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1. Introduction

Let k be an algebraically closed field of characteristic zero. Throughout the present
article we fix k as the ground field. Let X be a smooth projective surface and B a reduced
curve on X. Then we define the m-genus P,,[ B] and the Kodaira dimension «[ B] as follows
(cf. [4]): Let f : V — X be a birational morphism such that the strict transform D =
f/(B) becomes a digjoint union of smooth curves. Then P,,[B] := h%(V, m(D + Ky)) and
k[B] := k(D + Ky, V), where Ky isthe canonical divisoron V and «(D + Ky, V) isthe
(D + Ky)-dimension of V (cf. [1]). Notethat P,,[B] = P,,(V — D) and«[B] = k(V — D),
where P,,(V — D) (resp. k(V — D)) denotes the logarithmic m-genus (resp. the logarithmic
Kodaira dimension) of V — D (cf. [1] and [11]).

Pairs (X, B) of smooth projective rational surfaces X and irreducible curves B on X
were studied from the viewpoint of birational geometry by litaka[2, 5], Matsuda[9] and the
others. In [3] and [4], litaka studied reducible curves B on smooth projective rational surfaces
such that #(B) = 2, where #(B) is the number of irreducible components of B. In particular,
he proved the following result.

THEOREM 1.1. ([4]) Let B beareduced curve ona smooth projective rational surface
X with#(B) < 2. Thenk[B] = —oc if and only if P>[B] = 0.

In the present article, by using the theory of open algebraic surfaces, we study reduced
curves on smooth projective rational surfaces. In 83, we give a simple proof of Theorem 1.1
by using the structure theorems of open algebraic surfaces (cf. §82). In 84, we study the case
where B consists of two rational curves and «[B] = 0 or 1 and give a structure theorem of
such a pair, which improves [4, Proposition 3]. In 85, we consider the relation of P,,[B] and
k[Blwhen#(B) < 4.
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2. Preliminary results

We recall some basic notionsin the theory of peeling. For more details, see[12, Chapter
2]. Let (X, B) beapair of a smooth projective surface X and an SNC-divisor B (i.e., B isa
reduced divisor on X and has only simple normal crossings as singularities). We call such a
pair (X, B) an SNC-pair. A connected curve T consisting of irreducible components of B (a
connected curvein B, for short) isatwig if the dual graph of T isalinear chain and T meets
B — T inasingle point at one of the end components of T', the other end of T is called thetip
of T. A connected curve R (resp. F) in B isarod (resp. fork) if R (resp. F) is a connected
component of B and the dua graph of R (resp. F) is alinear chain (resp. the dual graph
of the exceptional curves of the minimal resolution of a non-cyclic quotient singularity). A
connected curve E in B isrational (resp. admissible) if each irreducible component of E is
rationa (resp. if there are no (—1)-curves in Supp (E) and the intersection matrix of E is
negative definite). An admissible rational twig 7 in B is maximal if 7 is not extended to an
admissible rational twig with moreirreducible components of B.

Let {T}} (resp. {R.}, {F.}) be the set of all admissible rational maximal twigs (resp.
all admissible rational rods, all admissible rational forks), where no irreducible components
of T;’s belong to R,’s or F,’s. Then there exists a unique decomposition of B as a sum of
effective Q-divisors B = B* 4+ Bk (B) such that the following two conditions i) and ii) are
satisfied:

|) SUPP (Bk (B)) =, ) U (UMRM) U Uy F).

i) (B + Ky - Z) = Ofor every irreducible component Z of Supp (BKk (B)).

We call the Q-divisor Bk (B) the bark of B and say that B¥ + K x is produced by the peeling
of B.

DEFINITION 2.1. Let (X, B) bean SNC-pair. Then (X, B) issaid to be almost mini-
mal if, for every irreducible curve C on X, either (B + Kx - C) > 0or (B¥+ Kx - C) <0
and the intersection matrix of C + Bk (B) is not negative definite.

LEMMA 2.2. Let (X, B) be an SNC-pair. Then there exists a birational morphism
wu = X — W onto a smooth projective surface W such that the following four conditions (i) ~
(iv) are satisfied:

(i) C := pu4(B)isan SNC-divisor.
(i) w«(Bk (B)) < Bk (C) and u«(B* + Kx) = C* + Ky .
(iii) P,(X — B) = P,(W — C) for every integer n > 1. In particular, k(X — B) =
k(W —=0C).

(iv) Thepair (W, C) isalmost minimal.

PROOF. See[12, Theorem 2.3.11.1 (p. 107)]. m|

InLemma 2.2, we call the pair (W, C) an almost minimal mode of (X, B).

DEFINITION 2.3. Let (X, B) beapair of asmooth projective surface X and areduced
curve Bon X. Let f : W — X beabirational morphism such that the strict transform f/(B)



REDUCIBLE PLANE CURVES 303

becomes a digoint union of smooth curves and let (V, D) be an amost minimal model of
the SNC-pair (W, f'(B)). Then we call the SNC-pair (V, D) an almost minimal model of
(X, B).

In order to prove the resultsin 883 ~ 5, we use the following lemmas frequently (Lem-
mas 2.4 ~ 2.11).

