2 > 0, in which
caseit iseasy to seethat the operator A iselliptic. Moreover we introduce the boundary stress
operator T (3y) = T (52, 52 defined by

x1’ Oxp

A(sl,sz)=( ) £2 =2 +&2.

T(F&, &) = <()» + 2u)viér + puv2é2 [VoE1 + Avién > |

Aé1 + pvié2 uviér + (A + 2p) v
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wherev = (v1, v2) T isthe unit outward normal to 952. Inthecaseof v = (0, 1)T

_( H&2 pé1
T(e &) = (Agl ot 21%2) .

We denote by I" = {(x1,0) | —oo < x1 < 0} thecrack in £2. On the crack we assume
the free traction condition

ai;.rvj =o,;v;=0 on r+, (5)

where I'* mean both sidesof I". Hereforevery x € I', crljF(x) = lim,_ 400;; (x £ nvy) with
the normal unit vector v,, inthiscase v, = (0, 1) or v, = (0, —1). Thelimitvaluasvi;r and

o;; may be different in general, therefore o;; may haveajumpon I". On 982, = {(x1, a) |

x1 € R}, 02— = {(x1, —a) | x1 € R} (a > 0) the boundary conditions
u=0 on 982_, (6)
ojjv; = pi oOn 0824 @)

areimposed, where p; are given continuous functionson 9.2,
We introduce the class K of functions u (x) with the properties (cf. [9]):
1) ueCl@\IHNC3L\TI),
2) VueC%2\T\{(0 0},
3) inthe neighborhood of (0, 0) there exist constants C > 0 and ¢ > —1 such that

[Vu(x)| < Clx|®* as x— 0, (8)

4) forevery x € 0§24 there existsauniform limit of (v, Viu(x)) asx € 2 \ I" tends
tox € 92+ aong the normal —vy.

Furthermore, we introducetheclass g = {u# | u — 0 as |x| — oo}.

Next, it iswell known that the fundamental matrix of A(d,) is given explicitly by

1 D11 Dlz)
D 9 = _—~ 9 9
*, ) Ao+ 1) (Dzl Doo ©)
(x2 — y2)?

Du=2nlnjx —y|+20—-1+2 >
lx =yl

1= y)(r2 — y2)

D]_Z:DZ]_: s
lx — y|2
2
~ - X1—y1
D22=2uln|x—y|+2u—1+2%’
lx — ¥l
__ A+3u
ot u

Inview of (9), D(x, y) = D(y,x) = D(y, x)".
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Along with D(x, y) we consider the matrix of singular solutions
P(x,y) = (T@)D(y, )T,
which iswritten explicitly as

1

P(an)z_Z

9 In| |1+‘1_1 9 In| Vi
2 nte — P29 ne—
vy Y 410ty Y
2 ii(x—yﬂ(x—y))

a+1 aty lx — y|2

oY

+ (10)

with7 = (39), 7 = (% 3)andt = (r1, 72)T aunit tangential vector to 92+ U I".

Now wedenoteby D and P thereflection of D(x, y) and P(x, y) with respectto 32_ =
{(x1, —a) | x1 € R}, respectively:

pen=o((2) () -2((Latn) (1)
ren=r((2)-C)-r((2 ) (2) @

Then it is obvious that the columns of D(x, y) and P (x, y) vanish on 952_.
Using the potential theory, we will find a solution of problem (4)—7) in the form

u(x1, x2) = Vo, (9) + Vr(f) + Wr(g), (13)

where

Voo, (9) = /m D(x, y)g(y)dy1.
Vir(f) = /F D(x,y) f(y)dy1,

Wr(g) = /F P(x, y)g(y)dy1 .

Now let us introduce function spaces. By C%¢(G) we denote a Holder space with
exponent o € (0, 1) of functions defined on a domain G and by CY#(G) the subspace
of functions of Cl-class whose first order derivatives belong to C%#(G), g € (0,1). If
(f, g) € CO%I) x (CO¥82,) N CLA(IN), then it is easily seen that u defined by (13)
is continuous on 924 U I'* and satisfies (4) and (6). Substituting (13) into (5) and (7), we
deduce the integral equationsfor g (cf. [1], [7]). Then, we can derive the equations

((3)-(3) =
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1

With Z = T(Vao, + Wr).
Now we introduce the new space Cf}“ (G) defined by

CYUG) = {f(x) € COUG) | fx)=0( x| V) as|x| > 00} (1<y)
equipped with the norm
lglly.e = lglly,c0 +19la
oo = S| A+ 1901 lole= S w
We say that g belong to C9% (I') if x (x)g(x) € C%*(I"), where

e[ if xp > -1,

x(x) =

[x|¥ if x1 < -1,
€ [0, 1). And itsnormis defined by
”g”y,w,a =l xx)gx) llo,« -

As shown in [9], [7], for (f, g) € CO%(I") x (CO*(824) N Cy%(I") u in the form (13)
belongsto class K. In particular, theinequality (8) holdswithe = —w if w € (0, 1). Inverting
the singular integral operator, we arrive at the integral equation of second kind (cf. [10])

