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Abstract. Using the Mehler kernelE(x, ξ, t), we show that the solution of the Hermite heat equation(∂t −
� + |x|2)U(x, t) = 0 in Rn × (0, T ) satisfying supx∈Rn |U(x, t)| ≤ C(1 + t−N) for some constantsC andN

can be expressed asU(x, t) = 〈u(ξ), E(x, ξ, t)〉 for uniqueu in S ′
(Rn). This is a parallel result with the one in

(Theorem 1.2, T. Matsuzawa,A calculus approach to hyperfunctions III, Nagoya Math. J.118 (1990), 133–153).
Moreover we represent the tempered distributions as initial values of solution of the Hermite heat equation and apply
it to generalize a theorem by Strichartz [Theorem 3.2, Trans. Amer. Math. Soc.338 (1993), 971–979] in the space
of tempered distributions.

1. Introduction

We denote byhk the normalized Hermite function onR defined by

hk(x) = (−1)k ex2/2

(2k k! π1/2)1/2

dk

dxk
e−x2

, k = 0, 1, 2, . . . .

Forx = (x1, . . . , xn) ∈ Rn, µ = (µ1, . . . , µn) ∈ Nn
0 ; we defineΦµ(x) := ∏n

j=1hµj (xj ) and

call it the normalized Hermite function onRn. It is well known that{Φµ} forms a complete

orthonormal basis onL2(Rn) and solves the eigenvalue problem(−� + |x|2)Ψ = λΨ with
λ = 2|µ| + n. For allx, ξ ∈ Rn andw ∈ C with |w| < 1, the well known Mehler formula (p.
107, [8] & p. 6, [6]) is

∑
µ

w|µ|Φµ(x)Φµ(ξ) = 1

π
n
2 (1 − w2)

n
2

e
− 1

2
1+w2

1−w2 (|x|2+|ξ |2)+ 2w

1−w2 x·ξ
(|w| < 1) ,

where the series is uniformly and absolutely convergent on{w ∈ C : |w| < 1}. Then for
t > 0, it is not difficult to see that

∑
µ

e−(2|µ|+n)tΦµ(x)Φµ(ξ) = e−nt

π
n
2 (1 − e−4t )

n
2
e
− 1

2
1+e−4t

1−e−4t
|x−ξ |2− 1−e−2t

1+e−2t
x·ξ

.(1.1)
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We denote byE(x, ξ, t) the Mehler kernel defined by

E(x, ξ, t) =
{∑

µ e−(2|µ|+n)tΦµ(x)Φµ(ξ) , x, ξ ∈ Rn , t > 0
0 , x, ξ ∈ Rn , t ≤ 0 .

(1.2)

For eachξ ∈ Rn and eacht > 0, E(x, ξ, t) converges inS(Rn) (see Section 2). Moreover

for eachξ ∈ Rn, it satifies the Hermite heat equation(∂t − � + |x|2)U(x, t) = 0 for x ∈ Rn

and 0< t < ∞. Thus for anyu in S ′
(Rn), the pair〈u(·), E(x, ·, t)〉 is well defined. We

then define the functionU(x, t) := 〈u(ξ),E(x, ξ, t)〉 in Rn × (0, T ) and call itthe defining
function of u.

As a parallel result with the one in [3], the main purpose of this paper is to establish the
following characterization:

“For fixedT > 0, the defining functionU(x, t) = 〈u(ξ),E(x, ξ, t)〉 of anyu in S ′
(Rn)

is the smooth solution of(∂t − � + |x|2)U(x, t) = 0 in Rn × (0, T ) such that

sup
x∈Rn

|U(x, t)| ≤ C(1 + t−N) for some constantsC,N > 0 .

Conversely every smooth functionU(x, t) in Rn×(0, T ) with the above growth and satisfying
the Hermite heat equation can be represented asU(x, t) = 〈u(ξ),E(x, ξ, t)〉 for uniqueu ∈
S ′

(Rn).”
Furthermore we represent the tempered distributions as initial values of solution of the

Hermite heat equation and apply it to provide a generalization in the spaceS ′
(Rn) of the

following theorem by Strichartz:

THEOREM 1.1 (Theorem 3.2, [5]). If f is a function on Rn satisfying

‖(−� + |x|2)jf ‖∞ ≤ Mnj

for some constant M and all j ∈ N0, then f (x) = C e− |x|2
2 .

