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1. Introduction

Let k be an algebraically closed field of characteristic zero. Throughout the present
article we fix k as the ground field. Let X be a smooth projective surface and B a reduced
curve on X. Then we define the m-genus Pm[B] and the Kodaira dimension κ[B] as follows
(cf. [4]): Let f : V → X be a birational morphism such that the strict transform D =
f ′(B) becomes a disjoint union of smooth curves. Then Pm[B] := h0(V ,m(D + KV )) and
κ[B] := κ(D + KV ,V ), where KV is the canonical divisor on V and κ(D + KV ,V ) is the
(D + KV )-dimension of V (cf. [1]). Note that Pm[B] = P̄m(V − D) and κ[B] = κ̄(V − D),
where P̄m(V − D) (resp. κ̄(V − D)) denotes the logarithmic m-genus (resp. the logarithmic
Kodaira dimension) of V − D (cf. [1] and [11]).

Pairs (X,B) of smooth projective rational surfaces X and irreducible curves B on X

were studied from the viewpoint of birational geometry by Iitaka [2, 5], Matsuda [9] and the
others. In [3] and [4], Iitaka studied reducible curves B on smooth projective rational surfaces
such that #(B) = 2, where #(B) is the number of irreducible components of B. In particular,
he proved the following result.

THEOREM 1.1. ([4]) Let B be a reduced curve on a smooth projective rational surface
X with #(B) ≤ 2. Then κ[B] = −∞ if and only if P2[B] = 0.

In the present article, by using the theory of open algebraic surfaces, we study reduced
curves on smooth projective rational surfaces. In §3, we give a simple proof of Theorem 1.1
by using the structure theorems of open algebraic surfaces (cf. §2). In §4, we study the case
where B consists of two rational curves and κ[B] = 0 or 1 and give a structure theorem of
such a pair, which improves [4, Proposition 3]. In §5, we consider the relation of Pm[B] and
κ[B] when #(B) ≤ 4.
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2. Preliminary results

We recall some basic notions in the theory of peeling. For more details, see [12, Chapter
2]. Let (X,B) be a pair of a smooth projective surface X and an SNC-divisor B (i.e., B is a
reduced divisor on X and has only simple normal crossings as singularities). We call such a
pair (X,B) an SNC-pair. A connected curve T consisting of irreducible components of B (a
connected curve in B, for short) is a twig if the dual graph of T is a linear chain and T meets
B − T in a single point at one of the end components of T , the other end of T is called the tip
of T . A connected curve R (resp. F ) in B is a rod (resp. fork) if R (resp. F ) is a connected
component of B and the dual graph of R (resp. F ) is a linear chain (resp. the dual graph
of the exceptional curves of the minimal resolution of a non-cyclic quotient singularity). A
connected curve E in B is rational (resp. admissible) if each irreducible component of E is
rational (resp. if there are no (−1)-curves in Supp (E) and the intersection matrix of E is
negative definite). An admissible rational twig T in B is maximal if T is not extended to an
admissible rational twig with more irreducible components of B.

Let {Tλ} (resp. {Rµ}, {Fν}) be the set of all admissible rational maximal twigs (resp.
all admissible rational rods, all admissible rational forks), where no irreducible components
of Tλ’s belong to Rµ’s or Fν’s. Then there exists a unique decomposition of B as a sum of

effective Q-divisors B = B# + Bk (B) such that the following two conditions i) and ii) are
satisfied:

i) Supp (Bk (B)) = (∪λTλ) ∪ (∪µRµ) ∪ (∪νFν).

ii) (B# + KX · Z) = 0 for every irreducible component Z of Supp (Bk (B)).
We call the Q-divisor Bk (B) the bark of B and say that B# + KX is produced by the peeling
of B.

DEFINITION 2.1. Let (X,B) be an SNC-pair. Then (X,B) is said to be almost mini-
mal if, for every irreducible curve C on X, either (B# + KX · C) ≥ 0 or (B# + KX · C) < 0
and the intersection matrix of C + Bk (B) is not negative definite.

LEMMA 2.2. Let (X,B) be an SNC-pair. Then there exists a birational morphism
µ : X → W onto a smooth projective surface W such that the following four conditions (i) ∼
(iv) are satisfied:

(i) C := µ∗(B) is an SNC-divisor.
(ii) µ∗(Bk (B)) ≤ Bk (C) and µ∗(B# + KX) ≥ C# + KW .

(iii) P̄n(X − B) = P̄n(W − C) for every integer n ≥ 1. In particular, κ̄(X − B) =
κ̄(W − C).

(iv) The pair (W,C) is almost minimal.

PROOF. See [12, Theorem 2.3.11.1 (p. 107)]. �

In Lemma 2.2, we call the pair (W,C) an almost minimal model of (X,B).

DEFINITION 2.3. Let (X,B) be a pair of a smooth projective surface X and a reduced
curve B on X. Let f : W → X be a birational morphism such that the strict transform f ′(B)
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becomes a disjoint union of smooth curves and let (V ,D) be an almost minimal model of
the SNC-pair (W, f ′(B)). Then we call the SNC-pair (V ,D) an almost minimal model of
(X,B).

In order to prove the results in §§3 ∼ 5, we use the following lemmas frequently (Lem-
mas 2.4 ∼ 2.11).

LEMMA 2.4. Let (V ,D) be an almost minimal SNC-pair. Then κ̄(V − D) ≥ 0 if and
only if D# + KV is nef. Moreover, (D# + KV )2 > 0 if κ̄(V − D) = 2.