LEMMA 2.4. Let (V, D) beanalmost minimal SNC-pair. Then ic(V — D) > 0if and
only if D* + Ky isnef. Moreover, (D¥ + Ky)2 > 0ifk(V — D) = 2.

PROOF. See[12, Theorem 3.15.1 (p. 116)]. a

LEMMA 2.5. Let (V, D) be an SNC-pair. Let f : V — V be the contraction of
Supp (Bk (D)), V being a normal projective surface with only quotient singularities, and let
D = f,(D"). Assumethat (V, D) isalmost minimal and i (V — D) = —oo. Then we have
either (1) or (2) below:

(1) VvV — Disaffineruled, i.e.,, V — D contains a non-empty Zariski open subset iso-

morphic to Al x Uy, where Ug is a smooth curve.

(2) p(V) = 1, where p(V) denotes the Picard number of V, and —(D + Ky) isan

ample Q-Cartier divisor.

PROOF. See[12, Theorem 3.15.1 (p. 116)]. a

LEMMA 2.6. Let (V, D) be an almost minimal SNC-pair with i (V — D) = 0. Then
D¥ + Ky =0.

PROOF. See[12, Corollary 6.1.4 (p. 175)]. a

LEMMA 2.7. Let (V, D) beanalmost minimal SNC-pair. Assume that V isarational
surface, k(V — D) = 1 and Supp (Bk (D)) = Supp (D). Then a complete linear system
|j (D¥4+Ky)| givesriseto anirreducible pencil of ellipticcurvesh : V — P for asufficiently
large integer j, by taking, if necessary, the Sein factorization of @;p#, k). Moreover,
every component of D iscontained in a fiber of &.

PROOF. By [12, Theorem 6.1.5 (p. 175)], |j (D¥ + Ky )| defines an irreducible pencil
of elliptic curves or rational curves h : V — P! for a sufficiently large integer j by taking,
if necessary, the Stein factorizetion of @) p#, g,y - If hisa PLfibration, then D contains
a component D1 which is a section or a 2-section of 4. Since (D + Ky - F) = Ofora
general fiber F of &, the coefficient of D1 in D¥ must be one, which contradicts the hypothesis
Supp (BKk (D)) = Supp (D). Hence h is an dliptic fibration. Since (D* + Ky - D) = 0 and
D* + Ky isnef by Lemma 2.4, every component of D is contained in afiber of 4. O

LEMMA 2.8. Let (V, D) be an SNC-pair. Assume that V isa rational surface. Then

pg(V—=D)(:= P1(V — D)) = 0if and only if every irreducible component of D isarational
curve and the dual graph of each connected component of D isatree.



304 HIDEO KOJMA AND TAKESHI TAKAHASHI

PROOF. See[1l, Lemmal.2.1.3]. m]

LEMMA 2.9. Let (V, D) be an SNC-pair. Assume that V is a rational surface and
each connected component D’ of D isa (—2)-rod or a (—2)-fork (i.e., D’ is an admissible
rational rod or fork consisting only of (—2)-curves). Theni(V — D) = —oc.

PROOF. By the assumption, D¥ = 0. Then, for any integer m > 0, we have P, (V —
D) = OV, m(D+ Ky)) = h%(V, m(D* + Kv)) = h%V, mKy) = 0. Hence, i (V — D) =
—00. o

LEMMA 2.10. Let (V, D) beanalmost minimal SNC-pair with ic(V — D) > 0. Then
all the maximal rational twigs and rational rods of D are admissible.

PROOF. Suppose that D has either a non-admissible maximal rational twig or a non-
admissible rational rod. Then D has arational curve D1 such that the following three condi-
tions are satisfied:

(i) (D) =-1

(i) (D1-D —D1) <2

(iii) If (D1-D — D7) = 2, then D hasan admissiblerational twig T with (T - D7) = 1.

Since (V, D) is amost minimal, we may assume that (D%) > 0. It then follows from
[12, Corollary 2.11.1 (p. 82)] that k (V — D) = —oo, acontradiction. |

LEMMA 2.11. Let(V, D) beanalmost minimal SNC-pair. Assumethat V isarational
surface and D is an admissible rational rod or twig. Then ik(V — D) > 0 if and only if
P>(V — D) > 0.

Proor. It suffices to show the “only if ” part. Let D = ), D; be the irreducible
decomposition of D and put D* = > idiD;, whered; € Q. By Lemma 2.9, D is neither a
(—2)-rod nor a (—2)-fork. So, 0 < d; < 1for any i (cf.[12, Chapter 2, 83]).

Put g; := —(D?). Since (V, D) isamost minimal, Lemma 2.4 implies that

0< (D*+Kv)>=(Kv - D¥ + Kv) = (K{) + ) _di(Bi —2).

Since 0 < d; < 1forany i, Supp (D) contains a curve with self-intersection number < —3
and V isarational surface, we have

1
KOV, D + 2Ky) + h?(V, D + 2Ky) > S(D+2Ky D+ Ky)+1
=(Kyv-D+Ky)
=KD+ (Bi—2)
i

> (K§)+ ) _di(fi =2 = 0.
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Here we note that #2(V, D + 2Ky) = h%(V, —(D + Ky)) = 0. Indeed, if 1OV, —(D +
Ky)) > 0,then D + Ky ~ O because «(V — D) > 0. So py(V — D) = 1, whichisa
contradiction. Therefore, Po(V — D)(> h°%(V, D + 2Ky)) > 0. |

3. A proof of Theorem 1.1

In this section, we give asimple proof of Theorem 1.1 by using the resultsin 82.