Throughout the paper, we denote byN the set of positive integers andN0 the set of non-
negative integers. For anyα = (α1, . . . , αn) ∈ Nn

0 and anyx = (x1, . . . , xn) ∈ Rn, we adopt

the standard notations|α| = α1 + · · · + αn, xα = x1
α1 · · · xn

αn and∂α = ∂
α1
1 · · · ∂αn

n where
∂i = ∂/∂xi for i = 1, . . . , n.

2. Characterization of the spaces S(Rn) and S ′
(Rn)

We denote byS(Rn) the Schwartz space of allC∞ functionsφ on Rn such that for all
α, β ∈ Nn

0

sup
x∈Rn

|xα∂βφ(x)| < ∞ .

The topology onS(Rn) is generated by the set of seminorms‖φ‖α,β = supx∈Rn |xα∂βφ(x)|.
A sequence{φj }j∈N is said to converge to zero inS(Rn) if ‖φj‖α,β → 0 asj → ∞ for all
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α, β ∈ Nn
0. We denote byS ′

(Rn) the dual space ofS(Rn) and call it the space of tempered
distributions. As remarked in (p. 142, [4]), we devote this section to give the proofs of the

characterization of the spacesS andS ′
for n-dimensional case. First we give a lemma.

LEMMA 2.1. Let Φµ be the normalized Hermite function on Rn. Then for any α, β ∈
Nn

0, there exists a positive constant C such that

‖ Φµ ‖α,β ≤ Cn(2
√

e)|α|+|β|(|α| + |β|) |α|+|β|
2 (1 + |µ|) |α|+|β|

2 .

PROOF. First we simply taken = 1 and suppose thatk, α, β ∈ N0, x ∈ R andD =
d/dx. It is well known that the normalized Hermite functionhk on R satisfies


(x + D)hk = 0 , k = 0
(x + D)hk = √

2k hk−1 , k ≥ 1
(x − D)hk = √

2(k + 1) hk+1 , k ≥ 0 .

(2.1)

Moreover in view of (p. 171, [7]), it is easy to see that there exists a constantG > 0 such that

|hk(x)| ≤ G(2.2)

for all x and allk. Consider the nontrivial caseα + β �= 0. Then

xαDβhk(x) = 2−α−β {(x + D) + (x − D)}α {(x + D) − (x − D)}β hk(x)

= 2−α−β
∑
ε∈T

(x + ε1D) · · · (x + εα+βD) hk(x)(2.3)

whereT = {ε = (ε1, . . . , εα+β): εi = +1 or − 1 for i = 1, . . . , α + β} and|T | = 2α+β . It
now follows from (2.1), (2.2) and (2.3) that

|xαDβhk(x)| ≤ (
√

2)α+β {(k + 1) · · · (k + α + β)}1/2 max
|j |≤α+β

{|hk+j (x)|}

≤ G (
√

2)α+β

{
(k + α + β)!

k!
}1/2

.

With the aid of Stirling’s formula, we can find a constantC such that

|xαDβhk(x)| ≤ C(
√

2)α+β

{
(k + α + β)k+α+β ek

√
k + α + β

ek+α+β kk
√

k

}1/2

≤ C(
√

2)α+β

{
(k + α + β)α+β

(
1 + α + β

k

)k
}1/2

≤ C(2
√

e)α+β

(
k

α+β
2 + (α + β)

α+β
2

)

≤ C(2
√

e)α+β(α + β)
α+β

2 (1 + k)
α+β

2 .
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Thus forµ, α, β ∈ Nn
0, we have

‖ Φµ ‖α,β = sup
x∈Rn

|xα∂βΦµ(x)| ≤ Cn(2
√

e)|α|+|β|(|α| + |β|) |α|+|β|
2 (1 + |µ|) |α|+|β|

2 .

THEOREM 2.1. Let φ ∈ S(Rn). Then φ = ∑
µ〈φ,Φµ〉Φµ and for every nonnegative

integer M there exists a positive constant C := C(M) such that

|〈φ,Φµ〉| ≤ C(1 + |µ|)−M .(2.4)

Conversely the series
∑

µ aµΦµ converges in S(Rn) if the coefficients aµ satisfy the growth

condition (2.4).

PROOF. Sinceφ ∈ S(Rn) ⊂ L2(Rn), clearlyφ = ∑
µ〈φ,Φµ〉Φµ. For every nonnega-

tive integerM, the operator(−� + |x|2)2M is self-adjoint. So we have∑
µ

|〈φ,Φµ〉|2(2|µ| + n)2M = 〈φ, (−� + |x|2)2Mφ〉 < ∞ .