PROOF. See [12, Theorem 3.15.1 (p. 116)]. �

LEMMA 2.5. Let (V ,D) be an SNC-pair. Let f : V → V̄ be the contraction of

Supp (Bk (D)), V̄ being a normal projective surface with only quotient singularities, and let

D̄ = f∗(D#). Assume that (V ,D) is almost minimal and κ̄(V − D) = −∞. Then we have
either (1) or (2) below:

(1) V − D is affine ruled, i.e., V − D contains a non-empty Zariski open subset iso-

morphic to A1 × U0, where U0 is a smooth curve.

(2) ρ(V̄ ) = 1, where ρ(V̄ ) denotes the Picard number of V̄ , and −(D̄ + KV̄ ) is an
ample Q-Cartier divisor.

PROOF. See [12, Theorem 3.15.1 (p. 116)]. �

LEMMA 2.6. Let (V ,D) be an almost minimal SNC-pair with κ̄(V − D) = 0. Then
D# + KV ≡ 0.

PROOF. See [12, Corollary 6.1.4 (p. 175)]. �

LEMMA 2.7. Let (V ,D) be an almost minimal SNC-pair. Assume that V is a rational
surface, κ̄(V − D) = 1 and Supp (Bk (D)) = Supp (D). Then a complete linear system

|j (D#+KV )| gives rise to an irreducible pencil of elliptic curves h : V → P1 for a sufficiently
large integer j , by taking, if necessary, the Stein factorization of Φ|j (D#+KV )|. Moreover,
every component of D is contained in a fiber of h.

PROOF. By [12, Theorem 6.1.5 (p. 175)], |j (D# + KV )| defines an irreducible pencil

of elliptic curves or rational curves h : V → P1 for a sufficiently large integer j by taking,

if necessary, the Stein factorization of Φ|j (D#+KV )|. If h is a P1-fibration, then D contains

a component D1 which is a section or a 2-section of h. Since (D# + KV · F) = 0 for a
general fiber F of h, the coefficient of D1 in D# must be one, which contradicts the hypothesis
Supp (Bk (D)) = Supp (D). Hence h is an elliptic fibration. Since (D# + KV · D) = 0 and
D# + KV is nef by Lemma 2.4, every component of D is contained in a fiber of h. �

LEMMA 2.8. Let (V ,D) be an SNC-pair. Assume that V is a rational surface. Then

p̄g (V − D)(:= P̄1(V − D)) = 0 if and only if every irreducible component of D is a rational
curve and the dual graph of each connected component of D is a tree.
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PROOF. See [11, Lemma I.2.1.3]. �

LEMMA 2.9. Let (V ,D) be an SNC-pair. Assume that V is a rational surface and
each connected component D′ of D is a (−2)-rod or a (−2)-fork (i.e., D′ is an admissible
rational rod or fork consisting only of (−2)-curves). Then κ̄(V − D) = −∞.

PROOF. By the assumption, D# = 0. Then, for any integer m > 0, we have P̄m(V −
D) = h0(V ,m(D +KV )) = h0(V ,m(D# +KV )) = h0(V ,mKV ) = 0. Hence, κ̄(V − D) =
−∞. �

LEMMA 2.10. Let (V ,D) be an almost minimal SNC-pair with κ̄(V − D) ≥ 0. Then
all the maximal rational twigs and rational rods of D are admissible.

PROOF. Suppose that D has either a non-admissible maximal rational twig or a non-
admissible rational rod. Then D has a rational curve D1 such that the following three condi-
tions are satisfied:

(i) (D2
1) ≥ −1.

(ii) (D1 · D − D1) ≤ 2.
(iii) If (D1 ·D −D1) = 2, then D has an admissible rational twig T with (T ·D1) = 1.

Since (V ,D) is almost minimal, we may assume that (D2
1) ≥ 0. It then follows from

[12, Corollary 2.11.1 (p. 82)] that κ̄(V − D) = −∞, a contradiction. �

LEMMA 2.11. Let (V ,D) be an almost minimal SNC-pair. Assume that V is a rational
surface and D is an admissible rational rod or twig. Then κ̄(V − D) ≥ 0 if and only if

P̄2(V − D) > 0.

PROOF. It suffices to show the “only if ” part. Let D = ∑
i Di be the irreducible

decomposition of D and put D# = ∑
i diDi , where di ∈ Q. By Lemma 2.9, D is neither a

(−2)-rod nor a (−2)-fork. So, 0 < di < 1 for any i (cf. [12, Chapter 2, §3]).

Put βi := −(D2
i ). Since (V ,D) is almost minimal, Lemma 2.4 implies that

0 ≤ (D# + KV )2 = (KV · D# + KV ) = (K2
V ) +

∑
i

di(βi − 2) .

Since 0 < di < 1 for any i, Supp (D) contains a curve with self-intersection number ≤ −3
and V is a rational surface, we have

h0(V ,D + 2KV ) + h2(V ,D + 2KV ) ≥ 1

2
(D + 2KV · D + KV ) + 1

= (KV · D + KV )

= (K2
V ) +

∑
i

(βi − 2)

> (K2
V ) +

∑
i

di(βi − 2) ≥ 0 .
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Here we note that h2(V ,D + 2KV ) = h0(V ,−(D + KV )) = 0. Indeed, if h0(V ,−(D +
KV )) > 0, then D + KV ∼ 0 because κ̄(V − D) ≥ 0. So p̄g (V − D) = 1, which is a

contradiction. Therefore, P̄2(V − D)(≥ h0(V ,D + 2KV )) > 0. �

3. A proof of Theorem 1.1

In this section, we give a simple proof of Theorem 1.1 by using the results in §2.
Let B be a reduced curve on a smooth projective rational surface X. Put n := #(B)(≤ 2).