Let B beareduced curve on asmooth projectiverational surface X. Putn := #(B)(< 2).
Let (V, D) be an amost minima model of the pair (X, B) (cf. Definition 2.3). Note that
#(D) < n(< 2). It suffices to prove that Po[B] > O provided «[B] > 0. Assume that
k[B] = 0. Sincex(V — D) = «[B] > 0and V isarationa surface, we have D # 0. We
may assumethat p,(V — D) = 0. Then Lemma 2.8 implies that each component of D isa
smooth rational curve and the dual graph of each connected component of D isatree.

We consider the following two cases separately.

CAsEl: #(D) = 1. By Lemma2.10, (D?) < —2,i.e, D isan admissiblerational rod.
So, we have P>[B] = P»(V — D) > 0 by Lemma 2.11.

CASE 2. #(D) = 2. Let D = D1 + D> be the irreducible decomposition of D and
put 8; = —(Dl?) fori = 1,2. If D isconnected, then (D1 - D2) = 1 by the assumption
pg(V — D) = 0. Lemma 2.10 then implies that D is an admissible rational rod. Hence,
P>[B] = P>(V — D) > Oby Lemma2.11.

Assumethat (D1 - Do) = 0. Then g; > 2fori = 1,2 by Lenma2.10. So, D* =
((Br — 2)/B1)D1 + ((B2 — 2)/B2) D2. Here we may assume that 81 < . If 1 = 2, then
D* = D} and s0 P»(V — D) = P»(V — D7) > 0 by Lemma2.11. Hence we may assume
further that 81 > 3. Weinfer from Lemma 2.4 that

2
4
0< (D*+Ky)>=(Kv-D*+ Ky) = (K}) -8+ (/3,- + F)'
i=1 !
By using the Riemann—Roch theorem, h2(V, D+ 2Ky) = h%(V, —(D + Ky)) = 0 (cf. Proof
of Lemma 2.11) and the above inequality, we have
WOV, D + 2Ky) =h%(V, D + 2Ky) + h3(V., D + 2Ky)
1
ZE(D+2Kv-D+KV)+1

=5+ 1+ B2+ (K?)
4 4 1

Hence, P,[B] = P>(V — D) > 0.
Theorem 1.1 is thus proved.



306 HIDEO KOJMA AND TAKESHI TAKAHASHI

4. Structureof (X, B) with«[B]=0o0r 1

In this section, we prove the following result.

THEOREM 4.1. Let (X, B) be a pair of a smooth projective rational surface and a
reduced curve B on X and let (V, D) be an almost minimal model of (X, B). Assume that B
consists of two rational curvesand «[B] = 0 or 1. Then we have:

(1) There exists an elliptic fibration z : V — P* such that every component of D is
contained in a fiber of 4.

(2) If Disirreducible, then (D?) = —A4.

(3) Assume that D consists of two curves D1 and D,. If (D1 - D2) = O, then
{(D3),(D3)} = {—2,—4} or {—4,—4)}. If (D1- D) > O, then (D1 - Dp) = 1 and
{(D?), (D3)} = {—3,-3} or {—2, —5}. Moreover, if {(D?), (D3)} = {—2, -5} (in this
case, (D1 - D2) > 0),thenk[B] = 1.

In fact, we have more precise results as for the pairs (V, D). See Lemmas 4.2, 4.3, 4.4,
4.7 and 4.9 for more details.

In what follows, we shall prove Theorem 4.1. Let the notation and assumptions be the
same as in Theorem 4.1. We note that #(D) = 1 or 2 because #(B) = 2 and «[B] > 0.
By the method of construction of an almost minimal model of an SNC-pair, we know that
pg(V — D) =0.

If D isirreducible, then (D?) < —2 by Lemma 2.10. So, in this case, the assertions of
Theorem 4.1 follow from Lemma 4.2 bel ow.

LEMMA 4.2. Wth the same notation as above, assume that #(D) = 1. Then we have:

(1) Ifx[B] = 0,then (D?) = —4and D + 2Ky ~ 0. Furthermore, if E is any (—1)-
curve, then the linear system |D + 2E| is an irreducible pencil of elliptic curves. \We have a
birational morphism f : V — P2 such that f(D) is a sextic with ten double points (possibly
including infinitely near points).

(2) Ifx[B] = 1,then (D% = —4and |D + 3Ky| # #. There exists a unique (—1)-
curve Eg suchthat (Eq - D) = 2. Furthermore, thelinear system |D + 2Eg| isanirreducible
pencil of elliptic curves. There also exists a birational morphism f : V. — P? such that
f (D) isacurve of degree 3m, m > 3 with nine m-tuple points and one double point (possibly
including infinitely near points).

PrROOF. Note that k[B] = x(V — D). So the assertions (1) and (2) follow from [8,
Theorem 3.3] (seealso [2], [13]). a

In the subsequent arguments, we assume further that D isreducible. Let D = D; + D>
be the decomposition of D into irreducible components and put g; := —(D,.Z) fori =1, 2.
We may assumethat 81 < B>.



