
TOKYO J. MATH.
VOL. 29, NO. 2, 2006

Shape Derivative of Energy Functional in an Infinite Elastic Strip
with a Semi-Infinite Crack

Hiromichi ITOU and Atusi TANI

Gunma University and Keio University

Abstract. In this paper we study linear elasticity equations in an infinite elastic strip with a semi-infinite crack.
We find the derivative of the energy functional as the crack shifts with an angle. Then we obtain the formula given
by surface force and the angle.

1. Introduction

Analysis of fracture phenomena has been a major subject of solid mechanics from the
mathematical viewpoint since Griffith’s work [6]. The important parameter in fracture me-
chanics “energy release rate” (first in [6]) is the variation of energy with respect to the crack
growth in a straight line, which depends only on the coefficients of leading terms of the as-
ymptotic solution of fields near the moving crack tip. There are many pieces of research
on the variation of energy by the tangential perturbation of cracks as in [2, 4, 5, 11, 13].
Non-tangential perturbation becomes very interested in shape sensitivity analysis of cracks.
Because, in shape sensitivity analysis, results say that shape functional depends only on the
normal component of the perturbation (see e.g. Theorem 2.27 (P. 59) in [14] by Sokolowski
and Zolésio), however in fracture, the importance is in shape sensitivity in tangential direc-
tion. The singularity at the crack tip is the leading cause of the difference. In [8] Khludnev,
Ohtsuka and Sokolowski studied the shape derivative under unilateral boundary conditions
considered at the crack faces, which implies non-penetration between the crack face. As a
general perturbation of the crack is given, they derived the derivative of the energy functional
with respect to the perturbation parameter. In this paper we consider linear elasticity equa-
tions in an infinite elastic strip with a semi-infinite crack under the free traction condition on
the crack. Then, we show here that the derivative of the energy functional changes in arbitrary
direction, and derive the formula given by surface force and the angle.

In section 2 we introduce our result for stationary problem. This problem leads to a
singular integral equation by the potential theory (see for example, [1], [9]). By proving
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the compactness of the singular integral operator and using the results of [7] and [10], the
existence of a unique solution is proved by the Fredholm alternative.

In section 3, using the result of [3], we consider a boundary value problem for shifted
crack with an angle from the initial crack. And we can solve the problem by virtue of the
method in [7].

In section 4, following [11] and [12], we derive the derivative of energy functional with
respect to sliding parameter represented by the surface force and the angle.

2. Preliminaries

By u = (ui)i=1,2,3, ε = (εij )i,j=1,2,3 and σ = (σij )i,j=1,2,3 we denote the displacement
vector, the strain tensor and the stress tensor, respectively. The linear elasticity equations for
a homogeneous isotropic material consist of the constitutive law (Hooke’s law)

σij = 2µεij + λεkkδij , i, j = 1, 2, 3 (1)

and the equilibrium conditions without any body forces

∂

∂xj

σij = 0 , i, j = 1, 2, 3 . (2)

Here and in what follows we use the summation convention. λ and µ are Lamé constants, δij

is the Kronecker’s delta. The strain-displacement relation is given by

εij = 1

2
(ui,j + uj,i) , ui,j = ∂jui , i, j = 1, 2, 3 . (3)

In the state of a plane strain, third component u3 of the displacement u is zero, while the
components u1 and u2 are functions of x1 and x2 only, hence εi3 = 0, σ13 = σ23 = 0. Let

Ω = {(x1, x2) | x1 ∈ R,−a < x2 < a} (a > 0) be a strip in R2, representing a homogeneous
elastic plate. Then (2) gives the system of equations

A (∂x) u = 0 (4)

for u = (u1, u2)
T, where A(∂x) = A

(
∂

∂x1
, ∂

∂x2

)
,

A(ξ1, ξ2) =
(

µξ2 + (λ + µ)ξ2
1 (λ + µ)ξ1ξ2

(λ + µ)ξ1ξ2 µξ2 + (λ + µ)ξ2
2

)
, ξ2 = ξ2

1 + ξ2
2 .