R(y) dys ~
(I -1 <—g( )) 2R(x) /R — /‘am TD(y.2)g(z)dz1

as R—o0, xel, (15)

wheretheintegra Y1(f) on I" isin the sense of principal value,

R(y)d 1
Yi(f(x) = 2R(x)/ L) ylf( oJe y)——) f(2)dz1,

R Yy —X

R(x) =+ (x + R)x

and
2
0T, 0Ty

with
(x—Tx - y))

0(x.y) 2 <|n| -1+
X, =———= X — —
Y 7+ 1) Y lx — y|?
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onn=o((3)- (1)) -el( ) ()

In(14) Z can berepresented as Zg = K19 + K2g, where

1 1
K19 = v.p./ g( )dyl,
I, X1—y1 \a (16)

K29 =(Z - K1)g.

Then K3 has a 1-singular kernel and K2 is a non-singular operator. Applying the operator
(K1 — 31) to both sides of (14), we have

1 1, 1
(s 2o (22} ) = (k- 21) )

Similarly, the operator Y1 can be decomposed into
Y1 = Y11+ Yo,
where Y11 hasa1-singular kernel and Y1 isanon-singular operator.

In [7] we remarked the following.

REMARK 1. Problem (4)«7) hasauniquesolutionu € KNg forany p € C}(}"‘(SQJF)
withany « € (0,1) andany y > 1.

Moreover, we require stronger regularity of g.
REMARK 2. If p e C1(052;), then g € C1(024) N €25 () withw € (0, 1).

This Remark can be proved in a similar way asin the proof of Theorem 2in[7].

3. Theproblem for perturbed crack

In this section we consider a boundary value problem for shifted crack with an angle
from theinitial crack.

Now let us consider the shifted crack I'; from theinitial crack I”
Ie={x;|x.=x0+eX,x0€ '} (18)

with X = (cosfp, sinfp) and the diding parameter ¢ > 0. This means that I, shifts ¢
with an angle 6p from I". Then we deduce the boundary value problem with respect to the
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displacement u
Au, =0 in £\ T,

(%) Tu, =0 on I'*,

&

u, =0 on 0£2_,
Tu, =p on 8[2+ y

where I'" mean both sides of I, We seek asolution u, of problem (x) in the form
U = U+ el s (19)

where u is a solution of problem (4)—(7). Differentiation of Tu, on FsjE with respect to ¢
yields

Letting e — 0, we get

=0.

. ou ou .,
T|u—+ — cosbgp+ — sinb
3 a 1":&

X1 X2

Inview of (4)—(7), (19) and (x) we obtain the boundary value problem of i:
Ai=0 in 2\,

Ti=-T 3_”00390+al5m90 on I'*
(%) 0x1 dx2 '
=0 on 04£_,

Tu=0 on 08;.

Similarly for u we can apply the potential theory to problem (xx), so that the solution of
() isdescribed in the form

(x1, x2) = Vo, (h1) + Vi (ho) + Wr(h1), (20)

where (hz, h1) € C% (1) x (C2%(3824) N Cyh(I), y > 1, w € (0,1), have the
similar propertiesas (f, g). In order for i in (20) to satisfy the boundary condition in (xx) we
substitute (20) into (xx) and derive the integral equationson 92 and I".

i (2) v , 9((2)-(2 2o
() (3 )



392 HIROMICHI ITOU AND ATUSI TANI

L) ()ayn=(2) = oe

Ityields
1 X1 X1 y1 y1
e3i2(5)+ [, 72 ((5)- () ()
~ (( x1 1 n
wup [ 15 () (5)) (5 ) o
0 ~((x1 n i 0
-2 : h
o 2((5)-(5)m(s)]
Jd =~ X1 1 Gl y1i
v.p. — , —h d
wup [ 50 ((5) () e ()
du ou . +
=—T | — cosby + — sinég on I'*.
dx1 dxo
Note that
2 2
Injlx —y| = In|x —
brgor, M TN = s ke
2 2
In — = — In — .
drgov, XTI = mg g Nk =l

Then using integration by parts and Remark 2, we can rewrite (22) to
1 X1 ~ ((x1 1 y1
e (5) L, o ((5)- () () e
= X1 y1 yi
oo [0 ((5)-(5))(6) e
0 ~((x1 y1 0 V1
.p. — —h d
oo e ((5) (3) 5 ()
Ao a2 ((6)- (Do ()
952, 0X1 0 a a
0 = ((x ) 8% (n
+Vv.p. - 8th << 0 ) , < 0 )) ay%g < 0 dy1 ) cos6o
0 =~ ((x y1 y1 197
—TD + -——=
(Lo a2 ((5)- () () a2

0 = ((x w\\ 9% (n -
o 503 (2) (3.