REDUCIBLE PLANE CURVES 307

Suppose that (D1 - D2) > 0 (i.e, D isconnected). Then (D1 - D2) = 1and D isan
admissible rationa rod by Lemma 2.10 and p,(V — D) = 0. So, by the results of [8], we
obtain the following results (Lemmas 4.3 and 4.4).

LEMMA 4.3. Assumethat D isreducible and connected and that «[ B] = 0. Then, we
have:

(1) pr=p2=3.

(2) D+ 2Ky ~ 0. Inparticular, (K2) = —1.

(3) There exists a (—1)-curve E on V such that the linear system |D + 2E| defines
an irreducible pencil of elliptic curves. Namely, V has an elliptic fibration over P which
contains D in afiber.

PROOF. The assertionsfollow from [8, Theorems 2.3 and 4.1]. a

LEMMA 4.4. Assumethat D isreducible and connected and that «[B] = 1. Then, we
have:

(1) (B1, B2) = (3,3) or (2,5). Inparticular, (KZ) = —1.

(2) There exists an élliptic fibration # : V — P! such that D is contained in a fiber
Fo of h. Moreover, (Fo)red = D + Eg, Where Eg is a (—1)-curve such that (Eg - D1) =
(Eo- D2) = 1.

PROOF. The assertionsfollow from [8, Theorem 2.5]. O

From now on, we consider the case (D1 - D2) = 0 (i.e.,, D is not connected). Then
Bi = 2fori = 1,2and D = ((B1 — 2)/B1) D1+ ((B2 — 2)/B2) D2. Since D* + Ky isnef
and (D 4+ Ky )2 = 0 by Lemma 2.4, we have
2 (g _ 22
0= (D*+ Ky)* = (Kv - D* + Ky) = Uf%”Z%
i=1 !
So, we obtain the following six cases:
Casel). pB1=2, B2=24
Case2). B1=p2=24.
Case3). pB1 =3, B2 =0.
Case4). p1 =05, B =20.
Caseb). pB1 =06, 8 =12.
Case6). pB1=p2=28.

We prove Lemmas 4.5 and 4.6 which are essentially proved in [4, pp. 372-374)].

LEMMA 4.5. Wth the same notation and assumptions as above, the cases 4) ~ 6) do
not take place.

PROOF. Suppose that (81, f2) = (5, 20). Then (K2) = —18. So V is not relatively
minimal. If i (V — D) = 0, then D¥ + Ky = 0 by Lemma2.6. For any (—1)-curve E on V,
wehave0 = (E - D + Ky) = -1+ %(Dl -E)+ %(Dz - E). This derives a contradiction
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because both (D1 - E) and (D3 - E) are non-negative integers. Assumethat «(V — D) = 1.
Then, by Lemma 2.7, the linear system |j (D* 4+ Ky)| (j >> 0) defines an elliptic fibration
h:V — Pland D; and D, are contained in fibers of 2. Since (K2) = —18 < 0, h is
not relatively minimal. Let E be a (—1)-curve contained in afiber of & (which exists). Then
(E - D¥ + Ky) = 0. So, we can derive a contradiction by using the same argument as in the
case k(V — D) = 0. Thus, we know that Case 4) does not take place. Similarly to Case 4),
we can derive contradictions also in the cases 5) and 6). |

LEMMA 4.6. Wth the same notation and assumptions as above, assume further that
the case 3) takes place. Then«(V — D) = 1.

PROOF. Suppose that i(V — D) = 0. Then D¥ + Ky = 0 by Lemma 2.6. Since
(D?) = —3 > —4, we have i (V — D1) = —oo by [8, Theorem 3.3] (see also [4, Lemma
1]). If (V, D) isamost minimal, then it follows from [8, Theorem 3.3 (1)] that (V, D1) =
(X, Mp,), where Xg, is aHirzebruch surface of degree g1 and Mg, is the minimal section
of Xg,. However, thisisacontradiction. So, (V, Dy) isnot almost minimal. Then there exists
a(—1)-curve E on V suchthat (E - D1) < 1. Since

1 2
O:(D#+KV-E)=§(D1-E)+§(D2-E)—1,

weknow that (E - D1) = (E - D) = 1.
Let g : V — Vi bethe contraction of E and put D; = g(D;), i = 1,2. Then (D’l)2 =

-2, (DY))? = =5, (D} - D) = 1 and (K‘Z/l) = —2. Moreover, we can easily see that
(D"Y* = 1D} + 4D, and (D)* + Ky, = g.(D* + Ky) = 0. Hence the pair (V1, D') is
amost minimal and ¥ (V1 — D’) = 0. This contradicts Lemma4.3. O

We consider thetwo casesic(V — D) = 0and k (V — D) = 1 separately.

CAse 1. k(V—D) = 1. Lemma 2.7 implies that there exists an dlliptic fibration
h: V — Plsuchthat D1 and D, are contained in fibersof . Let F; (i = 1, 2) bethefiber of
h containing D; .

SuBCASE 1-1: (B1,B2) = (2,4). In this subcase, (K‘Z,) = —1. So there exists a
(—1)-curve E contained in afiber of 4. Since (E - D¥ + Ky) = 0 and D* = D5, we have
(E - D2) = 2. Hence we know that F, # F» and F> = n(D2 + 2E) for some positive integer
n.