We assume the shearing strain µ > 0 and the modulus of compression 3λ+ 2µ ≥ 0, in which
case it is easy to see that the operator A is elliptic. Moreover we introduce the boundary stress

operator T (∂x) = T
(

∂
∂x1

, ∂
∂x2

)
defined by

T (Fξ1, ξ2) =
(

(λ + 2µ)ν1ξ1 + µν2ξ2 µν2ξ1 + λν1ξ2

λν2ξ1 + µν1ξ2 µν1ξ1 + (λ + 2µ)ν2ξ2

)
,
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where ν = (ν1, ν2)
T is the unit outward normal to ∂Ω . In the case of ν = (0, 1)T

T (ξ1, ξ2) =
(

µξ2 µξ1

λξ1 (λ + 2µ)ξ2

)
.

We denote by Γ = {(x1, 0) | −∞ < x1 ≤ 0} the crack in Ω . On the crack we assume
the free traction condition

σ+
ij νj = σ−

ij νj = 0 on Γ ± , (5)

where Γ ± mean both sides of Γ . Here for every x ∈ Γ , σ±
ij (x) = limη→+0 σij (x ±ηνx) with

the normal unit vector νx , in this case νx = (0, 1) or νx = (0,−1). The limit values σ+
ij and

σ−
ij may be different in general, therefore σij may have a jump on Γ . On ∂Ω+ = {(x1, a) |

x1 ∈ R}, ∂Ω− = {(x1,−a) | x1 ∈ R} (a > 0) the boundary conditions

u = 0 on ∂Ω− , (6)

σij νj = pi on ∂Ω+ (7)

are imposed, where pi are given continuous functions on ∂Ω+.
We introduce the class K of functions u(x) with the properties (cf. [9]):

1) u ∈ C0(Ω \ Γ ) ∩ C2(Ω \ Γ ),

2) ∇u ∈ C0(Ω \ Γ \ {(0, 0)}),
3) in the neighborhood of (0, 0) there exist constants C > 0 and ε > −1 such that

|∇u(x)| ≤ C|x|ε as x → 0 , (8)

4) for every x ∈ ∂Ω± there exists a uniform limit of (νx,∇x̄u(x̄)) as x̄ ∈ Ω \ Γ tends
to x ∈ ∂Ω± along the normal −νx .

Furthermore, we introduce the class ℘ = {u | u → 0 as |x| → ∞}.
Next, it is well known that the fundamental matrix of A(∂x) is given explicitly by

D(x, y) = − 1

4πµ(µ̃ + 1)

(
D11 D12

D21 D22

)
, (9)

D11 = 2µ̃ ln |x − y| + 2µ̃ − 1 + 2
(x2 − y2)

2

|x − y|2 ,

D12 = D21 = −2
(x1 − y1)(x2 − y2)

|x − y|2 ,

D22 = 2µ̃ ln |x − y| + 2µ̃ − 1 + 2
(x1 − y1)

2

|x − y|2 ,

µ̃ = λ + 3µ

λ + µ
.

In view of (9), D(x, y) = D(y, x) = D(y, x)T.
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Along with D(x, y) we consider the matrix of singular solutions

P(x, y) = (T (∂y)D(y, x))T ,

which is written explicitly as

P(x, y) = − 1

2π

(
∂

∂νy

ln |x − y|I + µ̃ − 1

µ̃ + 1

∂

∂τy

ln |x − y|Ĩ

+ 2

µ̃ + 1
Ĩ

∂

∂τy

(x − y)T(x − y)

|x − y|2
)

(10)

with I = (
1 0
0 1

)
, Ĩ = (

0 1−1 0

)
and τ = (τ1, τ2)

T a unit tangential vector to ∂Ω± ∪ Γ .

Now we denote by D̃ and P̃ the reflection of D(x, y) and P(x, y) with respect to ∂Ω− =
{(x1,−a) | x1 ∈ R}, respectively:

D̃(x, y) = D

((
x1

x2

)
,

(
y1

y2

))
− D

((
x1

−2a − x2

)
,

(
y1

y2

))
, (11)

P̃ (x, y) = P

((
x1

x2

)
,

(
y1

y2

))
− P

((
x1

−2a − x2

)
,

(
y1

y2

))
. (12)

Then it is obvious that the columns of D̃(x, y) and P̃ (x, y) vanish on ∂Ω−.
Using the potential theory, we will find a solution of problem (4)–(7) in the form

u(x1, x2) = Ṽ∂Ω+(g) + ṼΓ (f ) + W̃Γ (g) , (13)

where

Ṽ∂Ω+(g) =
∫

∂Ω+
D̃(x, y)g(y)dy1 ,

ṼΓ (f ) =
∫

Γ

D̃(x, y)f (y)dy1 ,

W̃Γ (g) =
∫

Γ

P̃ (x, y)g(y)dy1 .

