Mehler Kernel Approach to Tempered Distributions

Bishnu P. DHUNGANA
Tribhuvan University
(Communicated by S. Miyoshi)

Abstract

Using the Mehler kernel $E(x, \xi, t)$, we show that the solution of the Hermite heat equation $\left(\partial_{t}-\right.$ $\left.\Delta+|x|^{2}\right) U(x, t)=0$ in $\mathbf{R}^{n} \times(0, T)$ satisfying $\sup _{x \in \mathbf{R}^{n}}|U(x, t)| \leq C\left(1+t^{-N}\right)$ for some constants C and N can be expressed as $U(x, t)=\langle u(\xi), E(x, \xi, t)\rangle$ for unique u in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$. This is a parallel result with the one in (Theorem 1.2, T. Matsuzawa, A calculus approach to hyperfunctions III, Nagoya Math. J. 118 (1990), 133-153). Moreover we represent the tempered distributions as initial values of solution of the Hermite heat equation and apply it to generalize a theorem by Strichartz [Theorem 3.2, Trans. Amer. Math. Soc. 338 (1993), 971-979] in the space of tempered distributions.

1. Introduction

We denote by h_{k} the normalized Hermite function on \mathbf{R} defined by

$$
h_{k}(x)=\frac{(-1)^{k} e^{x^{2} / 2}}{\left(2^{k} k!\pi^{1 / 2}\right)^{1 / 2}} \frac{d^{k}}{d x^{k}} e^{-x^{2}}, \quad k=0,1,2, \ldots
$$

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}, \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbf{N}_{0}^{n}$; we define $\Phi_{\mu}(x):=\prod_{j=1}^{n} h_{\mu_{j}}\left(x_{j}\right)$ and call it the normalized Hermite function on \mathbf{R}^{n}. It is well known that $\left\{\Phi_{\mu}\right\}$ forms a complete orthonormal basis on $L^{2}\left(\mathbf{R}^{n}\right)$ and solves the eigenvalue problem $\left(-\Delta+|x|^{2}\right) \Psi=\lambda \Psi$ with $\lambda=2|\mu|+n$. For all $x, \xi \in \mathbf{R}^{n}$ and $w \in \mathbf{C}$ with $|w|<1$, the well known Mehler formula (p. $107,[8] \&$ p. 6, [6]) is

$$
\sum_{\mu} w^{|\mu|} \Phi_{\mu}(x) \Phi_{\mu}(\xi)=\frac{1}{\pi^{\frac{n}{2}}\left(1-w^{2}\right)^{\frac{n}{2}}} e^{-\frac{1}{2} \frac{1+w^{2}}{1-w^{2}}\left(|x|^{2}+|\xi|^{2}\right)+\frac{2 w}{1-w^{2}} x \cdot \xi} \quad(|w|<1)
$$

where the series is uniformly and absolutely convergent on $\{w \in \mathbf{C}:|w|<1\}$. Then for $t>0$, it is not difficult to see that

$$
\begin{equation*}
\sum_{\mu} e^{-(2|\mu|+n) t} \Phi_{\mu}(x) \Phi_{\mu}(\xi)=\frac{e^{-n t}}{\pi^{\frac{n}{2}}\left(1-e^{-4 t}\right)^{\frac{n}{2}}} e^{-\frac{1}{2} \frac{1+e^{-4 t}}{1-e^{-4 t}}|x-\xi|^{2}-\frac{1-e^{-2 t}}{1+e^{-2 t}} x \cdot \xi} \tag{1.1}
\end{equation*}
$$

Received January 19, 2005
1991 Mathematics Subject Classification. Primary 33C45; Secondary 46F05
Key words. Hermite functions, Tempered distributions, Mehler kernel

We denote by $E(x, \xi, t)$ the Mehler kernel defined by

$$
E(x, \xi, t)= \begin{cases}\sum_{\mu} e^{-(2|\mu|+n) t} \Phi_{\mu}(x) \Phi_{\mu}(\xi), & x, \xi \in \mathbf{R}^{n}, \tag{1.2}\\ 0, & x, \xi \in \mathbf{R}^{n}, \\ t \leq 0\end{cases}
$$