SUBCASE 1-2: f1 = 2 = 4. Inthissubcase, D¥ = 1D and (K2) = —2. So there
existsa (—1)-curve E contained in afiber of 4. Since (E - D¥ + Ky) = 0, either (E - D7) =
(E-Dp)=1or(E-D)=(E-D;)=2fori =10r2.

Assumethat (E - D1) = (E - D2) = 1. Let u : V — V1 bethe contraction of £ and
put D} := w(Dy) (i = 1,2) and D' := p.(D). Then (D)* = 3D’ and (D")* + Ky, =
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ws(D¥ 4+ Ky). Sothe pair (V1, D') isamost minimal and (V1 — D) = 1. Hence, the pair
(V1, D') istheonein Lemma4.4.

Assumethat (E - D) = (E-D;) = 2,i = 1or2. Wemay assumei = 1. Then,
F1 = n(D1 + 2E) for some positive integer n because (D1 + 2E)? = 0. Since (K32) = -2,
there exists another (—1)-curve, say E’, contained in afiber of . Then we can easily see that
(E"- D) = (E'- D) =2and F> = n'(D, + 2E’) for some positive integer n’.

SUBCASE 1-3: (1, B2) = (3. 6). Inthissubcase, D* = 1Dy + §D, and (K2) = 3.
So there exists a (—1)-curve E contained in afiber of 4. Since (E - D¥ + Ky) = 0, we know
that ((E - D1), (E-D2)) = (3,0)0r (1,1). If (E - D1), (E- D)) = (3,0), then (E + D1)2 =
2 > 0, whichisacontradiction because E, D1 C Supp(F1). Hence (E - D1) = (E - D2) = 1.
In particular, F1 = F».

Let u : V — Vi be the contraction of E and put D] = w(D;) (i = 1,2)and D" =
D} + D). Then D™ = 1Dj + 2D, and D' + Ky, = ju.(D* + Kv). Sothepair (V1, D) is
almost minimal and (v, — D) = 1. Hence, the pair (V1, D) istheonein Lemma4.4.

By the argument asin Case 1, we obtain the following result.

LEMMA 4.7. Assumethat D = D1 + D2 isnot connected and k(V — D) = 1. Then
(B1, B2) = (2,4), (4, 4) or (3, 6). Moreover, we have:

(1) If (B1,B2) = (2,4), then the pair (V, Dy) is the one in Lemma 4.2 (2) and the
curve D1 is contained in afiber of the elliptic fibration 4 : V — P defined by | j (D* + K )|
(j >>0).

(2) If B1 = B2 = 4, then D is contained in one or two fibers of the elliptic fibration
h:V — Pldefined by | j (D* + Kv)| (j >> 0).

(3) If (B1, B2) = (3, 6), then there exists a (—1)-curve E such that (E - D1) = (E -
D7) = 1. Moreover, if u : V — V1 bethe contraction of E, then the pair (V1, u(D)) isthe
onein Lemma 4.4.

CASE2: ik(V — D) = 0. Inthiscase, D¥ + Ky = 0 by Lemma2.6. By Lemmas 4.5
and 4.6, (B1, B2) = (2,4) or (4, 4).

SUBCASE 2-1: 1 = fo = 4. Since D + Ky = 3D + Ky = 0,wehave (D - E) = 2
for any (—1)-curve E. We note that there exist no (—m)-curves (m > 3) other than D1 and
D5. By [4, Lemma 3], we obtain a birational morphism f : V — P2. Then f(D) isacurve
of degree six. So we can find a (—1)-curve E on V suchthat (E - D1) = (E - D7) = 1. Let
w V. — Vi bethe contraction of E and put D; = wu(D;) (i = 1,2) and D’ = D] + D5.
Then D'# = %D/ and D'* + Ky, = wx(D¥ + Ky) = 0. Hence the pair (V1, D) is amost
minimal and i (V1 — D") = 0. Thepair (V1, D’) istheonein Lemma4.3. In particular, there
existsan ellipticfibration 4 : V — P! such that D is contained in afiber of .
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SUBCASE 22 (B1, B2) = (2,4). Inthissubcase, D¥ = 1D, and (K2) = —1. Since
D} + Ky = D* + Ky = 0, the pair (V, D) is amost minimal and ¥ (V — D) = 0. So
the pair (V, D) isthe onein Lemma 4.2 (1). Since D1 is a (—2)-curve digoint from D,
it follows from Lemma 4.8 below that there exists a (—1)-curve E digoint from D1. By
Lemma4.2 (1), the linear system | D, + 2E| defines an elliptic fibration# : V. — P and D
is contained in afiber of A.

The following lemmais proved in [10, Lemma 2.1]. For the reader’s convenience, we
reproduce the proof.

LEMMA 4.8. Let V be a smooth projective rational surface and let D be a smooth
rational curveon V. Assumethat (D?) = —4 and D + 2Ky ~ 0. (Note that the pair (V, D)
istheoneinLemma 4.2 (1) ). Let F bea (—2)-curveon V. Thenthereexistsa (—1)-curve E
suchthat EN F = @.

PROOF. By virtue of [14, Theorem 1], there exists a birational morphismp : V — X,
(onto a Hirzebruch surface of degree r) such that r £ 1 and one of the following three cases
takes place:

(1) p(F)isapoint.