Now let us introduce function spaces. By C0,α(G) we denote a Hölder space with

exponent α ∈ (0, 1) of functions defined on a domain G and by C1,β(G) the subspace
of functions of C1-class whose first order derivatives belong to C0,β(G), β ∈ (0, 1). If

(f, g) ∈ C0,α(Γ ) × (C0,α(∂Ω+) ∩ C1,β(Γ )), then it is easily seen that u defined by (13)
is continuous on ∂Ω+ ∪ Γ ± and satisfies (4) and (6). Substituting (13) into (5) and (7), we
deduce the integral equations for g (cf. [1], [7]). Then, we can derive the equations

f

(
x1

0

)
=

(
0
0

)
on Γ ,
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Z + 1

2
I

)
g = p on ∂Ω+ (14)

with Z = T (Ṽ∂Ω+ + W̃Γ ).

Now we introduce the new space C0,α
γ (G) defined by

C0,α
γ (G) = {f (x) ∈ C0,α(G) | f (x) = O(| x |−γ ) as |x| → ∞} (1 < γ )

equipped with the norm

‖g‖γ,α = ‖g‖γ,∞ + |g|α ,

‖g‖γ,∞ = sup
x∈G

| (1 + |x|γ )g(x) | , |g|α = sup
x,x̃∈G,x 
=x̃

|g(x) − g(x̃)|
|x − x̃|α .

We say that g belong to C0,α
γ,w(Γ ) if χ(x)g(x) ∈ C0,α(Γ ), where

χ(x) =
{

|x|γ if x1 ≥ −1 ,

|x|w if x1 < −1 ,

w ∈ [0, 1). And its norm is defined by

‖g‖γ,w,α =‖ χ(x)g(x) ‖0,α .

As shown in [9], [7], for (f, g) ∈ C0,α
γ,w(Γ ) × (C0,α

γ (∂Ω+) ∩ C
1,β
γ,w(Γ )) u in the form (13)

belongs to class K. In particular, the inequality (8) holds with ε = −w if w ∈ (0, 1). Inverting
the singular integral operator, we arrive at the integral equation of second kind (cf. [10])

(I − Y1)

(
∂

∂x1
g(x)

)
= 1

π2R(x)

∫ 0

−R

R(y) dy1

y − x

∫
∂Ω+

T D̃(y, z)g(z)dz1

as R → ∞ , x ∈ Γ , (15)

where the integral Y1(f ) on Γ is in the sense of principal value,

Y1(f (x)) = 1

π2R(x)

∫ 0

−R

R(y) dy1

y − x

∫
Γ

(
∂

∂τz

Q̃(z, y) − 1

z − y

)
f (z)dz1 ,

R(x) = √
(x + R)x

and

T P̃ = − ∂2

∂τx∂τy

Q̃

with

Q(x, y) = − 2µ

π(µ̃ + 1)

(
ln |x − y|I − I + (x − y)T(x − y)

|x − y|2
)

,
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Q̃(x, y) = Q

((
x1

x2

)
,

(
y1

y2

))
− Q

((
x1

−2a − x2

)
,

(
y1

y2

))
.

In (14) Z can be represented as Zg = K1g + K2g , where

K1g = v.p.

∫
∂Ω+

1

x1 − y1
g
(

y1

a

)
dy1 ,

K2g = (Z − K1)g .

(16)

Then K1 has a 1-singular kernel and K2 is a non-singular operator. Applying the operator

(K1 − 1
2 I) to both sides of (14), we have

(
K1K2 − 1

2
K2 −

(
1

4
+ π2

)
I

)
g =

(
K1 − 1

2
I

)
p . (17)

Similarly, the operator Y1 can be decomposed into

Y1 = Y11 + Y10 ,

where Y11 has a 1-singular kernel and Y10 is a non-singular operator.

In [7] we remarked the following.