From this the assertion follows. To prove the converse, letφ(x) := ∑
µ aµΦµ(x). For

N ∈ N0, consider the partial sumsφN(x) = ∑
|µ|≤N aµΦµ(x). Then for everyα, β ∈ Nn

0,

we have

‖φN − φN−1‖α,β ≤
∑

|µ|=N

|aµ| ‖Φµ‖α,β .

Using
∑

|µ|=N 1 = (
N+n−1

N

) ≤ (1 + N)n, Lemma 2.1 and choosingM = |α| + |β| + n + 2

in the estimate ofaµ, we have‖φN − φN−1‖α,β ≤ C
′
(1 + N)−2 for some positive constant

C
′
. Then for allε > 0 andN2 ≥ N1 ≥ P , we have

‖φN2 − φN1‖α,β ≤
N2∑

N=N1+1

‖φN − φN−1‖α,β ≤ C
′

∞∑
N=P

(1 + N)−2 < ε

for sufficiently largeP . It follows that{φN } is a Cauchy sequence inS(Rn). Since the space
S(Rn) is complete, the assertion follows. �

REMARK 2.1. For fixedx and t, the Mehler kernelE(x, ξ, t) converges inS(Rn)

since the Hermite coefficiente−(2|µ|+n)tΦµ(x) in (1.2) satisfies the estimate as in Theorem
2.1.

THEOREM 2.2. Let u ∈ S ′
(Rn). Then there exist positive constants C and M such

that

|〈u,Φµ〉| ≤ C(1 + |µ|)M .(2.5)

Conversely the series
∑

µ bµΦµ converges in S ′
(Rn) if the coefficients bµ satisfy the growth

condition (2.5). Moreover if u ∈ S ′
(Rn), then u = ∑

µ〈u,Φµ〉Φµ in the sense that 〈u, φ〉 =∑
µ〈u,Φµ〉 〈φ,Φµ〉 for every φ ∈ S(Rn).
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PROOF. Sinceu ∈ S ′
(Rn), there exist a constantC1 > 0 andα, β ∈ Nn

0 such that

|〈u,Φµ〉| ≤ C1 ‖Φµ‖α,β .

By Lemma 2.1, we see that|〈u,Φµ〉| ≤ C2(1 + |µ|)M whereM := (|α| + |β|)/2, C2 :=
C1 Cn (2

√
e)2M (2M)M are positive constants.

For the converse, letu := ∑
µ bµΦµ and define〈u, φ〉 = ∑

µ bµ 〈φ,Φµ〉 for every

φ ∈ S(Rn). It is well-defined because of the estimates ofbµ and〈φ,Φµ〉. For N ∈ N0,

consider the partial sumsuN := ∑
|µ|≤N bµΦµ. We show thatuN → u in S ′

(Rn) asN → ∞.

So letφ ∈ S(Rn) andaµ := 〈φ,Φµ〉. Then from the hypothesis and the estimate ofaµ in

Theorem 2.1, there exists a positive constantC
′
and an integerM1 > M such that

|〈uN − u, φ〉| ≤
∑

|µ|>N

|bµ||aµ| ≤ C
′ ∑
|µ|>N

(1 + |µ|)M1−M1−2 ≤ C
′ ∑
|µ|>N

(1 + |µ|)−2

which tends to zero asN → ∞. If the series
∑

µ bµΦµ converges to, sayv, in S ′
(Rn), then

u andv both have the same Hermite coefficients and hence are the same. Last part is obvious
from the first part. �

3. Mehler Kernel Approach

In view of (1.1), it is easy to see thatE(x, ξ, t) = η̃(x, t) Ẽ(x, ξ, t) where

η̃(x, t) = 2
n
2 e−nt

(1 + e−4t )
n
2

e
− 1

2
1−e−4t

1+e−4t
|x|2

,(3.1)

Ẽ(x, ξ, t) = (2π)−
n
2

(
1 + e−4t

1 − e−4t

) n
2

e
− 1

2
1+e−4t

1−e−4t

∣∣∣ξ− 2e−2t

1+e−4t
x

∣∣∣2
(3.2)

for x, ξ ∈ Rn andt > 0. With this decomposition, we give some lemmas.