(2) p(F) isafiber of thefixed ruling on X,.

(3) p(F)~ M, +nt with2n = r — 2, where M, isthe minimal section of X, and ¢ is
afiber of thefixed rulingon .

In the cases (2) and (3), we note that o (F) does not pass through any one of the funda-
mental points of p (cf. [14, Theorem 1]).

CAsEs (2) and (3). Since (K3) = —1and (K% ) = 8, X, has an fundamental point,
say P, of p~1. Then p—1(P) containsa(—1)-curve E. Since P & p(F), ENF = (.

CAse (1). Since D + 2Ky ~ 0, we have p,(D) + 2Ks, ~ 0. So, p'(M;) # D.
On the other hand, if A isan irreducible curveon V suchthat A # D, then (A - Ky) < 0,
whence (A2) = 2p.(A) — 2 — (A - Ky) > —2. Hence, taking A to be p’(M,), we have
(o' (M)?) > —2. So, r < 2 and if r = 2 then there exist no fundamental points of p on M,..
Therefore, we obtain a birational morphism z : V — P? such that = (F) isapoint or aline.

Suppose first that B := 7(F) isaline. Since (F2) = —2, there lie three fundamental
points of z=1 on B, which might be infinitely near points. Since (K\Z,) = —1, thereexistsa
fundamental point which does not line on B. Hence, we can find a (—1)-curve E such that
FNE=4.

Suppose next that  (F) isapoint, say P. By the same argument as above, it is easy to
show that there exists an (—1)-curve E with F N E = ¢, except the case where t~1(P) =
E+ F + F1+---+ Fgconsistsof a(—1)-curve E and nine (—2)-curves F, F1, - - -, Fg such
that (E-D)=2and E+ F + F1+ ---+ Fgisalinear chainwith (E - F) = (F - Fy) =
«oo = (F7- Fg) = 1. Lemma 4.2 (2) impliesthat |D + 2E| defines an elliptic fibration
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@ = ®piop : V — PL Then F1 + --- + Fgis contained in afiber, say G, of @. Since
(K‘Z/) = —1, E is the unique (—1)-curve contained in the fibers of @. Let ¢ be aline on
P2 passing through P and the next immediate infinitely near fundamental point of =1 Let
p1: V1 — P? betheblowing-up of P2 with center P, let Gy := p; *(P) andlet ¢ := p’ (¢).
Thent : V — P2isfactoredas V —% Vi 2% P2, and P, := G1 N ¢@ is afundamental
point of 1 : V — Vi. Let po : Vo — V1 be the blowing-up of V1 with center Py, let
G = py H(Py), let €@ := ph(¢D) and let Py := G N €@,

Suppose that P; is a fundamental point of 2 := pgl oty : V — Vo Then, let p3 :
Vz — V2 be the blowing-up of V2 with center P2, let €@ := p(¢@), let Gz := p3 *(P2)
and let P3 := G3n ¢®. Then P3 isnot a fundamental point of 3 := p3t o : V — V3,
for, otherwise, we get an irreducible curve A := t4(¢®) such that (4%) < —3and A # D.
Hence we know that (t/(£)%) = —2, t/(¢) is acomponent of G and

8
@@y F)=('(t) - Fo) =1.

i=1
Since
(F1+4 2F> + 3F3+ 4F4 + 5F5 + 6F + 4F7 + 2Fg + 31’/(6))2 =0,

we have

G =n(F1+2F,+3F3+4F4+5F5+ 6Fg + 4F7 + 2Fg + 37/ ({))

for some positive integer n. Namely, G isasingular fiber of type I1* (cf. [7]). Then G cannot
be amultiple fiber by [7]. So,» = 1 and

(G-F)=(F1-F)=1#2=(D+2E-F).

This is a contradiction. Therefore, P; is not a fundamental point of 7. Then z,(¢®?) isa
(=1)-curvedigoint from F. O

By the argument asin Case 2, we obtain the following result.

LEMMA 4.9. Assumethat D = D1 + D> isnot connected and «(V — D) = 0. Then
(B1, B2) = (2, 4) or (4, 4). Moreover, we have:

(1) 1f(B1, B2) = (2, 4),thenthereexistsa (—1)-curve E suchthat (E-D) = (E-D3) =
2. The linear system | D> + 2E| defines an élliptic fibration 4 : V — P! where D1 and D>
are contained in fibers of 4.

(2) 1If (B1, B2) = (4, 4), then there exists an élliptic fibration # : V — P! such that D
iscontained in a fiber of 4.

The proof of Theorem 4.1 is thus completed.
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5. Thecase#(B) =3o0r 4

In this section, we prove the following result.

THEOREM 5.1. Let B be a reduced curve on a smooth projective rational surface.
Assumethat #(B) < 4. Thenk[B] > Oif and only if Ps[B] > O.

L et the notation be the same asin 8§3. In order to prove Theorem 5.1, it suffices to show
that Ps(V — D) > O provided i (V — D) > O and n := #(D) = 3 or 4. We may assume that
pg(V — D) = 0, that is, each irreducible component of D isa(smooth) rational curve and the
dual graph of each connected component of D isatree (cf. Lemma2.8).

Let D = Y7 ; D; be the decomposition of D into irreducible components and put
Bi = —(D?fori=1,---,n.