Let (V ,D) be an almost minimal model of the pair (X,B) (cf. Definition 2.3). Note that
#(D) ≤ n(≤ 2). It suffices to prove that P2[B] > 0 provided κ[B] ≥ 0. Assume that
κ[B] ≥ 0. Since κ̄(V − D) = κ[B] ≥ 0 and V is a rational surface, we have D �= 0. We
may assume that p̄g (V − D) = 0. Then Lemma 2.8 implies that each component of D is a
smooth rational curve and the dual graph of each connected component of D is a tree.

We consider the following two cases separately.

CASE 1: #(D) = 1. By Lemma 2.10, (D2) ≤ −2, i.e., D is an admissible rational rod.

So, we have P2[B] = P̄2(V − D) > 0 by Lemma 2.11.

CASE 2: #(D) = 2. Let D = D1 + D2 be the irreducible decomposition of D and

put βi = −(D2
i ) for i = 1, 2. If D is connected, then (D1 · D2) = 1 by the assumption

p̄g (V − D) = 0. Lemma 2.10 then implies that D is an admissible rational rod. Hence,

P2[B] = P̄2(V − D) > 0 by Lemma 2.11.
Assume that (D1 · D2) = 0. Then βi ≥ 2 for i = 1, 2 by Lemma 2.10. So, D# =

((β1 − 2)/β1)D1 + ((β2 − 2)/β2)D2. Here we may assume that β1 ≤ β2. If β1 = 2, then

D# = D#
2 and so P̄2(V − D) = P̄2(V − D2) > 0 by Lemma 2.11. Hence we may assume

further that β1 ≥ 3. We infer from Lemma 2.4 that

0 ≤ (D# + KV )2 = (KV · D# + KV ) = (K2
V ) − 8 +

2∑
i=1

(
βi + 4

βi

)
.

By using the Riemann–Roch theorem, h2(V ,D+2KV ) = h0(V ,−(D+KV )) = 0 (cf. Proof
of Lemma 2.11) and the above inequality, we have

h0(V ,D + 2KV ) = h0(V ,D + 2KV ) + h2(V ,D + 2KV )

≥ 1

2
(D + 2KV · D + KV ) + 1

= −5 + β1 + β2 + (K2
V )

≥ 3 −
(

4

β1
+ 4

β2

)
≥ 1

3
> 0 .

Hence, P2[B] = P̄2(V − D) > 0.
Theorem 1.1 is thus proved.
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4. Structure of (X,B) with κ[B] = 0 or 1

In this section, we prove the following result.

THEOREM 4.1. Let (X,B) be a pair of a smooth projective rational surface and a
reduced curve B on X and let (V ,D) be an almost minimal model of (X,B). Assume that B

consists of two rational curves and κ[B] = 0 or 1. Then we have:
(1) There exists an elliptic fibration h : V → P1 such that every component of D is

contained in a fiber of h.

(2) If D is irreducible, then (D2) = −4.
(3) Assume that D consists of two curves D1 and D2. If (D1 · D2) = 0, then

{(D2
1), (D2

2)} = {−2,−4} or {−4,−4}. If (D1 · D2) > 0, then (D1 · D2) = 1 and

{(D2
1), (D2

2)} = {−3,−3} or {−2,−5}. Moreover, if {(D2
1), (D2

2)} = {−2,−5} (in this
case, (D1 · D2) > 0), then κ[B] = 1.

In fact, we have more precise results as for the pairs (V ,D). See Lemmas 4.2, 4.3, 4.4,
4.7 and 4.9 for more details.

In what follows, we shall prove Theorem 4.1. Let the notation and assumptions be the
same as in Theorem 4.1. We note that #(D) = 1 or 2 because #(B) = 2 and κ[B] ≥ 0.
By the method of construction of an almost minimal model of an SNC-pair, we know that
p̄g (V − D) = 0.

If D is irreducible, then (D2) ≤ −2 by Lemma 2.10. So, in this case, the assertions of
Theorem 4.1 follow from Lemma 4.2 below.

LEMMA 4.2. With the same notation as above, assume that #(D) = 1. Then we have:
(1) If κ[B] = 0, then (D2) = −4 and D + 2KV ∼ 0. Furthermore, if E is any (−1)-

curve, then the linear system |D + 2E| is an irreducible pencil of elliptic curves. We have a
birational morphism f : V → P2 such that f (D) is a sextic with ten double points (possibly
including infinitely near points).

(2) If κ[B] = 1, then (D2) = −4 and |D + 3KV | �= ∅. There exists a unique (−1)-
curve E0 such that (E0 · D) = 2. Furthermore, the linear system |D + 2E0| is an irreducible

pencil of elliptic curves. There also exists a birational morphism f : V → P2 such that
f (D) is a curve of degree 3m, m ≥ 3 with nine m-tuple points and one double point (possibly
including infinitely near points).

PROOF. Note that κ[B] = κ̄(V − D). So the assertions (1) and (2) follow from [8,
Theorem 3.3] (see also [2], [13]). �

In the subsequent arguments, we assume further that D is reducible. Let D = D1 + D2

be the decomposition of D into irreducible components and put βi := −(D2
i ) for i = 1, 2.

We may assume that β1 ≤ β2.
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Suppose that (D1 · D2) > 0 (i.e., D is connected). Then (D1 · D2) = 1 and D is an
admissible rational rod by Lemma 2.10 and p̄g (V − D) = 0. So, by the results of [8], we
obtain the following results (Lemmas 4.3 and 4.4).

LEMMA 4.3. Assume that D is reducible and connected and that κ[B] = 0. Then, we
have:

(1) β1 = β2 = 3.