For each $\xi \in \mathbf{R}^{n}$ and each $t>0, E(x, \xi, t)$ converges in $\mathcal{S}\left(\mathbf{R}^{n}\right)$ (see Section 2). Moreover for each $\xi \in \mathbf{R}^{n}$, it satifies the Hermite heat equation $\left(\partial_{t}-\Delta+|x|^{2}\right) U(x, t)=0$ for $x \in \mathbf{R}^{n}$ and $0<t<\infty$. Thus for any u in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$, the pair $\langle u(\cdot), E(x, \cdot, t)\rangle$ is well defined. We then define the function $U(x, t):=\langle u(\xi), E(x, \xi, t)\rangle$ in $\mathbf{R}^{n} \times(0, T)$ and call it the defining function of u.

As a parallel result with the one in [3], the main purpose of this paper is to establish the following characterization:
"For fixed $T>0$, the defining function $U(x, t)=\langle u(\xi), E(x, \xi, t)\rangle$ of any u in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ is the smooth solution of $\left(\partial_{t}-\Delta+|x|^{2}\right) U(x, t)=0$ in $\mathbf{R}^{n} \times(0, T)$ such that

$$
\sup _{x \in \mathbf{R}^{n}}|U(x, t)| \leq C\left(1+t^{-N}\right) \quad \text { for some constants } C, N>0 .
$$

Conversely every smooth function $U(x, t)$ in $\mathbf{R}^{n} \times(0, T)$ with the above growth and satisfying the Hermite heat equation can be represented as $U(x, t)=\langle u(\xi), E(x, \xi, t)\rangle$ for unique $u \in$ $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$."

Furthermore we represent the tempered distributions as initial values of solution of the Hermite heat equation and apply it to provide a generalization in the space $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ of the following theorem by Strichartz:

THEOREM 1.1 (Theorem 3.2, [5]). If f is a function on \mathbf{R}^{n} satisfying

$$
\left\|\left(-\Delta+|x|^{2}\right)^{j} f\right\|_{\infty} \leq M n^{j}
$$

for some constant M and all $j \in \mathbf{N}_{0}$, then $f(x)=C e^{-\frac{|x|^{2}}{2}}$.
Throughout the paper, we denote by \mathbf{N} the set of positive integers and \mathbf{N}_{0} the set of nonnegative integers. For any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{N}_{0}^{n}$ and any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, we adopt the standard notations $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, x^{\alpha}=x_{1}{ }^{\alpha_{1}} \cdots x_{n}{ }^{\alpha_{n}}$ and $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$ where $\partial_{i}=\partial / \partial x_{i}$ for $i=1, \ldots, n$.

2. Characterization of the spaces $\mathcal{S}\left(\mathbf{R}^{n}\right)$ and $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$

We denote by $\mathcal{S}\left(\mathbf{R}^{n}\right)$ the Schwartz space of all $\mathcal{C}{ }^{\infty}$ functions ϕ on \mathbf{R}^{n} such that for all $\alpha, \beta \in \mathbf{N}_{0}^{n}$

$$
\sup _{x \in \mathbf{R}^{n}}\left|x^{\alpha} \partial^{\beta} \phi(x)\right|<\infty
$$

The topology on $\mathcal{S}\left(\mathbf{R}^{n}\right)$ is generated by the set of seminorms $\|\phi\|_{\alpha, \beta}=\sup _{x \in \mathbf{R}^{n}}\left|x^{\alpha} \partial^{\beta} \phi(x)\right|$. A sequence $\left\{\phi_{j}\right\}_{j \in \mathbf{N}}$ is said to converge to zero in $\mathcal{S}\left(\mathbf{R}^{n}\right)$ if $\left\|\phi_{j}\right\|_{\alpha, \beta} \rightarrow 0$ as $j \rightarrow \infty$ for all
$\alpha, \beta \in \mathbf{N}_{0}^{n}$. We denote by $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ the dual space of $\mathcal{S}\left(\mathbf{R}^{n}\right)$ and call it the space of tempered distributions. As remarked in (p. 142, [4]), we devote this section to give the proofs of the characterization of the spaces \mathcal{S} and \mathcal{S}^{\prime} for n-dimensional case. First we give a lemma.

