An Example of Set-theoretic Complete Intersection Lattice Ideal

Kazufumi ETO
Nippon Institute of Technology
(Communicated by K. Taniyama)

Abstract. We prove that the monomial curve $\left(t^{17}, t^{19}, t^{25}, t^{27}\right)$ is set-theoretic complete intersection.

1. Introduction

It has been questioned whether every curve in affine space is set-theoretic complete intersection or not. We say that the curve in affine N-space is set-theoretic complete intersection, if it is defined by $N-1$ polynomials, that is, its defining ideal is generated by $N-1$ polynomials up to radical. In general, Cowsik and Nori proved that it is true, if the characteristic of the base field is positive ([3]). If the characteristic is zero, the question is open now. Even the monomial curve case is open in general. A monomial curve is defined as the curve $\left\{\left(t^{n_{1}}, t^{n_{2}}, \ldots, t^{n_{N}}\right): t \in k\right\}$ where $n_{1}, n_{2}, \ldots, n_{N}$ are natural numbers whose greatest common divisor is one. There are a lot of partial results for this question for monomial curves. See $[1,2,4,5,8,9,10,12]$. In most of them, it is affirmatively proved by finding $N-2$ binomials (a binomial is the polynomial of the form a monomial minus a monomial) and one polynomial so that the defining ideal I of a monomial curve is generated by them up to radical, or finding set-theoretic complete intersection subideal J of I and a polynomial f satisfying $I=\sqrt{J+(f)}$. In fact, I is generated by binomials and it is proved in [11] that I is a complete intersection if it is generated by $N-1$ binomials up to radical. Hence, in general case, to prove set-theoretic complete intersection for monomial curves, we have to find more than one polynomials which is not binomials. The case when we only needs one such polynomial is studied in [6]. And it also proved that the monomial curve $C=\left(t^{17}, t^{19}, t^{25}, t^{27}\right)$ is never defined by two binomials and one polynomial up to radical. In this paper, we prove

THEOREM 1. The monomial curve $\left(t^{17}, t^{19}, t^{25}, t^{27}\right)$ is set-theoretic complete intersection.

In fact, we find one binomial and two polynomials which is not binomials so that C is defined by them, by new and unique method.
2. The monomial curve $\left(t^{17}, t^{19}, t^{25}, t^{27}\right)$

Let k be a field. In this section, we prove that the monomial curve $C=$ $\left\{\left(t^{17}, t^{19}, t^{25}, t^{27}\right): t \in k\right\}$ in affine 4 -space is set-theoretic complete intersection.

Let $V=\operatorname{Ker}(17,19,25,27)$ the submodule in \mathbf{Z}^{4} (note that we regard (17, 19, 25, 27) as the map from \mathbf{Z}^{4} to $\left.\mathbf{Z}\right)$. For each $v \in V$, put $F(v)=X^{v^{-}}-X^{v^{+}}$in $A=k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ where $v^{+}=\sum_{i=1}^{4} \max \left\{\sigma_{i}(v), 0\right\} e_{i}, v^{-}=\sum_{i=1}^{4} \max \left\{-\sigma_{i}(v), 0\right\} e_{i}$, and σ_{i} denotes the i-th entry of v for each i. Then the defining ideal I of C is generated by all $F(v)$ where $v \in V$ (cf. [8]). In general, for given submodule W in \mathbf{Z}^{N}, the ideal in a polynomial ring generated by all $F(v)$ for $v \in W$ is called a lattice ideal.

The defining ideal I of C is weighted homogeneous; i.e. if we put $\operatorname{deg} X_{1}=17$, $\operatorname{deg} X_{2}=19, \operatorname{deg} X_{3}=25$ and $\operatorname{deg} X_{4}=27$, then each $F(v)$ is homogeneous, thus I is homogeneous. Throughout this paper, the degree means this weighted degree.

Put $v_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 1 \\ -1\end{array}\right), v_{2}=\left(\begin{array}{c}-3 \\ 4 \\ -1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{c}6 \\ 0 \\ -3 \\ -1\end{array}\right)$. Then $V=\mathbf{Z} v_{1}+\mathbf{Z} v_{2}+\mathbf{Z} v_{3}$ (recall $V=\operatorname{Ker}(17,19,25,27))$. It is certified from the following calculation of the determinant;

$$
\left|\begin{array}{ccc}
1 & 4 & 0 \\
1 & -1 & -3 \\
-1 & 0 & -1
\end{array}\right|=17
$$

Further, I is minimally generated by

$$
\begin{gather*}
F\left(v_{1}\right), F\left(v_{2}\right), F\left(v_{2}-v_{1}\right), F\left(v_{2}-2 v_{1}\right), F\left(v_{2}-3 v_{1}\right) \\
F\left(v_{3}\right), F\left(v_{3}+v_{1}\right), F\left(v_{3}+2 v_{1}\right), F\left(v_{3}+3 v_{1}\right) \tag{*}
\end{gather*}
$$