REMARK 1. Problem (4)–(7) has a unique solution u ∈ K∩℘ for any p ∈ C0,α
γ (∂Ω+)

with any α ∈ (0, 1) and any γ > 1.

Moreover, we require stronger regularity of g .

REMARK 2. If p ∈ C1,α
γ (∂Ω+), then g ∈ C1,α

γ (∂Ω+) ∩ C
2,β
γ,w+1(Γ ) with w ∈ (0, 1).

This Remark can be proved in a similar way as in the proof of Theorem 2 in [7].

3. The problem for perturbed crack

In this section we consider a boundary value problem for shifted crack with an angle
from the initial crack.

Now let us consider the shifted crack Γε from the initial crack Γ

Γε = {xε | xε = x0 + εX, x0 ∈ Γ } (18)

with X = (cos θ0, sin θ0) and the sliding parameter ε > 0. This means that Γε shifts ε

with an angle θ0 from Γ . Then we deduce the boundary value problem with respect to the



SHAPE DERIVATIVE OF ENERGY FUNCTIONAL 391

displacement uε

(∗)




Auε = 0 in Ω \ Γε ,

T uε = 0 on Γ ±
ε ,

uε = 0 on ∂Ω− ,

T uε = p on ∂Ω+ ,

where Γ ±
ε mean both sides of Γε . We seek a solution uε of problem (∗) in the form

uε = u + εû , (19)

where u is a solution of problem (4)–(7). Differentiation of T uε on Γ ±
ε with respect to ε

yields

0 = T

(
∂uε

∂ε
+ ∂uε

∂x1

∂

∂ε
ε cos θ0 + ∂uε

∂x2

∂

∂ε
ε sin θ0

)∣∣∣∣
Γ ±

ε

.

Letting ε → 0, we get

T

(
û + ∂u

∂x1
cos θ0 + ∂u

∂x2
sin θ0

)∣∣∣∣
Γ ±

= 0 .

In view of (4)–(7), (19) and (∗) we obtain the boundary value problem of û:

(∗∗)




Aû = 0 in Ω \ Γ ,

T û = −T

(
∂u

∂x1
cos θ0 + ∂u

∂x2
sin θ0

)
on Γ ± ,

û = 0 on ∂Ω− ,

T û = 0 on ∂Ω+ .

Similarly for u we can apply the potential theory to problem (∗∗), so that the solution of
(∗∗) is described in the form

û(x1, x2) = Ṽ∂Ω+(h1) + ṼΓ (h2) + W̃Γ (h1) , (20)

where (h2, h1) ∈ C
0,α
γ,w+1(Γ ) × (C0,α

γ (∂Ω+) ∩ C
1,β
γ,w(Γ )), γ > 1, w ∈ (0, 1), have the

similar properties as (f, g). In order for û in (20) to satisfy the boundary condition in (∗∗) we
substitute (20) into (∗∗) and derive the integral equations on ∂Ω+ and Γ .

It is easily obtained

1

2
h1

(
x1

a

)
+ v.p.

∫
∂Ω+

T D̃

((
x1

a

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+
∫

Γ

T D̃

((
x1

a

)
,

(
y1

0

))
h2

(
y1

0

)
dy1
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+
∫

Γ

T P̃

((
x1

a

)
,

(
y1

0

))
h1

(
y1

0

)
dy1 =

(
0
0

)
on ∂Ω+ . (21)

It yields

±1

2
h2

(
x1

0

)
+

∫
∂Ω+

T D̃

((
x1

0

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+ v.p.

∫
Γ ±

T D̃

((
x1

0

)
,

(
y1

0

))
h2

(
y1

0

)
dy1

− ∂

∂τx

Q̃

((
x1

0

)
,

(
y1

0

))
h1

(
y1

0

) ∣∣∣∣
0

y1=−∞

+ v.p.

∫
Γ ±

∂

∂τx

Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1
h1

(
y1

0

)
dy1

= −T

(
∂u

∂x1
cos θ0 + ∂u

∂x2
sin θ0

)
on Γ ± . (22)

Note that

∂2

∂x2∂τx

ln |x − y| = ∂2

∂x1∂νx

ln |x − y| ,

∂2

∂x2∂νx

ln |x − y| = − ∂2

∂x1∂τx

ln |x − y| .
(23)

Then using integration by parts and Remark 2, we can rewrite (22) to

±1

2
h2

(
x1

0

)
+

∫
∂Ω+

T D̃

((
x1

0

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+ v.p.