LEMMA 3.1. For any δ > 0∫
Rn

Ẽ(x, ξ, t)dξ = 1 ,(3.3) ∫
∣∣∣ξ− 2e−2t

1+e−4t
x

∣∣∣≥δ

Ẽ(x, ξ, t)dξ → 0 uniformly forx ∈ Rn ast → 0+ .(3.4)

PROOF. It is immediate to derive (3.3) from (3.2). We now prove (3.4). Under the

change of variable
√

1+e−4t

2(1−e−4t )

(
ξ − 2e−2t

1+e−4t x
)

= s, we have∫
∣∣∣ξ− 2e−2t

1+e−4t
x

∣∣∣≥δ

Ẽ(x, ξ, t)dξ = π−n/2
∫

|s|≥δ

√
1+e−4t

2(1−e−4t )

e−|s|2ds .

Thus the above integral converges to 0 uniformly forx ∈ Rn ast → 0+. �
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For a continuous and bounded functionh onRn, consider the following Cauchy problem




∂U
∂t

−
n∑

i,j=1

aij (x, t) ∂2U
∂xi∂xj

−
n∑

i=1

bi(x, t) ∂U
∂xi

− c(x, t)U = 0 , (x, t) ∈ Rn × (0, T )

U(x, 0) = h(x) , x ∈ Rn

(3.5)

where|aij (x, t)| ≤ M(|x|2 + 1) , |bi(x, t)| ≤ M
√|x|2 + 1 , c(x, t) ≤ M for some constant

M > 0.
Ilin–Kalašnikov–Olejnik (p. 14, [2]) have shown that the solution of (3.5) is unique in

the class of bounded functions inRn × [0, T ]. With (aij ) = then × n identity matrix,bi = 0,

c = −|x|2 andM = 1, the following theorem is a particular case of [2].

THEOREM 3.1. For h as in (3.5), the solution of the Cauchy problem{
(∂t − � + |x|2)U(x, t) = 0 , (x, t) ∈ Rn × (0, T )

U(x, 0) = h(x) , x ∈ Rn .
(3.6)

is unique in the class of bounded functions in Rn × [0, T ].
LEMMA 3.2. Let E(x, ξ, t) be the Mehler kernel and h a continuous and bounded

function on Rn. Let U(x, t) := ∫
Rn E(x, ξ, t)h(ξ)dξ . Then it is a well-defined C∞ function

in Rn × (0, T ] and satisfies that

(i) (∂t − � + |x|2)U(x, t) = 0 in Rn × (0, T ),

(ii) U(x, t) → h(x) uniformly on each compact subset of Rn as t → 0+.

(iii) U(x, t) is bounded in Rn × [0, T ].
PROOF. The proof of (i) is obvious. To prove (ii), letδ > 0 be arbitrary. Then

|U(x, t) − h(x)|

≤ η̃(x, t)

∫
Rn

|h(ξ) − h(x)|Ẽ(x, ξ, t)dξ + |η̃(x, t) − 1| |h(x)|

≤ η̃(x, t) sup∣∣∣ξ− 2e−2t

1+e−4t
x

∣∣∣<δ

|h(ξ) − h(x)|
∫

∣∣∣ξ− 2e−2t

1+e−4t
x

∣∣∣<δ

Ẽ(x, ξ, t)dξ

+ η̃(x, t) 2‖h‖∞
∫

∣∣∣ξ− 2e−2t

1+e−4t
x

∣∣∣≥δ

Ẽ(x, ξ, t)dξ + |η̃(x, t) − 1| |h(x)|

= I1 + I2 + I3 .

Let K be a compact subset ofRn. Sinceh(x) is uniformly continuous on aδ-neighborhood
Kδ of K, it follows that for anyε > 0, |ξ − x| < δ implies|h(ξ) − h(x)| < ε for ξ, x ∈ Kδ.
Let |h(x)| ≤ C(K) for everyx ∈ K. We note that̃η(x, t) → 1 in view of (3.1) ast → 0+.
Then clearlyI3 tends to zero ast → 0+. Furthermore for everyx ∈ K, I1 tends to zero as
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t → 0+ since ∣∣∣∣ξ − 2e−2t

1 + e−4t
x

∣∣∣∣ < δ ⇒ |ξ − x| < δ ast → 0+

and hence applying the uniform continuity ofh on Kδ. In view of Lemma 3.1,I2 tends to
zero ast → 0+. This proves (ii).