This follows from the following Gastinger's theorem;
THEOREM 2 ([7]). Let $A=k\left[X_{1}, \ldots, X_{N}\right]$ be a polynomial ring, $I \subset A$ the defining ideal of a monomial curve defined by natural numbers n_{1}, \ldots, n_{N} whose greatest common divisor is 1 . And let $J \subset I$ be a subideal. Then $J=I$ if and only if $\operatorname{dim}_{k} A / J+\left(X_{i}\right)=n_{i}$ for some i. (Note that the above conditions are also equivalent to $\operatorname{dim}_{k} A / J+\left(X_{i}\right)=n_{i}$ for any i.)

Indeed, let J be the ideal generated by the all binomials in $(*)$. Since

$$
J+\left(X_{1}\right)=\left(X_{1}, X_{2} X_{3}, X_{2}^{4}, X_{2}^{3} X_{4}, X_{2}^{2} X_{4}^{2}, X_{3}^{4}-X_{2} X_{4}^{3}, X_{3}^{3} X_{4}, X_{3}^{2} X_{4}^{2}, X_{3} X_{4}^{3}, X_{4}^{4}\right)
$$

$A / J+\left(X_{1}\right)$ is the vector space whose basis consists of the images of monomials

$$
\begin{gathered}
1, X_{2}, X_{2}^{2}, X_{2}^{3}, X_{3}, X_{3}^{2}, X_{3}^{3}, X_{4}, X_{2} X_{4}, X_{2}^{2} X_{4}, X_{3} X_{4}, X_{3}^{2} X_{4}, \\
X_{4}^{2}, X_{2} X_{4}^{2}, X_{3} X_{4}^{2}, X_{4}^{3}, X_{2} X_{4}^{3}
\end{gathered}
$$

hence its dimension is 17 . By Theorem 2, we have $J=I$. Further, we see that it is a minimal generating system again by Theorem 2 (if one binomial in J were removed, the dimension of $A / J+\left(X_{1}\right)$ increases $)$.

Now we start to prove that I is set-theoretic complete intersection. For each n, we define the polynomial

$$
f_{n}\left(Z_{0}, \ldots, Z_{n}\right)=\sum_{i=0}^{n}(-1)^{n}\binom{n}{i} Z_{i}
$$

Put

$$
\begin{array}{lll}
M_{00}=X_{1}^{27} & M_{10}=X_{1}^{21} X_{3}^{3} X_{4} & M_{20}=X_{1}^{15} X_{3}^{6} X_{4}^{2} \\
M_{01}=X_{1}^{18} X_{2}^{4} X_{3}^{2} X_{4} & M_{11}=X_{1}^{12} X_{2}^{4} X_{3}^{5} X_{4}^{2} & M_{21}=X_{1}^{6} X_{2}^{4} X_{3}^{8} X_{4}^{3} \\
M_{02}=X_{1}^{9} X_{2}^{8} X_{3}^{4} X_{4}^{2} & M_{12}=X_{1}^{3} X_{2}^{8} X_{3}^{7} X_{4}^{3} & M_{22}=X_{2}^{5} X_{3}^{7} X_{4}^{7} \\
M_{03}=X_{2}^{12} X_{3}^{6} X_{4}^{3} & M_{13}=X_{2}^{6} X_{3}^{3} X_{4}^{10} & M_{23}=X_{4}^{17}
\end{array}
$$

$G_{i}=f_{3}\left(M_{i 0}, M_{i 1}, M_{i 2}, M_{i 3}\right)$ for $i=0,1,2$ and $G=f_{2}\left(G_{0}, G_{1}, G_{2}\right)$. Note that the degree of $M_{i j}$ is 459 for each i, j, thus $G_{i} \in I$ for each i and $G \in I$.

Put $w=50 e_{2} \in \mathbf{Z}^{4}$. Then $X^{w}=X_{2}^{50}$ and $X^{w+6 v_{1}-14 v_{2}-6 v_{3}}=X_{3}^{38}$. And put $A_{l}=$ $\sum_{i=0}^{l}(-1)^{i}\binom{20}{i}$ for $l=0, \ldots, 20$ and $B_{l}=\sum_{i=0}^{l}(-1)^{i}\binom{14}{i}$ for $l=0, \ldots, 14$. We define the polynomial H as follows;