(2) D + 2KV ∼ 0. In particular, (K2
V ) = −1.

(3) There exists a (−1)-curve E on V such that the linear system |D + 2E| defines

an irreducible pencil of elliptic curves. Namely, V has an elliptic fibration over P1 which
contains D in a fiber.

PROOF. The assertions follow from [8, Theorems 2.3 and 4.1]. �

LEMMA 4.4. Assume that D is reducible and connected and that κ[B] = 1. Then, we
have:

(1) (β1, β2) = (3, 3) or (2, 5). In particular, (K2
V ) = −1.

(2) There exists an elliptic fibration h : V → P1 such that D is contained in a fiber
F0 of h. Moreover, (F0)red = D + E0, where E0 is a (−1)-curve such that (E0 · D1) =
(E0 · D2) = 1.

PROOF. The assertions follow from [8, Theorem 2.5]. �

From now on, we consider the case (D1 · D2) = 0 (i.e., D is not connected). Then
βi ≥ 2 for i = 1, 2 and D# = ((β1 − 2)/β1)D1 + ((β2 − 2)/β2)D2. Since D# + KV is nef
and (D# + KV )2 = 0 by Lemma 2.4, we have

0 = (D# + KV )2 = (KV · D# + KV ) = (K2
V ) +

2∑
i=1

(βi − 2)2

βi

.

So, we obtain the following six cases:
Case 1). β1 = 2, β2 = 4.
Case 2). β1 = β2 = 4.
Case 3). β1 = 3, β2 = 6.
Case 4). β1 = 5, β2 = 20.
Case 5). β1 = 6, β2 = 12.
Case 6). β1 = β2 = 8.

We prove Lemmas 4.5 and 4.6 which are essentially proved in [4, pp. 372–374].

LEMMA 4.5. With the same notation and assumptions as above, the cases 4) ∼ 6) do
not take place.

PROOF. Suppose that (β1, β2) = (5, 20). Then (K2
V ) = −18. So V is not relatively

minimal. If κ̄(V − D) = 0, then D# + KV ≡ 0 by Lemma 2.6. For any (−1)-curve E on V ,

we have 0 = (E · D# + KV ) = −1 + 3
5 (D1 · E) + 9

10 (D2 · E). This derives a contradiction
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because both (D1 · E) and (D2 · E) are non-negative integers. Assume that κ̄(V − D) = 1.
Then, by Lemma 2.7, the linear system |j (D# + KV )| (j >> 0) defines an elliptic fibration

h : V → P1 and D1 and D2 are contained in fibers of h. Since (K2
V ) = −18 < 0, h is

not relatively minimal. Let E be a (−1)-curve contained in a fiber of h (which exists). Then
(E · D# + KV ) = 0. So, we can derive a contradiction by using the same argument as in the
case κ̄(V − D) = 0. Thus, we know that Case 4) does not take place. Similarly to Case 4),
we can derive contradictions also in the cases 5) and 6). �

LEMMA 4.6. With the same notation and assumptions as above, assume further that
the case 3) takes place. Then κ̄(V − D) = 1.

PROOF. Suppose that κ̄(V − D) = 0. Then D# + KV ≡ 0 by Lemma 2.6. Since

(D2
1) = −3 > −4, we have κ̄(V − D1) = −∞ by [8, Theorem 3.3] (see also [4, Lemma

1]). If (V ,D1) is almost minimal, then it follows from [8, Theorem 3.3 (1)] that (V ,D1) =
(Σβ1,Mβ1), where Σβ1 is a Hirzebruch surface of degree β1 and Mβ1 is the minimal section
of Σβ1 . However, this is a contradiction. So, (V ,D1) is not almost minimal. Then there exists
a (−1)-curve E on V such that (E · D1) ≤ 1. Since

0 = (D# + KV · E) = 1

3
(D1 · E) + 2

3
(D2 · E) − 1 ,

we know that (E · D1) = (E · D2) = 1.
Let g : V → V1 be the contraction of E and put D′

i = g(Di), i = 1, 2. Then (D′
1)

2 =
−2, (D′

2)
2 = −5, (D′

1 · D′
2) = 1 and (K2

V1
) = −2. Moreover, we can easily see that

(D′)# = 1
3D′

1 + 2
3D′

2 and (D′)# + KV1 = g∗(D# + KV ) ≡ 0. Hence the pair (V1,D
′) is

almost minimal and κ̄(V1 − D′) = 0. This contradicts Lemma 4.3. �

We consider the two cases κ̄(V − D) = 0 and κ̄(V − D) = 1 separately.

CASE 1: κ̄(V − D) = 1. Lemma 2.7 implies that there exists an elliptic fibration

h : V → P1 such that D1 and D2 are contained in fibers of h. Let Fi (i = 1, 2) be the fiber of
h containing Di .

SUBCASE 1-1: (β1, β2) = (2, 4). In this subcase, (K2
V ) = −1. So there exists a

(−1)-curve E contained in a fiber of h. Since (E · D# + KV ) = 0 and D# = 1
2D2, we have

(E · D2) = 2. Hence we know that F1 �= F2 and F2 = n(D2 + 2E) for some positive integer
n.

SUBCASE 1-2: β1 = β2 = 4. In this subcase, D# = 1
2D and (K2

V ) = −2. So there

exists a (−1)-curve E contained in a fiber of h. Since (E · D# + KV ) = 0, either (E · D1) =
(E · D2) = 1 or (E · D) = (E · Di) = 2 for i = 1 or 2.