LEmma 2.1. Let Φ_{μ} be the normalized Hermite function on \mathbf{R}^{n}. Then for any $\alpha, \beta \in$ \mathbf{N}_{0}^{n}, there exists a positive constant C such that

$$
\left\|\Phi_{\mu}\right\|_{\alpha, \beta} \leq C^{n}(2 \sqrt{e})^{|\alpha|+|\beta|}(|\alpha|+|\beta|)^{\frac{|\alpha|+|\beta|}{2}}(1+|\mu|)^{\frac{|\alpha|+|\beta|}{2}} .
$$

Proof. First we simply take $n=1$ and suppose that $k, \alpha, \beta \in \mathbf{N}_{0}, x \in \mathbf{R}$ and $D=$ $d / d x$. It is well known that the normalized Hermite function h_{k} on \mathbf{R} satisfies

$$
\begin{cases}(x+D) h_{k}=0, & k=0 \tag{2.1}\\ (x+D) h_{k}=\sqrt{2 k} h_{k-1}, & k \geq 1 \\ (x-D) h_{k}=\sqrt{2(k+1)} h_{k+1}, & k \geq 0\end{cases}
$$

Moreover in view of (p. 171, [7]), it is easy to see that there exists a constant $G>0$ such that

$$
\begin{equation*}
\left|h_{k}(x)\right| \leq G \tag{2.2}
\end{equation*}
$$

for all x and all k. Consider the nontrivial case $\alpha+\beta \neq 0$. Then

$$
\begin{align*}
x^{\alpha} D^{\beta} h_{k}(x) & =2^{-\alpha-\beta}\{(x+D)+(x-D)\}^{\alpha}\{(x+D)-(x-D)\}^{\beta} h_{k}(x) \\
& =2^{-\alpha-\beta} \sum_{\varepsilon \in T}\left(x+\varepsilon_{1} D\right) \cdots\left(x+\varepsilon_{\alpha+\beta} D\right) h_{k}(x) \tag{2.3}
\end{align*}
$$

where $T=\left\{\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{\alpha+\beta}\right)\right.$: $\varepsilon_{i}=+1$ or -1 for $\left.i=1, \ldots, \alpha+\beta\right\}$ and $|T|=2^{\alpha+\beta}$. It now follows from (2.1), (2.2) and (2.3) that

$$
\begin{aligned}
\left|x^{\alpha} D^{\beta} h_{k}(x)\right| & \leq(\sqrt{2})^{\alpha+\beta}\{(k+1) \cdots(k+\alpha+\beta)\}^{1 / 2} \max _{|j| \leq \alpha+\beta}\left\{\left|h_{k+j}(x)\right|\right\} \\
& \leq G(\sqrt{2})^{\alpha+\beta}\left\{\frac{(k+\alpha+\beta)!}{k!}\right\}^{1 / 2}
\end{aligned}
$$

With the aid of Stirling's formula, we can find a constant C such that

$$
\begin{aligned}
\left|x^{\alpha} D^{\beta} h_{k}(x)\right| & \leq C(\sqrt{2})^{\alpha+\beta}\left\{\frac{(k+\alpha+\beta)^{k+\alpha+\beta} e^{k} \sqrt{k+\alpha+\beta}}{e^{k+\alpha+\beta} k^{k} \sqrt{k}}\right\}^{1 / 2} \\
& \leq C(\sqrt{2})^{\alpha+\beta}\left\{(k+\alpha+\beta)^{\alpha+\beta}\left(1+\frac{\alpha+\beta}{k}\right)^{k}\right\}^{1 / 2} \\
& \leq C(2 \sqrt{e})^{\alpha+\beta}\left(k^{\frac{\alpha+\beta}{2}}+(\alpha+\beta)^{\frac{\alpha+\beta}{2}}\right) \\
& \leq C(2 \sqrt{e})^{\alpha+\beta}(\alpha+\beta)^{\frac{\alpha+\beta}{2}}(1+k)^{\frac{\alpha+\beta}{2}} .
\end{aligned}
$$

Thus for $\mu, \alpha, \beta \in \mathbf{N}_{0}^{n}$, we have

$$
\left\|\Phi_{\mu}\right\|_{\alpha, \beta}=\sup _{x \in \mathbf{R}^{n}}\left|x^{\alpha} \partial^{\beta} \Phi_{\mu}(x)\right| \leq C^{n}(2 \sqrt{e})^{|\alpha|+|\beta|}(|\alpha|+|\beta|)^{\frac{|\alpha|+|\beta|}{2}}(1+|\mu|)^{\frac{|\alpha|+|\beta|}{2}}
$$