$$
\begin{aligned}
H= & X^{w}+\sum_{i=1}^{12}\left(A_{i}-B_{i-1}\right) X^{w-i v_{2}}+\left(-A_{1}+B_{1}\right) X^{w-3 v_{1}-v_{2}-v_{3}} \\
& +\sum_{i=2}^{11}\left(-A_{i}+B_{i}\right) X^{w-i v_{2}-v_{3}}+\sum_{i=12}^{16}\left(-A_{i}+A_{i+1}\right) X^{w-12 v_{2}-(i-11) v_{3}} \\
& +\left(-A_{17}+B_{12}\right) X^{w-12 v_{2}-6 v_{3}}+\left(A_{18}-B_{12}\right) X^{w+3 v_{1}-13 v_{2}-5 v_{3}} \\
& +\left(-A_{18}+B_{13}\right) X^{w+3 v_{1}-13 v_{2}-6 v_{3}}+X_{3}^{38}
\end{aligned}
$$

Clearly, each term in H is indeed a monomial in A and has the same degree 950. Note $B_{0}=A_{0}=1$ and $B_{13}=A_{19}=-1$. Substituting 1 for all $X_{i} \in H$, it becomes 0 , thus $H \in I$.

Now we prove $I=\sqrt{\left(F\left(v_{1}\right), G, H\right)}$. Let \mathfrak{p} be a prime ideal containing the ideal $\left(F\left(v_{1}\right), G, H\right)$. If \mathfrak{p} contains a monomial, then it contains all monomials by the choice of $F\left(v_{1}\right), G$ and H, hence it is a maximal ideal. Assume that \mathfrak{p} does not contain any monomial. We claim $I=\mathfrak{p}$. If it were proved, the assertion follows from this. To prove the claim, it is enough to prove it in the Laurent ring $k\left[X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, X_{3}^{ \pm 1}, X_{4}^{ \pm 1}\right]$.

Consider $M_{i j} M_{i(j+1)}^{-1}$ for each i, j. Then each of them is equal to one of $X_{1}^{9} X_{2}^{-4} X_{3}^{-2} X_{4}^{-1}, X_{1}^{6} X_{2}^{-1} X_{3} X_{4}^{-4}, X_{1}^{3} X_{2}^{2} X_{3}^{4} X_{4}^{-7}$ or $X_{2}^{5} X_{3}^{7} X_{4}^{-10}$. And

$$
X_{1}^{9} X_{2}^{-4} X_{3}^{-2} X_{4}^{-1} \equiv X_{1}^{6} X_{2}^{-1} X_{3} X_{4}^{-4} \equiv X_{1}^{3} X_{2}^{2} X_{3}^{4} X_{4}^{-7} \equiv X_{2}^{5} X_{3}^{7} X_{4}^{-10}
$$

$\bmod \left(F\left(v_{1}\right)\right)$. Thus we have

$$
\begin{aligned}
G_{0} & =X_{1}^{27} f_{3}\left(1, X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4},\left(X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4}\right)^{2},\left(X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4}\right)^{3}\right) \\
& =X_{1}^{27}\left(1-X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4}\right)^{3} \\
G_{1} & \equiv X_{1}^{21} X_{3}^{3} X_{4}\left(1-X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4}\right)^{3} \quad \bmod \left(F\left(v_{1}\right)\right) \\
G_{2} & \equiv X_{1}^{15} X_{3}^{6} X_{4}^{2}\left(1-X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4}\right)^{3} \quad \bmod \left(F\left(v_{1}\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
G & \equiv f_{2}\left(X_{1}^{27}, X_{1}^{21} X_{3}^{3} X_{4}, X_{1}^{15} X_{3}^{6} X_{4}^{2}\right)\left(1-X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4}\right)^{3} \\
& \equiv X_{1}^{27}\left(1-X_{1}^{-6} X_{3}^{3} X_{4}\right)^{2}\left(1-X_{1}^{-9} X_{2}^{4} X_{3}^{2} X_{4}\right)^{3} \\
& \equiv X_{1}^{27}\left(1-X^{-v_{3}}\right)^{2}\left(1-X^{v_{2}-v_{3}}\right)^{3} \quad \bmod \left(F\left(v_{1}\right)\right) .
\end{aligned}
$$

Since \mathfrak{p} contains $F\left(v_{1}\right)$ and G, it also contains $F\left(-v_{3}\right)$ or $F\left(v_{2}-v_{3}\right)$. Thus we have to consider two cases.
(Case 1) Assume that \mathfrak{p} contains $F\left(-v_{3}\right)$. Then