Assume that (E · D1) = (E · D2) = 1. Let µ : V → V1 be the contraction of E and

put D′
i := µ(Di) (i = 1, 2) and D′ := µ∗(D). Then (D′)# = 1

2D′ and (D′)# + KV1 =
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µ∗(D# + KV ). So the pair (V1,D
′) is almost minimal and κ̄(V1 − D′) = 1. Hence, the pair

(V1,D
′) is the one in Lemma 4.4.

Assume that (E · D) = (E · Di) = 2, i = 1 or 2. We may assume i = 1. Then,

F1 = n(D1 + 2E) for some positive integer n because (D1 + 2E)2 = 0. Since (K2
V ) = −2,

there exists another (−1)-curve, say E′, contained in a fiber of h. Then we can easily see that
(E′ · D) = (E′ · D2) = 2 and F2 = n′(D2 + 2E′) for some positive integer n′.

SUBCASE 1-3: (β1, β2) = (3, 6). In this subcase, D# = 1
3D1 + 2

3D2 and (K2
V ) = −3.

So there exists a (−1)-curve E contained in a fiber of h. Since (E · D# + KV ) = 0, we know
that ((E ·D1), (E ·D2)) = (3, 0) or (1, 1). If ((E ·D1), (E ·D2)) = (3, 0), then (E +D1)

2 =
2 > 0, which is a contradiction because E,D1 ⊂ Supp (F1). Hence (E ·D1) = (E ·D2) = 1.
In particular, F1 = F2.

Let µ : V → V1 be the contraction of E and put D′
i = µ(Di) (i = 1, 2) and D′ =

D′
1 + D′

2. Then D′# = 1
3D′

1 + 2
3D′

2 and D′# + KV1 = µ∗(D# + KV ). So the pair (V1,D
′) is

almost minimal and κ̄(V1 − D′) = 1. Hence, the pair (V1,D
′) is the one in Lemma 4.4.

By the argument as in Case 1, we obtain the following result.

LEMMA 4.7. Assume that D = D1 + D2 is not connected and κ̄(V − D) = 1. Then
(β1, β2) = (2, 4), (4, 4) or (3, 6). Moreover, we have:

(1) If (β1, β2) = (2, 4), then the pair (V ,D2) is the one in Lemma 4.2 (2) and the

curve D1 is contained in a fiber of the elliptic fibration h : V → P1 defined by |j (D# + KV )|
(j >> 0).

(2) If β1 = β2 = 4, then D is contained in one or two fibers of the elliptic fibration

h : V → P1 defined by |j (D# + KV )| (j >> 0).
(3) If (β1, β2) = (3, 6), then there exists a (−1)-curve E such that (E · D1) = (E ·

D2) = 1. Moreover, if µ : V → V1 be the contraction of E, then the pair (V1, µ(D)) is the
one in Lemma 4.4.

CASE 2: κ̄(V − D) = 0. In this case, D# + KV ≡ 0 by Lemma 2.6. By Lemmas 4.5
and 4.6, (β1, β2) = (2, 4) or (4, 4).

SUBCASE 2-1: β1 = β2 = 4. Since D# + KV = 1
2D + KV ≡ 0, we have (D · E) = 2

for any (−1)-curve E. We note that there exist no (−m)-curves (m ≥ 3) other than D1 and

D2. By [4, Lemma 3], we obtain a birational morphism f : V → P2. Then f (D) is a curve
of degree six. So we can find a (−1)-curve E on V such that (E · D1) = (E · D2) = 1. Let
µ : V → V1 be the contraction of E and put D′

i = µ(Di) (i = 1, 2) and D′ = D′
1 + D′

2.

Then D′# = 1
2D′ and D′# + KV1 = µ∗(D# + KV ) ≡ 0. Hence the pair (V1,D

′) is almost

minimal and κ̄(V1 − D′) = 0. The pair (V1,D
′) is the one in Lemma 4.3. In particular, there

exists an elliptic fibration h : V → P1 such that D is contained in a fiber of h.
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SUBCASE 2-2: (β1, β2) = (2, 4). In this subcase, D# = 1
2D2 and (K2

V ) = −1. Since

D#
2 + KV = D# + KV ≡ 0, the pair (V ,D2) is almost minimal and κ̄(V − D2) = 0. So

the pair (V ,D2) is the one in Lemma 4.2 (1). Since D1 is a (−2)-curve disjoint from D2,
it follows from Lemma 4.8 below that there exists a (−1)-curve E disjoint from D1. By

Lemma 4.2 (1), the linear system |D2 + 2E| defines an elliptic fibration h : V → P1 and D1

is contained in a fiber of h.

The following lemma is proved in [10, Lemma 2.1]. For the reader’s convenience, we
reproduce the proof.

LEMMA 4.8. Let V be a smooth projective rational surface and let D be a smooth
rational curve on V . Assume that (D2) = −4 and D + 2KV ∼ 0. (Note that the pair (V ,D)

is the one in Lemma 4.2 (1) ). Let F be a (−2)-curve on V . Then there exists a (−1)-curve E

such that E ∩ F = ∅.

PROOF. By virtue of [14, Theorem 1], there exists a birational morphism ρ : V → Σr

(onto a Hirzebruch surface of degree r) such that r �= 1 and one of the following three cases
takes place:

(1) ρ(F ) is a point.
(2) ρ(F ) is a fiber of the fixed ruling on Σr .
(3) ρ(F ) ∼ Mr + n� with 2n = r − 2, where Mr is the minimal section of Σr and � is

a fiber of the fixed ruling on Σr .
In the cases (2) and (3), we note that ρ(F ) does not pass through any one of the funda-

mental points of ρ (cf. [14, Theorem 1]).