Case 1. n = 3. We consider the following three subcases separately.

SuBCASE 1-1. If D isconnected, then D isan admissible rational rod by the assump-
tion pg(V — D) = 0 and Lemma 2.10. So we have P»(V — D) > 0 by Lemma2.11.

SUBCASE 1-2.  Assumethat D hastwo connected components. Then we may assume
further that Dj is a connected component of D. By Lemma 2.10, D; and D2 + D3 are
admissible rationa rods. So we have

,31—2) < ,33—1—1) < ,32—1-1)

D¥ = Di+(1--—=—""" Do+ (1-—""")D

( B )t Pops—1)2 popa—1)"°

If one of D1 and D> + D3 isa(—2)-rod, then P»(V — D) > 0 by virtue of Lemma 2.11. So
we may assumethat 81 > 3and (B2, B3) # (2, 2). By Lemma2.3, we have

0< (D* 4+ Kv)?> = (Ky - D* + Ky)

3
4 PatBat2
— (K2)—10 2T RTE
(KD) =10+ 2 i+ g1

Since 81 > 3 and (B2, B3) # (2, 2), we have
4 Bt P3t2
B1 BBz —1 —

So, by using the Riemann—Roch theorem and #2(V, D + 2Ky) = h%(V, —(D + Ky)) = 0
(cf. Proof of Lemma2.11), we know that

4 . 7_4
3 5 15

KOV, D+ 2Ky)=h(V, D + 2Ky) + h?(V, D + 2Ky)

1
2§(D+2KV'D+KV)+1

3
=-7+> Bi+(KD)

i=1



REDUCIBLE PLANE CURVES 313

. 4 Ptfa+2
N B Bofz—1

41

Hence, Po(V — D) > 0.

SuBCASE 1-3. Assume that D has three connected components. Then, by virtue of
Theorem 1.1, we may assumethat 8; > 3fori = 1, 2, 3. So,

3
Dt — Z (,Biﬁ—. 2>Di _

i=1

By Lemma 2.3, we have

3
4
0< (D" +Ky)? = (K§) - 12+Z(ﬁ,- +E>.
i=1 !

By using the Riemann-Roch theorem and h2(V, D + 2Ky) = 0 (cf. Proof of Lemma 2.11),
we have

OV, D +2Ky)=h°(V, D + 2Ky) + h2(V, D + 2Ky)

1
> S(D+2Ky D +Ky)+1

3
=-8+) Bi+(KD).
i=1
Hence,
3.1
OV, D + 2Ky) 34-42- 
i=1 ™
Supposethat P>(V — D) = 0. Since B; > 3fori = 1, 2, 3, it followsfrom the inequality
asabovethat f1 = B2 = B3 = 3. Moreover, (D* + Ky)? = 0and (K2) = —1. By Lemma
23,7(V—=D)=0o0r1 Since D + 3Ky = 3(D" + Ky) isnef and V isarationa surface,
wehave h2(V, D + 3Ky) = 0. So, by using the Riemann—Roch theorem, we have

OV, D +3Ky)=h°(V, D + 3Ky) + h2(V, D + 3Ky)
1
ZE(D+3KV‘D+2KV)+1=1~
Hence, P3(V — D) > 0.

Therefore, in this case, we know that P;(V — D) > 0, wherei = 2 or 3. In particular,
Ps(V — D) > 0.
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CAse 2. n = 4. Inthis case, we may assume that the dua graph of D is one of the
following:

OD3
. D D> Ds Dy . D> iDl Dy
) O o) i o560
o Dy D> Ds Dy . D1 D» Ds Dy
(i) o—o—0o o ) o—o o—o0
D Dy D3 Dy .. D D> D5 Dy
S o o—0 (vi) o o o o

We consider the following six subcases separately.

SUBCASE 2-(i). In this subcase, by Lemma 2.10, D is an admissible rationa rod.
Hence P>(V — D) > O by Lemma2.11.

SuBCASE 2-(ii). If D isan admissible rational fork, then P»(V — D) > 0 by Lemma
2.11. Assumethat D isnot an admissiblerational fork. By Lemma2.10, 8; > 2 (i = 2, 3, 4).
So we have

4
D#le—i—Z(’Bi_l)Di.
i=2 Bi

It follows from Lemma 2.3 that

0< (D*+Ky)?>=(D1- D + Ky) + (Ky - D" + Ky)
4 4 1
=(KH) =10+ B+ —.
i=1 j=2 J

Since Z?:z 1/8; < 3/2, we know that P,(V — D) > 0 by using a similar argument to
Subcase 1-2.

SuBCASE 2-(iii). Inthissubcase, we may assume that both D1 + D> + D3 and D4 are
admissible rationa rods, B4 > 3 and (81, B2, B3) # (2,2,2). Then

D#=<1— B2B3 )D1+(l— BL+ B3 )Dz
B1B2B3 — (B1+ B3) B1B2B3 — (B1+ B3)

BP1B2 Ba—2
* <1_ B1B2b3 — (/31+/33>)D3+ < Ba )D“'

It follows from Lemma 2.3 that

0< (D* 4+ Ky)?
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Prhat Pofs | 4
B1B2B3— (BL+ B3)  Ba
Since B4 > 3 and (B1, B2, B3) # (2,2,2),wehaved/Bs < 4/3 and

PrBo+ BoBs 3
B1B2B3— (B1+B3) ~ 2°

Hence we know that P»(V — D) > 0 by using a similar argument to Subcase 1-2.