(21)

(22)

(23)

(24)
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since k1 vanishes at the crack tip. Subtracting and adding two equationsin (24) yield

82
ha(x) = — ox2 —9(x), (29)

Lo mo((5) Gl o
wu [ 15((%5): (5 ))ra( Jon
wup | afo<<’z:) (5 a5 o

AL a2 ((5)- (2 ) o

cun [ gmo((0) (0 g ) eos

(L aaro((5) () (;>dn

v [ o((5)(3) (3 ) anaf . o

Substituting (25) into (26) leads to the similar formula as (15)

R (.. e
(I—Yl)—hloc) 2R(x) v TVag,h1—TVr——g
1

)

. d - 9
+8nbo| —T Vi, g+ —Y2g ) dy
dx2 0Vy

as R—>oo, xel, (27)

nern [ 0((3) (3) 2 (3)o

Applying Remark 1 and Remark 2 for problem (x:x), we can get a unique solution i.

+ costo [ 2 9
o\ ox 9T,

where

4. Shapederivative of energy

In this section we cal cul ate shape derivative of energy functional.
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Let IT be the potential energy functional defined by
H(u):/ E(u,u)dx—/ s-udxg, (28)
Q\r 9924
E (u, u) istheinternal energy density
E(u,u) = 108 = {x(u 24 2uu? 2 2
ij€ij = 11+ u22)" + 2u(uyy +ujp) + puurz +uz 1)},

s =(s;) = (ojjvj)) =Tu.

One can easily verify if u € C2(2\ I') N CY(2\ T) N g isasolution of (4)in 2\ I', then

2/ E(u, u)dx =/ uTTudx1+2/ u ' Tu dxy. (29)
\r 3024 r

Indeed, Divergence Theorem and (4) yield that forany u € C2(2 \ I NCYR\T) Ny

0= / u' Au dx = —2/ E(u, u)dx +/ u ' Tu dxg + 2/ u' Tu dxy .
\r oQ\r 824 r

Thus, if u isasolution of problem (x), then IT(u) vanishes except on 9£2,.. Then from (19),
(28) IT(u.) iswritten by

H(us)=—%/{m plue dry = IT(u) + eI1(d) . (30)
+

Our purposeisto find the derivative of IT(u.) with respect to the sliding parameter ¢, namely,
from (30)

dn(us) — lim IT(ug) — I(u) _ H(ﬁ) . (31)
de e=0 £¢—0 &
From (15) it implies that
ad -
—g(x) =Y3(TVyg,9) on I, (32)

0x1

where

Yag= lim (1+ 72 — Y11Y10 — Y10) >
R—o0

R(y)g
{(1+Yn)( ILmOO”ZR(Z)/R y—z )}

Substituting (32) into (17) yields that

1 1 L, N\ 1
gx) = (Kle—EKz—(Z-l-TL’ )I) {<K1—§I> p} on 0824. (33)
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Similarly, h1 isdescribed by g and 6p. Indeed, from (27) it follows that

3 - - 92 .
—h1(x) =Y3| T Vs h1 —TVr—=g | + A1C0s6p + Bysingg on I, (34
0x1 8xf

where A1, By are functions defined by

d - d
A=Y\ —TYV. + —Y; s
1=1Y3 (8xl 982, 9 ot 29)

d ~ d
B1=7Y3 (a_szVBQ+g + WYZQ) .
X

Substituting (25), (34) into (21), we have
h1(x) = C 4+ Azcosbp + B2sSinfp on 982, , (35)

where

1 1 2
A= K1Kp — =Ko — | =-4+7n° )1

K 11 9 5 A
{( 1= 5 )(/Faeru,y))(— 1)},
1 1 N\ \*

Bz=<K1K2—§K2—<Z+Tr)1)

(o 3] )]

Since A;, B; and C are functions depending on g, h; depends only on surface force p for
i =1, 2. Hence, substituting (25), (34), (35) into (20), we have

A ~ . - 32
u="Vyo, (C+ A2c0s0 + B2sSn6p) + Vr<— Fg>

X

1

- - _ M
—|—V1>5<Y3<TV3_Q+ (C 4+ Az cosbg + B2sSinfp) — TVrﬁg)
X1

+ A1c0s6g + Blsine()) ,
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since (23) leads to

Wr = v
r= 0x1 r
Thus, from (30) 1 (i) iswritten as
—2IT(u) = D + Azcosfg + B3sSinfg, (36)

where

- - 92
D=/ P <V39+C+ Vr(— —zg>
9924 oxy
- - _ 92
+V1>5(Y3(TV39+C — TVr—2g>))dX1,
8xl
Az= / P (Vag, Az + ViE(Ya(T Vo, A2) + A1))dxa,
924

B3= / Pl (Vag, B2+ Vi(Ya(T Vag, B2) + B1))dx; .
02y

(31) isequivalent to

1 .
= _E(D+Agcoseo+838|n90). (37)
e=0

dI7 (ug)
de

Hence, summing up the above

THEOREM 1. Supposea homogeneous elastic body §2 with a crack I" isloaded a sur-
faceforce p. Then, asthe crack shiftswith an angle 6g the derivative of the energy functional

with respect to the diding parameter ¢ is given by the formula (37).
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