CASES (2) and (3). Since (K2
V ) = −1 and (K2

Σr
) = 8, Σr has an fundamental point,

say P , of ρ−1. Then ρ−1(P ) contains a (−1)-curve E. Since P �∈ ρ(F ), E ∩ F = ∅.

CASE (1). Since D + 2KV ∼ 0, we have ρ∗(D) + 2KΣr ∼ 0. So, ρ′(Mr) �= D.
On the other hand, if A is an irreducible curve on V such that A �= D, then (A · KV ) ≤ 0,
whence (A2) = 2pa(A) − 2 − (A · KV ) ≥ −2. Hence, taking A to be ρ′(Mr), we have

(ρ′(Mr)
2) ≥ −2. So, r ≤ 2 and if r = 2 then there exist no fundamental points of ρ on Mr .

Therefore, we obtain a birational morphism τ : V → P2 such that τ (F ) is a point or a line.
Suppose first that B := τ (F ) is a line. Since (F 2) = −2, there lie three fundamental

points of τ−1 on B, which might be infinitely near points. Since (K2
V ) = −1, there exists a

fundamental point which does not line on B. Hence, we can find a (−1)-curve E such that
F ∩ E = ∅.

Suppose next that τ (F ) is a point, say P . By the same argument as above, it is easy to

show that there exists an (−1)-curve E with F ∩ E = ∅, except the case where τ−1(P ) =
E + F + F1 + · · · + F8 consists of a (−1)-curve E and nine (−2)-curves F,F1, · · · , F8 such
that (E · D) = 2 and E + F + F1 + · · · + F8 is a linear chain with (E · F) = (F · F1) =
· · · = (F7 · F8) = 1. Lemma 4.2 (2) implies that |D + 2E| defines an elliptic fibration
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Φ := Φ|D+2E| : V → P1. Then F1 + · · · + F8 is contained in a fiber, say G, of Φ. Since

(K2
V ) = −1, E is the unique (−1)-curve contained in the fibers of Φ. Let � be a line on

P2 passing through P and the next immediate infinitely near fundamental point of τ−1. Let

ρ1 : V1 → P2 be the blowing-up of P2 with center P , let G1 := ρ−1
1 (P ) and let �(1) := ρ′

1(�).

Then τ : V → P2 is factored as V
τ1−→ V1

ρ1−→ P2, and P1 := G1 ∩ �(1) is a fundamental
point of τ1 : V → V1. Let ρ2 : V2 → V1 be the blowing-up of V1 with center P1, let

G2 := ρ−1
2 (P1), let �(2) := ρ′

2(�
(1)) and let P2 := G2 ∩ �(2).

Suppose that P2 is a fundamental point of τ2 := ρ−1
2 ◦ τ1 : V → V2. Then, let ρ3 :

V3 → V2 be the blowing-up of V2 with center P2, let �(3) := ρ′
3(�

(2)), let G3 := ρ−1
3 (P2)

and let P3 := G3 ∩ �(3). Then P3 is not a fundamental point of τ3 := ρ−1
3 ◦ τ2 : V → V3,

for, otherwise, we get an irreducible curve A := τ ′
3(�

(3)) such that (A2) ≤ −3 and A �= D.

Hence we know that (τ ′(�)2) = −2, τ ′(�) is a component of G and

(τ ′(�) ·
8∑

i=1

Fi) = (τ ′(�) · F6) = 1 .

Since

(F1 + 2F2 + 3F3 + 4F4 + 5F5 + 6F6 + 4F7 + 2F8 + 3τ ′(�))2 = 0 ,

we have

G = n(F1 + 2F2 + 3F3 + 4F4 + 5F5 + 6F6 + 4F7 + 2F8 + 3τ ′(�))

for some positive integer n. Namely, G is a singular fiber of type II∗ (cf. [7]). Then G cannot
be a multiple fiber by [7]. So, n = 1 and

(G · F) = (F1 · F) = 1 �= 2 = (D + 2E · F) .

This is a contradiction. Therefore, P2 is not a fundamental point of τ2. Then τ ′
2(�

(2)) is a
(−1)-curve disjoint from F . �

By the argument as in Case 2, we obtain the following result.

LEMMA 4.9. Assume that D = D1 + D2 is not connected and κ̄(V − D) = 0. Then
(β1, β2) = (2, 4) or (4, 4). Moreover, we have:

(1) If (β1, β2) = (2, 4), then there exists a (−1)-curve E such that (E ·D) = (E ·D2) =
2. The linear system |D2 + 2E| defines an elliptic fibration h : V → P1 where D1 and D2

are contained in fibers of h.

(2) If (β1, β2) = (4, 4), then there exists an elliptic fibration h : V → P1 such that D

is contained in a fiber of h.

The proof of Theorem 4.1 is thus completed.
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5. The case #(B) = 3 or 4

In this section, we prove the following result.

THEOREM 5.1. Let B be a reduced curve on a smooth projective rational surface.
Assume that #(B) ≤ 4. Then κ[B] ≥ 0 if and only if P6[B] > 0.

Let the notation be the same as in §3. In order to prove Theorem 5.1, it suffices to show

that P̄6(V − D) > 0 provided κ̄(V − D) ≥ 0 and n := #(D) = 3 or 4. We may assume that
p̄g (V −D) = 0, that is, each irreducible component of D is a (smooth) rational curve and the
dual graph of each connected component of D is a tree (cf. Lemma 2.8).

Let D = ∑n
i=1 Di be the decomposition of D into irreducible components and put

βi := −(D2
i ) for i = 1, · · · , n.

CASE 1: n = 3. We consider the following three subcases separately.