Theorem 2.1. Let $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. Then $\phi=\sum_{\mu}\left\langle\phi, \Phi_{\mu}\right\rangle \Phi_{\mu}$ and for every nonnegative integer M there exists a positive constant $C:=C(M)$ such that

$$
\begin{equation*}
\left|\left\langle\phi, \Phi_{\mu}\right\rangle\right| \leq C(1+|\mu|)^{-M} \tag{2.4}
\end{equation*}
$$

Conversely the series $\sum_{\mu} a_{\mu} \Phi_{\mu}$ converges in $\mathcal{S}\left(\mathbf{R}^{n}\right)$ if the coefficients a_{μ} satisfy the growth condition (2.4).

Proof. Since $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right) \subset L^{2}\left(\mathbf{R}^{n}\right)$, clearly $\phi=\sum_{\mu}\left\langle\phi, \Phi_{\mu}\right\rangle \Phi_{\mu}$. For every nonnegative integer M, the operator $\left(-\Delta+|x|^{2}\right)^{2 M}$ is self-adjoint. So we have

$$
\sum_{\mu}\left|\left\langle\phi, \Phi_{\mu}\right\rangle\right|^{2}(2|\mu|+n)^{2 M}=\left\langle\phi,\left(-\Delta+|x|^{2}\right)^{2 M} \phi\right\rangle<\infty
$$

From this the assertion follows. To prove the converse, let $\phi(x):=\sum_{\mu} a_{\mu} \Phi_{\mu}(x)$. For $N \in \mathbf{N}_{0}$, consider the partial sums $\phi_{N}(x)=\sum_{|\mu| \leq N} a_{\mu} \Phi_{\mu}(x)$. Then for every $\alpha, \beta \in \mathbf{N}_{0}^{n}$, we have

$$
\left\|\phi_{N}-\phi_{N-1}\right\|_{\alpha, \beta} \leq \sum_{|\mu|=N}\left|a_{\mu}\right|\left\|\Phi_{\mu}\right\|_{\alpha, \beta}
$$

Using $\sum_{|\mu|=N} 1=\binom{N+n-1}{N} \leq(1+N)^{n}$, Lemma 2.1 and choosing $M=|\alpha|+|\beta|+n+2$ in the estimate of a_{μ}, we have $\left\|\phi_{N}-\phi_{N-1}\right\|_{\alpha, \beta} \leq C^{\prime}(1+N)^{-2}$ for some positive constant C^{\prime}. Then for all $\varepsilon>0$ and $N_{2} \geq N_{1} \geq P$, we have

$$
\left\|\phi_{N_{2}}-\phi_{N_{1}}\right\|_{\alpha, \beta} \leq \sum_{N=N_{1}+1}^{N_{2}}\left\|\phi_{N}-\phi_{N-1}\right\|_{\alpha, \beta} \leq C^{\prime} \sum_{N=P}^{\infty}(1+N)^{-2}<\varepsilon
$$

for sufficiently large P. It follows that $\left\{\phi_{N}\right\}$ is a Cauchy sequence in $\mathcal{S}\left(\mathbf{R}^{n}\right)$. Since the space $\mathcal{S}\left(\mathbf{R}^{n}\right)$ is complete, the assertion follows.

REmark 2.1. For fixed x and t, the Mehler kernel $E(x, \xi, t)$ converges in $\mathcal{S}\left(\mathbf{R}^{n}\right)$ since the Hermite coefficient $e^{-(2|\mu|+n) t} \Phi_{\mu}(x)$ in (1.2) satisfies the estimate as in Theorem 2.1.

TheOrem 2.2. Let $u \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$. Then there exist positive constants C and M such that

$$
\begin{equation*}
\left|\left\langle u, \Phi_{\mu}\right\rangle\right| \leq C(1+|\mu|)^{M} \tag{2.5}
\end{equation*}
$$

Conversely the series $\sum_{\mu} b_{\mu} \Phi_{\mu}$ converges in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ if the coefficients b_{μ} satisfy the growth condition (2.5). Moreover if $u \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$, then $u=\sum_{\mu}\left\langle u, \Phi_{\mu}\right\rangle \Phi_{\mu}$ in the sense that $\langle u, \phi\rangle=$ $\sum_{\mu}\left\langle u, \Phi_{\mu}\right\rangle\left\langle\phi, \Phi_{\mu}\right\rangle$ for every $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$.