$$
\begin{aligned}
H \equiv & X^{w}+\sum_{i=1}^{12}\left(A_{i}-B_{i-1}\right) X^{w-i v_{2}}+\left(-A_{1}+B_{1}\right) X^{w-v_{2}} \\
& +\sum_{i=2}^{11}\left(-A_{i}+B_{i}\right) X^{w-i v_{2}}+\sum_{i=12}^{16}\left(-A_{i}+A_{i+1}\right) X^{w-12 v_{2}} \\
& +\left(-A_{17}+B_{12}\right) X^{w-12 v_{2}}+\left(A_{18}-B_{12}\right) X^{w-13 v_{2}} \\
& +\left(-A_{18}+B_{13}\right) X^{w-13 v_{2}}+X^{w-14 v_{2}} \\
\equiv & X^{w}+\sum_{i=1}^{13}\left(B_{i}-B_{i-1}\right) X^{w-i v_{2}}+X^{w-14 v_{2}} \\
& \equiv X^{w}+\sum_{i=1}^{13}(-1)^{i}\binom{14}{i} X^{w-i v_{2}}+X^{w-14 v_{2}} \\
\equiv & X^{w}\left(1-X^{-v_{2}}\right)^{14} \bmod \left(F\left(v_{1}\right), F\left(v_{3}\right)\right) .
\end{aligned}
$$

Hence \mathfrak{p} contains $F\left(v_{2}\right)$ and I, thus $\mathfrak{p}=I$.
(Case 2) Assume that \mathfrak{p} contains $F\left(v_{2}-v_{3}\right)$. Then

$$
\begin{aligned}
H \equiv & X^{w}+\sum_{i=1}^{12}\left(A_{i}-B_{i-1}\right) X^{w-i v_{2}}+\left(-A_{1}+B_{1}\right) X^{w-2 v_{2}} \\
& +\sum_{i=2}^{11}\left(-A_{i}+B_{i}\right) X^{w-(i+1) v_{2}}+\sum_{i=12}^{16}\left(-A_{i}+A_{i+1}\right) X^{w-(i+1) v_{2}} \\
& +\left(-A_{17}+B_{12}\right) X^{w-18 v_{2}}+\left(A_{18}-B_{12}\right) X^{w-18 v_{2}} \\
& +\left(-A_{18}+B_{13}\right) X^{w-19 v_{2}}+X^{w-20 v_{2}} \\
\equiv & X^{w}+\sum_{i=1}^{19}\left(A_{i}-A_{i-1}\right) X^{w-i v_{2}}+X^{w-20 v_{2}} \\
\equiv & X^{w}+\sum_{i=1}^{19}(-1)^{i}\binom{20}{i} X^{w-i v_{2}}+X^{w-20 v_{2}} \\
\equiv & X^{w}\left(1-X^{-v_{2}}\right)^{20} \bmod \left(F\left(v_{1}\right), F\left(v_{2}-v_{3}\right)\right) .
\end{aligned}
$$

Hence \mathfrak{p} contains $F\left(v_{2}\right)$ and I, thus $\mathfrak{p}=I$. In any case, we have $\mathfrak{p}=I$ and conclude

$$
\sqrt{\left(F\left(v_{1}\right), G, H\right)}=I
$$

References

[1] H. Bresinsky, Monomial space curves in \mathbf{A}^{3} as set-theoretic complete intersections, Proc. Amer. Math. Soc. 75 (1979), 23-24.
[2] H. Bresinsky, Monomial Gorenstein curves in \mathbf{A}^{4} as set-theoretic complete intersections, Manuscripta Math. 27 (1979), 353-358.
[3] R. C. Cowsik and M. V. Nori, Affine curves in characteristic p are set theoretic complete intersections, Inventiones Math. 45 (1978), 111-114.
[4] S. Eliahou, Idéaux de définition des courbes monomiales, in Complete Intersections, Lecture Notes in Math. vol. 1092, Springer-Verlag (1984), 229-240.
[5] K. Eto, Almost complete intersection monomial curves in A ${ }^{4}$, Comm. in Algebra 22 (1994), 5325-5342.
[6] K. Eto, Set-theoretic complete intersection lattice ideals in monoid rings, J. Algebra 299 (2006), 689-706.
[7] W. Gastinger, Über die Verschwindungsideale monomialer Kurven, PhD thesis, Univ. Regensburg, Landshut (1989).
[8] E. KunZ, Einführung in die kommutative Algebra und Algebraische Geometrie, Viehweg (1979).
[9] D. P. Patil, Certain monomial curves are set-theoretic complete intersections, Manuscripta Math. 68 (1990), 399-404.
[10] A. Thoma, On the set-theoretic complete intersection problem for monomial curves in A^{n} and P^{n}, J. Pure and Appl. Algebra 104 (1995), 333-344.
[11] A. THOMA, On the binomial arithmetical rank, Arch. Math. 74 (2000), 22-25.
[12] G. Valla, On determinantal ideals which are set-theoretic complete intersections, Compositio Math. 42 (1981), 3-11.

Present Address:
Department of Mathematics, Nippon Institute of Technology,
SAITAMA, 345-8501 JAPAN.