SUBCASE 1-1. If D is connected, then D is an admissible rational rod by the assump-

tion p̄g (V − D) = 0 and Lemma 2.10. So we have P̄2(V − D) > 0 by Lemma 2.11.

SUBCASE 1-2. Assume that D has two connected components. Then we may assume
further that D1 is a connected component of D. By Lemma 2.10, D1 and D2 + D3 are
admissible rational rods. So we have

D# =
(

β1 − 2

β1

)
D1 +

(
1 − β3 + 1

β2β3 − 1

)
D2 +

(
1 − β2 + 1

β2β3 − 1

)
D3 .

If one of D1 and D2 + D3 is a (−2)-rod, then P̄2(V − D) > 0 by virtue of Lemma 2.11. So
we may assume that β1 ≥ 3 and (β2, β3) �= (2, 2). By Lemma 2.3, we have

0 ≤ (D# + KV )2 = (KV · D# + KV )

= (K2
V ) − 10 +

3∑
i=1

βi + 4

β1
+ β2 + β3 + 2

β2β3 − 1
.

Since β1 ≥ 3 and (β2, β3) �= (2, 2), we have

4

β1
+ β2 + β3 + 2

β2β3 − 1
≤ 4

3
+ 7

5
= 41

15
.

So, by using the Riemann–Roch theorem and h2(V ,D + 2KV ) = h0(V ,−(D + KV )) = 0
(cf. Proof of Lemma 2.11), we know that

h0(V ,D + 2KV ) = h0(V ,D + 2KV ) + h2(V ,D + 2KV )

≥ 1

2
(D + 2KV · D + KV ) + 1

= −7 +
3∑

i=1

βi + (K2
V )
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≥ 3 − 4

β1
− β2 + β3 + 2

β2β3 − 1

≥ 3 − 41

15
> 0 .

Hence, P̄2(V − D) > 0.

SUBCASE 1-3. Assume that D has three connected components. Then, by virtue of
Theorem 1.1, we may assume that βi ≥ 3 for i = 1, 2, 3. So,

D# =
3∑

i=1

(
βi − 2

βi

)
Di .

By Lemma 2.3, we have

0 ≤ (D# + KV )2 = (K2
V ) − 12 +

3∑
i=1

(
βi + 4

βi

)
.

By using the Riemann–Roch theorem and h2(V ,D + 2KV ) = 0 (cf. Proof of Lemma 2.11),
we have

h0(V ,D + 2KV ) = h0(V ,D + 2KV ) + h2(V ,D + 2KV )

≥ 1

2
(D + 2KV · D + KV ) + 1

= −8 +
3∑

i=1

βi + (K2
V ).

Hence,

h0(V ,D + 2KV ) ≥ 4 − 4
3∑

i=1

1

βi

.

Suppose that P̄2(V −D) = 0. Since βi ≥ 3 for i = 1, 2, 3, it follows from the inequality

as above that β1 = β2 = β3 = 3. Moreover, (D# + KV )2 = 0 and (K2
V ) = −1. By Lemma

2.3, κ̄(V − D) = 0 or 1. Since D + 3KV = 3(D# + KV ) is nef and V is a rational surface,
we have h2(V ,D + 3KV ) = 0. So, by using the Riemann–Roch theorem, we have

h0(V ,D + 3KV ) = h0(V ,D + 3KV ) + h2(V ,D + 3KV )

≥ 1

2
(D + 3KV · D + 2KV ) + 1 = 1 .

Hence, P̄3(V − D) > 0.
Therefore, in this case, we know that P̄i(V − D) > 0, where i = 2 or 3. In particular,

P̄6(V − D) > 0.
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CASE 2. n = 4. In this case, we may assume that the dual graph of D is one of the
following:

We consider the following six subcases separately.

SUBCASE 2-(i). In this subcase, by Lemma 2.10, D is an admissible rational rod.

Hence P̄2(V − D) > 0 by Lemma 2.11.

SUBCASE 2-(ii). If D is an admissible rational fork, then P̄2(V − D) > 0 by Lemma
2.11. Assume that D is not an admissible rational fork. By Lemma 2.10, βi ≥ 2 (i = 2, 3, 4).
So we have

D# = D1 +
4∑

i=2

(
βi − 1

βi

)
Di .

It follows from Lemma 2.3 that

0 ≤ (D# + KV )2 = (D1 · D# + KV ) + (KV · D# + KV )

= (K2
V ) − 10 +

4∑
i=1

βi +
4∑

j=2

1

βj

.

Since
∑4

j=2 1/βi ≤ 3/2, we know that P̄2(V − D) > 0 by using a similar argument to

Subcase 1-2.

SUBCASE 2-(iii). In this subcase, we may assume that both D1 + D2 + D3 and D4 are
admissible rational rods, β4 ≥ 3 and (β1, β2, β3) �= (2, 2, 2). Then

D# =
(

1 − β2β3

β1β2β3 − (β1 + β3)

)
D1 +

(
1 − β1 + β3

β1β2β3 − (β1 + β3)

)
D2

+
(

1 − β1β2

β1β2β3 − (β1 + β3)

)
D3 +

(
β4 − 2

β4

)
D4 .

It follows from Lemma 2.3 that

0 ≤ (D# + KV )2
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= (K2
V ) − 12 +

4∑
i=1

βi + β1β2 + β2β3

β1β2β3 − (β1 + β3)
+ 4

β4
.

Since β4 ≥ 3 and (β1, β2, β3) �= (2, 2, 2), we have 4/β4 ≤ 4/3 and

β1β2 + β2β3

β1β2β3 − (β1 + β3)
≤ 3

2
.