4
=(K§) —12+4 ) pi+
i=1

SUBCASE 2-(iv). Inthis subcase, we may assume that both D1 + D2 and D3 + D4 are
admissible rational rodsand (8;, Bi+1) # (2, 2) fori =1, 3. Then

#_ _/327”) <_L+1>
b _(1 ppe—1)P T\ pp— )P

Ba+1 Bs+1
* (1_ B3fa — 1>D3+ <1_ BaBa — 1)D4

It follows from Lemma 2.3 that

0< (D" + Ky)?

4
—(K2)— 12 l_ Prtha  BstPa
KD =224 ) Pt 1" 1
Since
Bi + Bi+1
BiBi+1—1

fori =1, 3, weknow that P»(V — D) > 0 by using a similar argument to Subcase 1-2.

7
< —
-5

SUBCASE 2-(v). In this subcase, we may assume that 81, 82 > 3,2 < B3 < B4 and
(B3, Ba) # (2,2). Then

2
#_ Bi—2\, _Patl _Bstl
b _g( Bi >Dl +<1 /33/34—1) D3+(1 ,33/34—1>D

It follows from Lemma 2.3 that

0< (D* + Ky)?
4 B3+ pa+2

4

4
=(K%) — 14 i — + —
D R A A N

By using the Riemann-Roch theorem and #2(V, D + 2Ky) = 0 (cf. Proof of Lemma 2.11),
we have

OV, D+ 2Ky) =h%(V, D + 2Ky) + h2(V, D + 2Ky)
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1
> 5(D+2Ky - D+Ky)+1

4
=(K%)—10+ ) _p;
i=1

4 4 B3+pPa+2
4 (L TRty
= <ﬁ1+ﬁ2+ /33/34—1)

Hence, if Po(V — D) = 0, then 1 = B2 = B4 = 3and Bz = 2. Furthermore, we know that
(K2) = —1and (D* + Kv)? = 1/15. In particular, i (V — D) = 2 by Lemma2.3.

We provethat Ps(V — D) > Ointhissubcase. Put H = 2D1+2D+2D3+3D4+ 6Ky .
Then H is pseudo effective (that is, (H - A) > 0 for any ample divisor A) because H >
6(D* + Kv) and D* + Ky isnef. Moreover, h2(V, H) = h°(V, Ky — H) = O because V is
arational surface. By using the Riemann-Roch theorem, we know that A%(V, H) > 0. Hence
Ps(V — D) > 0.

SUBCASE 2-(vi). In this subcase, we may assumethat g; > 3fori = 1,---,4. Then
D¥ = Zle((ﬂi — 2)/B:)D;. By using a similar argument to Subcase 2-(v), we know that
if Po(V — D) = 0then (B1, B2, B3, Ba) = (3,3,3,3) or (3,3, 3, 4), where we assume that
B1 < B2 < B3 < Pa.

Assumethat (81, B2, B3, Ba) = (3,3, 3, 3). Thenweknow that D = 1D, (k2) = -1
and i (V — D) = 2. Moreover, h3(V, D + 3Ky) = 0 because V is arationa surface and
D + 3Ky = 3(D* 4+ Ky) is nef and big. By using the Riemann—Roch Theorem, we know
that h°(V, D + 3Ky) > 0. Hence, P3(V — D) > 0.

Assume that (B1, B2, Bs, Ba) = (3,3,3,4). Then, D¥ = 1(D1+ Dy + D3) + 1Da,
(K%)= —2and (D*+ Ky)? = 0. Hencek (V — D) = Oor 1 by Lemma2.3. Since D*+ Ky
isnef and V isarational surface, h2(V, 6(D* + Kv)) = h?(V,2(D1 + D2 + D3) + 3Da +
6Ky) = 0. By using the Riemann—Roch theorem, we know that 2°(V, 6(D¥ + Ky)) > O.
Hence, Ps(V — D) > 0.

Thus, in this case, we know that Ps(V — D) > 0.
The proof of Theorem 5.1 is thus completed.

6. Remarksonthecase#(B) > 5

Let (X, B) beapair of asmooth projective rational surface X and areduced curve B on
X and let (V, D) bean amost minimal model of (X, B). By theresultsin [15], we obtain the
following results.

ProPOSITION 6.1. Ifk[B] =0, then P;[B] = 1forsomel <i < 66.

PROOF. The assertion follows from [15, Theorem 2.1]. |
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PROPOSITION 6.2. Assume that | D*| # 0, where | D*| denotes the integral part of
D¥ ‘and k[B] = 2. Then P15[B] > 0.

PROOF. The assertion follows from [15, Proposition 3.2]. O

PROPOSITION 6.3. Assumethat Supp (D) is connected. Then k[B] > 0if and only if
P1p[B] > 0.

PrROOF. The assertion follows from [15, Theorem 3.3]. O

The authors conjecture that, for any integer n > 0, there exists an integer N = N(n)
such that Py[B] > O for any pair (X, B) of a smooth projective rational surface X and a
reduced curve B on X with#(B) = n and «[B] > 0.
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