Proof. Since $u \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$, there exist a constant $C_{1}>0$ and $\alpha, \beta \in \mathbf{N}_{0}^{n}$ such that

$$
\left|\left\langle u, \Phi_{\mu}\right\rangle\right| \leq C_{1}\left\|\Phi_{\mu}\right\|_{\alpha, \beta}
$$

By Lemma 2.1, we see that $\left|\left\langle u, \Phi_{\mu}\right\rangle\right| \leq C_{2}(1+|\mu|)^{M}$ where $M:=(|\alpha|+|\beta|) / 2, \quad C_{2}:=$ $C_{1} C^{n}(2 \sqrt{e})^{2 M}(2 M)^{M}$ are positive constants.

For the converse, let $u:=\sum_{\mu} b_{\mu} \Phi_{\mu}$ and define $\langle u, \phi\rangle=\sum_{\mu} b_{\mu}\left\langle\phi, \Phi_{\mu}\right\rangle$ for every $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. It is well-defined because of the estimates of b_{μ} and $\left\langle\phi, \Phi_{\mu}\right\rangle$. For $N \in \mathbf{N}_{0}$, consider the partial sums $u_{N}:=\sum_{|\mu| \leq N} b_{\mu} \Phi_{\mu}$. We show that $u_{N} \rightarrow u$ in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ as $N \rightarrow \infty$. So let $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ and $a_{\mu}:=\left\langle\phi, \Phi_{\mu}\right\rangle$. Then from the hypothesis and the estimate of a_{μ} in Theorem 2.1, there exists a positive constant C^{\prime} and an integer $M_{1}>M$ such that

$$
\left|\left\langle u_{N}-u, \phi\right\rangle\right| \leq \sum_{|\mu|>N}\left|b_{\mu}\right|\left|a_{\mu}\right| \leq C^{\prime} \sum_{|\mu|>N}(1+|\mu|)^{M_{1}-M_{1}-2} \leq C^{\prime} \sum_{|\mu|>N}(1+|\mu|)^{-2}
$$

which tends to zero as $N \rightarrow \infty$. If the series $\sum_{\mu} b_{\mu} \Phi_{\mu}$ converges to, say v, in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$, then u and v both have the same Hermite coefficients and hence are the same. Last part is obvious from the first part.

3. Mehler Kernel Approach

In view of (1.1), it is easy to see that $E(x, \xi, t)=\tilde{\eta}(x, t) \tilde{E}(x, \xi, t)$ where

$$
\begin{align*}
& \tilde{\eta}(x, t)=\frac{2^{\frac{n}{2}} e^{-n t}}{\left(1+e^{-4 t}\right)^{\frac{n}{2}}} e^{-\frac{1}{2} \frac{1-e^{-4 t}}{1+e^{-4 t}}|x|^{2}} \tag{3.1}\\
& \tilde{E}(x, \xi, t)=(2 \pi)^{-\frac{n}{2}}\left(\frac{1+e^{-4 t}}{1-e^{-4 t}}\right)^{\frac{n}{2}} e^{-\frac{1}{2} \frac{1+e^{-4 t}}{1-e^{-4 t}}\left|\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right|^{2}} \tag{3.2}
\end{align*}
$$

for $x, \xi \in \mathbf{R}^{n}$ and $t>0$. With this decomposition, we give some lemmas.
Lemma 3.1. For any $\delta>0$

$$
\begin{align*}
& \int_{\mathbf{R}^{n}} \tilde{E}(x, \xi, t) d \xi=1 \tag{3.3}\\
& \int_{\left|\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right| \geq \delta} \tilde{E}(x, \xi, t) d \xi \rightarrow 0 \text { uniformly for } x \in \mathbf{R}^{n} \text { as } t \rightarrow 0^{+} \tag{3.4}
\end{align*}
$$

Proof. It is immediate to derive (3.3) from (3.2). We now prove (3.4). Under the change of variable $\sqrt{\frac{1+e^{-4 t}}{2\left(1-e^{-4 t}\right)}}\left(\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right)=s$, we have

$$
\int_{\left|\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right| \geq \delta} \tilde{E}(x, \xi, t) d \xi=\pi^{-n / 2} \int_{|s| \geq \delta}{ }_{\frac{1+e^{-4 t}}{2\left(1-e^{-4 t}\right)}} e^{-|s|^{2}} d s
$$

Thus the above integral converges to 0 uniformly for $x \in \mathbf{R}^{n}$ as $t \rightarrow 0^{+}$.