Hence we know that P̄2(V − D) > 0 by using a similar argument to Subcase 1-2.

SUBCASE 2-(iv). In this subcase, we may assume that both D1 + D2 and D3 + D4 are
admissible rational rods and (βi , βi+1) �= (2, 2) for i = 1, 3. Then

D# =
(

1 − β2 + 1

β1β2 − 1

)
D1 +

(
1 − β1 + 1

β1β2 − 1

)
D2

+
(

1 − β4 + 1

β3β4 − 1

)
D3 +

(
1 − β3 + 1

β3β4 − 1

)
D4 .

It follows from Lemma 2.3 that

0 ≤ (D# + KV )2

= (K2
V ) − 12 +

4∑
i=1

βi + β1 + β2

β1β2 − 1
+ β3 + β4

β3β4 − 1
.

Since

βi + βi+1

βiβi+1 − 1
≤ 7

5

for i = 1, 3, we know that P̄2(V − D) > 0 by using a similar argument to Subcase 1-2.

SUBCASE 2-(v). In this subcase, we may assume that β1, β2 ≥ 3, 2 ≤ β3 ≤ β4 and
(β3, β4) �= (2, 2). Then

D# =
2∑

i=1

(
βi − 2

βi

)
Di +

(
1 − β4 + 1

β3β4 − 1

)
D3 +

(
1 − β3 + 1

β3β4 − 1

)
D4 .

It follows from Lemma 2.3 that

0 ≤ (D# + KV )2

= (K2
V ) − 14 +

4∑
i=1

βi + 4

β1
+ 4

β2
+ β3 + β4 + 2

β3β4 − 1
.

By using the Riemann–Roch theorem and h2(V ,D + 2KV ) = 0 (cf. Proof of Lemma 2.11),
we have

h0(V ,D + 2KV ) = h0(V ,D + 2KV ) + h2(V ,D + 2KV )
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≥ 1

2
(D + 2KV · D + KV ) + 1

= (K2
V ) − 10 +

4∑
i=1

βi

≥ 4 −
(

4

β1
+ 4

β2
+ β3 + β4 + 2

β3β4 − 1

)
.

Hence, if P̄2(V − D) = 0, then β1 = β2 = β4 = 3 and β3 = 2. Furthermore, we know that
(K2

V ) = −1 and (D# + KV )2 = 1/15. In particular, κ̄(V − D) = 2 by Lemma 2.3.

We prove that P̄6(V −D) > 0 in this subcase. Put H = 2D1 +2D2 +2D3 +3D4 +6KV .
Then H is pseudo effective (that is, (H · A) ≥ 0 for any ample divisor A) because H ≥
6(D# + KV ) and D# + KV is nef. Moreover, h2(V ,H) = h0(V ,KV − H) = 0 because V is
a rational surface. By using the Riemann–Roch theorem, we know that h0(V ,H) > 0. Hence
P̄6(V − D) > 0.

SUBCASE 2-(vi). In this subcase, we may assume that βi ≥ 3 for i = 1, · · · , 4. Then

D# = ∑4
i=1((βi − 2)/βi)Di . By using a similar argument to Subcase 2-(v), we know that

if P̄2(V − D) = 0 then (β1, β2, β3, β4) = (3, 3, 3, 3) or (3, 3, 3, 4), where we assume that
β1 ≤ β2 ≤ β3 ≤ β4.

Assume that (β1, β2, β3, β4) = (3, 3, 3, 3). Then we know that D# = 1
3D, (K2

V ) = −1

and κ̄(V − D) = 2. Moreover, h2(V ,D + 3KV ) = 0 because V is a rational surface and
D + 3KV = 3(D# + KV ) is nef and big. By using the Riemann–Roch Theorem, we know

that h0(V ,D + 3KV ) > 0. Hence, P̄3(V − D) > 0.
Assume that (β1, β2, β3, β4) = (3, 3, 3, 4). Then, D# = 1

3 (D1 + D2 + D3) + 1
2D4,

(K2
V ) = −2 and (D# +KV )2 = 0. Hence κ̄(V − D) = 0 or 1 by Lemma 2.3. Since D# +KV

is nef and V is a rational surface, h2(V , 6(D# + KV )) = h2(V , 2(D1 + D2 + D3) + 3D4 +
6KV ) = 0. By using the Riemann–Roch theorem, we know that h0(V , 6(D# + KV )) > 0.

Hence, P̄6(V − D) > 0.

Thus, in this case, we know that P̄6(V − D) > 0.
The proof of Theorem 5.1 is thus completed.

6. Remarks on the case #(B) ≥ 5

Let (X,B) be a pair of a smooth projective rational surface X and a reduced curve B on
X and let (V ,D) be an almost minimal model of (X,B). By the results in [15], we obtain the
following results.

PROPOSITION 6.1. If κ[B] = 0, then Pi [B] = 1 for some 1 ≤ i ≤ 66.

PROOF. The assertion follows from [15, Theorem 2.1]. �
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PROPOSITION 6.2. Assume that �D#� �= 0, where �D#� denotes the integral part of
D#, and κ[B] = 2. Then P12[B] > 0.

PROOF. The assertion follows from [15, Proposition 3.2]. �

PROPOSITION 6.3. Assume that Supp (D) is connected. Then κ[B] ≥ 0 if and only if
P12[B] > 0.

PROOF. The assertion follows from [15, Theorem 3.3]. �

The authors conjecture that, for any integer n > 0, there exists an integer N = N(n)

such that PN [B] > 0 for any pair (X,B) of a smooth projective rational surface X and a
reduced curve B on X with #(B) = n and κ[B] ≥ 0.
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