∫
Γ ±

T D̃

((
x1

0

)
,

(
y1

0

))
h2

(
y1

0

)
dy1

+ v.p.

∫
Γ ±

∂

∂τx

Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1
h1

(
y1

0

)
dy1

= −
{( ∫

∂Ω+

∂

∂x1
T D̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1

+v.p.

∫
Γ ±

∂

∂τx

Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g
(

y1

0

)
dy1

)
cos θ0

+
( ∫

∂Ω+

∂

∂x2
T D̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1 ± 1

2

∂2

∂x2
1

g(x)

+ v.p.

∫
Γ ±

∂

∂νx

Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g
(

y1

0

)
dy1

)
sin θ0

}
, (24)
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since h1 vanishes at the crack tip. Subtracting and adding two equations in (24) yield

h2(x) = − ∂2

∂x2
1

g(x) , (25)

∫
∂Ω+

T D̃

((
x1

0

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+ v.p.

∫
Γ

T D̃

((
x1

0

)
,

(
y1

0

))
h2

(
y1

0

)
dy1

+ v.p.

∫
Γ

∂

∂τx

Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1
h1

(
y1

0

)
dy1

= −
{( ∫

∂Ω+

∂

∂x1
T D̃

((
x1

0

)
,

(
y1

a

))
g
(

y1

a

)
dy1

+ v.p.

∫
Γ

∂

∂τx

Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g
(

y1

0

)
dy1

)
cos θ0

+
( ∫

∂Ω+

∂

∂x2
T D̃

((
x1

0

)
,

(
y1

a

))
g
(

y1

a

)
dy1

+ v.p.

∫
Γ

∂

∂νx

Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g
(

y1

0

)
dy1

)
sin θ0

}
. (26)

Substituting (25) into (26) leads to the similar formula as (15)

(I − Y1)
∂

∂x1
h1(x) = 1

π2R(x)

∫ 0

−R

R(y)

y − x

{
T Ṽ∂Ω+h1 − T ṼΓ

∂2

∂x2
1

g

+ cos θ0

(
∂

∂x1
T Ṽ∂Ω+g + ∂

∂τx

Y2g
)

+ sin θ0

(
∂

∂x2
T Ṽ∂Ω+g + ∂

∂νx

Y2g
)}

dy1

as R → ∞ , x ∈ Γ, (27)

where

Y2(f ) = v.p.

∫
Γ

Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

f

(
y1

0

)
dy1 .

Applying Remark 1 and Remark 2 for problem (∗∗), we can get a unique solution û.

4. Shape derivative of energy

In this section we calculate shape derivative of energy functional.
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Let Π be the potential energy functional defined by

Π(u) =
∫

Ω\Γ
E(u, u) dx −

∫
∂Ω±

s · u dx1 , (28)

E(u, u) is the internal energy density

E(u, u) = 1

2
σij εij = 1

2
{λ(u1,1 + u2,2)

2 + 2µ(u2
1,1 + u2

2,2) + µ(u1,2 + u2,1)
2} ,

s = (si ) = (σij νj ) = T u .

One can easily verify if u ∈ C2(Ω \ Γ ) ∩ C1(Ω \ Γ ) ∩ ℘ is a solution of (4) in Ω \ Γ , then

2
∫

Ω\Γ
E(u, u)dx =

∫
∂Ω±

uTT udx1 + 2
∫

Γ

uTT u dx1 . (29)

Indeed, Divergence Theorem and (4) yield that for any u ∈ C2(Ω \ Γ ) ∩ C1(Ω \ Γ ) ∩ ℘

0 =
∫

Ω\Γ
uTAu dx = −2

∫
Ω\Γ

E(u, u)dx +
∫

∂Ω±
uTT u dx1 + 2

∫
Γ

uTT u dx1 .