Now we prove (iii). Sinceh is bounded, so isU(· , 0). By Lemma 3.1 and boundedness
of η̃(x, t), there exists a constantC > 0 such that

|U(x, t)| ≤ ‖h‖∞ η̃(x, t)

∫
Rn

Ẽ(x, ξ, t)dξ ≤ C

for all (x, t) ∈ Rn × (0, T ]. ThusU(x, t) is bounded inRn × [0, T ] which proves the
assertion. �

4. Main Results

THEOREM 4.1. For fixed T > 0, the defining function U(x, t) = 〈u(ξ),E(x, ξ, t)〉 of

any u in S ′
(Rn) is the smooth solution of the Hermite heat equation (∂t −�+|x|2)U(x, t) = 0

in Rn × (0, T ) such that for some positive constants C and N

sup
x∈Rn

|U(x, t)| ≤ C(1 + t−N) .(4.1)

Conversely every smooth function U(x, t) in Rn × (0, T ) with the growth of type (4.1) and
satisfying the Hermite heat equation can be represented as U(x, t) = 〈u(ξ),E(x, ξ, t)〉 for

unique u ∈ S ′
(Rn) and moreover

U(x, t) =
∑
µ

cµ e−(2|µ|+n)t Φµ(x) , U(· , 0+) = u(4.2)

where |cµ| ≤ C(1 + |µ|)M for some positive constants C and M := M(N).

PROOF. We easily see that the defining function

U(x, t) = 〈u(ξ),E(x, ξ, t)〉 =
∑
µ

e−(2|µ|+n)t 〈u(ξ),Φµ(ξ)〉 Φµ(x)

satisfies the Hermite heat equation. As such it is smooth inRn × (0, T ) by the hypoelliptic

property of the operator∂t − � + |x|2 (see p. 168, [1]). By Theorem 2.2 and (2.2), there exist
a positive integerM and a constantC1 > 0 such that

|U(x, t)| ≤ G C1

∞∑
k=0

∑
|µ|=k

e−2t |µ|(1 + |µ|)M

= G C1

(
1 +

∞∑
k=1

(
k + n − 1

k

)
(1 + k)M

e2tk

)
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≤ G C1

(
1 +

∞∑
k=1

2n+M kn+M (n + M + 2)!
(2tk)n+M+2

)

= G C1

(
1 + π2 (n + M + 2)!

24

1

tn+M+2

)

≤ C (1 + t−N)

whereN := n + M + 2 andC := G C1 π2 N !
24 are positive constants.

Conversely for a positive integerm, let

f (t) =
{

0 , t ≤ 0 ,

tm−1/(m − 1)! , t > 0

Multiplying f by a suitableC∞
0 function, we obtain functionsν(t) andw(t) with

ν(t) =
{

f (t) , t ≤ T/4 ,

0 , t ≥ T/2

and the support ofw ⊂ [T/4, T /2] such that(
∂

∂t

)m

ν(t) = δ(t) + w(t)(4.3)

whereδ is the Dirac measure. Now take the integerm = �N� + 2 whereN is the constant
in the condition (4.1) and�N� is the least integer greater thanN . Consider the following
functions inRn × (0, T /2)

L(x, t) =
∫ T

0
U(x, t + s)ν(s)ds , H(x, t) =

∫ T

0
U(x, t + s)w(s)ds .

In view of (4.3) it is easy to see that

U(x, t) =
(

− ∂

∂t

)m

L(x, t) − H(x, t) .(4.4)

By hypothesis,L andH are bounded solutions of the Hermite heat equation inRn × (0, T /2)

and can be continuously extended toRn × [0, T /2] for m = �N� + 2. DefineL(x, 0) =: l(x)

andH(x, 0) =: h(x). Then clearlyl andh are continuous and bounded functions onRn.
HenceL andH are bounded inRn × [0, T /2]. By Theorem 3.1 and Lemma 3.2, we have

L(x, t) =
∫

Rn

l(ξ)E(x, ξ, t)dξ , H(x, t) =
∫

Rn

h(ξ)E(x, ξ, t)dξ

in Rn × [0, T /2] and hence (4.4) reduces to

U(x, t) =
(

− ∂

∂t

)m ∫
Rn

l(ξ)E(x, ξ, t)dξ −
∫

Rn

h(ξ)E(x, ξ, t)dξ
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=
(

− ∂

∂t

)m ∑
µ

e−(2|µ|+n)t 〈l, Φµ〉 Φµ(x) −
∑
µ

e−(2|µ|+n)t 〈h ,Φµ〉 Φµ(x)

=
∑
µ

e−(2|µ|+n)t
{
(2|µ| + n)m

〈
l, Φµ

〉 − 〈
h ,Φµ

〉}
Φµ(x) .(4.5)

Put cµ := (2|µ| + n)m〈l , Φµ〉 − 〈h ,Φµ〉 . By Theorem 2.2, we can find some positive

constantsM
′
andC

′
such that

|cµ| ≤ 2C
′
(1 + |µ|)M ′

(2|µ| + n)m ≤ 2C
′
nm(1 + |µ|)M ′+m = C(1 + |µ|)M(4.6)

wherem = �N� + 2, C := 2C
′
nm > 0 andM := M

′ + m > 0. Defineu := ∑
µ cµΦµ.

Thenu belongs toS ′
(Rn) by Theorem 2.2 and〈u,Φµ〉 = cµ. Hence (4.5) takes the form

U(x, t) =
∑
µ

e−(2|µ|+n)t 〈u,Φµ〉Φµ(x) = 〈u(ξ) ,E(x, ξ, t)〉 in Rn × (0, T /2) .

Uniqueness ofu follows from the uniqueness of the coefficient of the Hermite series. More-
over (4.2) is obvious in view of (4.5) and (4.6). Furthermore

lim
t→o+〈U(· , t) , φ〉 = lim

t→o+

∑
µ

e−(2|µ|+n)t 〈u ,Φµ〉〈φ,Φµ〉 = 〈u , φ〉 , φ ∈ S(Rn)(4.7)

from the uniform convergence of the series
∑

µ e−(2|µ|+n)t 〈u ,Φµ〉 〈φ ,Φµ〉 in (0, T /2). �

THEOREM 4.2. Let u ∈ S ′
(Rn). Suppose that there exist a constant L > 0 and

α, β ∈ Nn
0 such that

|〈(−� + |x|2)j u(x), φ(x)〉| ≤ L nj ‖φ‖α,β(4.8)

for all j ∈ N0 and all φ ∈ S(Rn). Then u(x) = C e− |x|2
2 for some constant C.

PROOF. For eacht > 0, the defining functionU(x, t) = 〈u(ξ),E(x, ξ, t)〉 is a C∞
function inRn. It follows from (4.8) and (2.2) that

|(−� + |x|2)jU(x, t)| ≤
∑
µ

e−2t |µ||〈(−� + |ξ |2)j u(ξ),Φµ(ξ)〉| |Φµ(x)|

≤ GL nj
∑
µ

e−2t |µ| ‖Φµ‖α,β(4.9)

By Lemma 2.1, (4.9) yields that

|(−� + |x|2)jU(x, t)| ≤ GLCn(2
√

e)|α|+|β|(|α| + |β|) |α|+|β|
2 nj

×
∑
µ

e−2t |µ| (1 + |µ|)|α|+|β| .(4.10)
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But

∑
µ

e−2t |µ| (1 + |µ|)|α|+|β| =
∞∑

k=0

∑
|µ|=k

e−2t |µ| (1 + |µ|)|α|+|β|

= 1 +
∞∑

k=1

(
k + n − 1

k

)
(1 + k)|α|+|β|

e2tk

≤ 1 +
∞∑

k=1

(1 + k)|α|+|β|+n

e2tk

≤ 1 +
∞∑

k=1

2|α|+|β|+n k|α|+|β|+n

e2tk

≤ 1 + C1

t |α|+|β|+n+2
(4.11)

whereC1 = π2 (|α|+|β|+n+2)!
24 is a positive constant. So from (4.10) and (4.11), we have

|(−� + |x|2)jU(x, t)| ≤GLCn(2
√

e)|α|+|β|(|α| + |β|) |α|+|β|
2

×
(

1 + C1

t |α|+|β|+n+2

)
nj(4.12)

Since for eacht > 0, GLCn(2
√

e)|α|+|β|(|α| + |β|) |α|+|β|
2

(
1 + C1

t |α|+|β|+n+2

)
in (4.12) is a

positive constant and independent ofj , it follows from Theorem 1.1 that

U(x, t) = Ct e− |x|2
2(4.13)

for some constantCt depending ont. Since the defining functionU(x, t) satisfies the Hermite
heat equation, we have

(∂t − � + |x|2)Ct e− |x|2
2 = 0 .(4.14)

Using(−� + |x|2)e− |x|2
2 = ne− |x|2

2 in (4.14), we haveC
′
t + nCt = 0 so that

Ct = C e−nt(4.15)

for some constantC. Then for everyφ ∈ S(Rn), it follows from (4.7), (4.13) and (4.15) that

〈u(x), φ(x)〉 = lim
t→0+〈U(x, t), φ(x)〉 = 〈C e− |x|2

2 , φ(x)〉 .

This completes the proof. �
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