Thus, if u is a solution of problem (∗), then Π(u) vanishes except on ∂Ω+. Then from (19),
(28) Π(uε) is written by

Π(uε) = −1

2

∫
∂Ω+

pT · uε dx1 = Π(u) + εΠ(û) . (30)

Our purpose is to find the derivative of Π(uε) with respect to the sliding parameter ε, namely,
from (30)

dΠ(uε)

dε

∣∣∣∣
ε=0

= lim
ε→0

Π(uε) − Π(u)

ε
= Π(û) . (31)

From (15) it implies that

∂

∂x1
g(x) = Y3(T Ṽ∂Ω+g) on Γ , (32)

where

Y3g = lim
R→∞((1 + π2)I − Y11Y10 − Y10)

−1

{(
I + Y11

)(
lim

R→∞
1

π2R(z)

∫ 0

−R

R(y)g
y − z

dy1

)}
.

Substituting (32) into (17) yields that

g(x) =
(

K1K2 − 1

2
K2 − (

1

4
+ π2)I

)−1 {(
K1 − 1

2
I

)
p

}
on ∂Ω+ . (33)
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Similarly, h1 is described by g and θ0. Indeed, from (27) it follows that

∂

∂x1
h1(x) = Y3

(
T Ṽ∂Ω+h1 − T ṼΓ

∂2

∂x2
1

g
)

+ A1 cos θ0 + B1 sin θ0 on Γ , (34)

where A1, B1 are functions defined by

A1 = Y3

(
∂

∂x1
T Ṽ∂Ω+g + ∂

∂τx

Y2g
)

,

B1 = Y3

(
∂

∂x2
T Ṽ∂Ω+g + ∂

∂νx

Y2g
)

.

Substituting (25), (34) into (21), we have

h1(x) = C + A2 cos θ0 + B2 sin θ0 on ∂Ω+ , (35)

where

C =
(

K1K2 − 1

2
K2 −

(
1

4
+ π2

)
I

)−1

{(
K1 − 1

2
I

)(
I +

∫
Γ

∂

∂τx
Q̃(x, y)Y3

)(
T ṼΓ

∂2

∂x2
1

g
)}

,

A2 =
(

K1K2 − 1

2
K2 −

(
1

4
+ π2

)
I

)−1

{(
K1 − 1

2
I

) (∫
Γ

∂

∂τx

Q̃(x, y)

)
(−A1)

}
,

B2 =
(

K1K2 − 1

2
K2 −

(
1

4
+ π2

)
I

)−1

{(
K1 − 1

2
I

) (∫
Γ

∂

∂τx

Q̃(x, y)

)
(−B1)

}
.

Since Ai , Bi and C are functions depending on g , hi depends only on surface force p for
i = 1, 2. Hence, substituting (25), (34), (35) into (20), we have

û = Ṽ∂Ω+ (C + A2 cos θ0 + B2 sin θ0) + ṼΓ

(
− ∂2

∂x2
1

g
)

+Ṽ ∗
Γ

(
Y3

(
T Ṽ∂Ω+ (C + A2 cos θ0 + B2 sin θ0) − T ṼΓ

∂2

∂x2
1

g
)

+ A1 cos θ0 + B1 sin θ0

)
,
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since (23) leads to

W̃Γ = ∂

∂x1
Ṽ ∗

Γ .

Thus, from (30) Π(û) is written as

−2Π(û) = D + A3 cos θ0 + B3 sin θ0 , (36)

where

D =
∫

∂Ω+
pT ·

(
Ṽ∂Ω+C + ṼΓ

(
− ∂2

∂x2
1

g
)

+Ṽ ∗
Γ

(
Y3

(
T Ṽ∂Ω+C − T ṼΓ

∂2

∂x2
1

g
)))

dx1 ,

A3 =
∫

∂Ω+
pT · (Ṽ∂Ω+A2 + Ṽ ∗

Γ (Y3(T Ṽ∂Ω+A2) + A1))dx1 ,

B3 =
∫

∂Ω+
pT · (Ṽ∂Ω+B2 + Ṽ ∗

Γ (Y3(T Ṽ∂Ω+B2) + B1))dx1 .

(31) is equivalent to

dΠ(uε)

dε

∣∣∣∣
ε=0

= −1

2
(D + A3 cos θ0 + B3 sin θ0) . (37)

Hence, summing up the above

THEOREM 1. Suppose a homogeneous elastic body Ω with a crack Γ is loaded a sur-
face force p. Then, as the crack shifts with an angle θ0 the derivative of the energy functional
with respect to the sliding parameter ε is given by the formula (37).
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