For a continuous and bounded function h on \mathbf{R}^{n}, consider the following Cauchy problem

$$
\begin{cases}\frac{\partial U}{\partial t}-\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} U}{\partial x_{i} \partial x_{j}}-\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial U}{\partial x_{i}}-c(x, t) U=0, & (x, t) \in \mathbf{R}^{n} \times(0, T) \tag{3.5}\\ U(x, 0)=h(x), & x \in \mathbf{R}^{n}\end{cases}
$$

where $\left|a_{i j}(x, t)\right| \leq M\left(|x|^{2}+1\right),\left|b_{i}(x, t)\right| \leq M \sqrt{|x|^{2}+1}, c(x, t) \leq M$ for some constant $M>0$.

Ilin-Kalašnikov-Olejnik (p. 14, [2]) have shown that the solution of (3.5) is unique in the class of bounded functions in $\mathbf{R}^{n} \times[0, T]$. With $\left(a_{i j}\right)=$ the $n \times n$ identity matrix, $b_{i}=0$, $c=-|x|^{2}$ and $M=1$, the following theorem is a particular case of [2].

THEOREM 3.1. For h as in (3.5), the solution of the Cauchy problem

$$
\begin{cases}\left(\partial_{t}-\Delta+|x|^{2}\right) U(x, t)=0, & (x, t) \in \mathbf{R}^{n} \times(0, T) \tag{3.6}\\ U(x, 0)=h(x), & x \in \mathbf{R}^{n} .\end{cases}
$$

is unique in the class of bounded functions in $\mathbf{R}^{n} \times[0, T]$.
Lemma 3.2. Let $E(x, \xi, t)$ be the Mehler kernel and h a continuous and bounded function on \mathbf{R}^{n}. Let $U(x, t):=\int_{\mathbf{R}^{n}} E(x, \xi, t) h(\xi) d \xi$. Then it is a well-defined \mathcal{C}^{∞} function in $\mathbf{R}^{n} \times(0, T]$ and satisfies that
(i) $\left(\partial_{t}-\Delta+|x|^{2}\right) U(x, t)=0$ in $\mathbf{R}^{n} \times(0, T)$,
(ii) U(x,t) $\rightarrow h(x)$ uniformly on each compact subset of \mathbf{R}^{n} as $t \rightarrow 0^{+}$.
(iii) $U(x, t)$ is bounded in $\mathbf{R}^{n} \times[0, T]$.

Proof. The proof of (i) is obvious. To prove (ii), let $\delta>0$ be arbitrary. Then

$$
\begin{aligned}
& |U(x, t)-h(x)| \\
& \quad \leq \tilde{\eta}(x, t) \int_{\mathbf{R}^{n}}|h(\xi)-h(x)| \tilde{E}(x, \xi, t) d \xi+|\tilde{\eta}(x, t)-1||h(x)| \\
& \leq \tilde{\eta}(x, t) \sup _{\left|\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right|<\delta}|h(\xi)-h(x)| \int_{\left|\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right|<\delta} \tilde{E}(x, \xi, t) d \xi \\
& \quad+\tilde{\eta}(x, t) 2\|h\|_{\infty} \int_{\left|\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right| \geq \delta} \tilde{E}(x, \xi, t) d \xi+|\tilde{\eta}(x, t)-1||h(x)| \\
& \quad=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Let K be a compact subset of \mathbf{R}^{n}. Since $h(x)$ is uniformly continuous on a δ-neighborhood K_{δ} of K, it follows that for any $\varepsilon>0,|\xi-x|<\delta$ implies $|h(\xi)-h(x)|<\varepsilon$ for $\xi, x \in K_{\delta}$. Let $|h(x)| \leq C(K)$ for every $x \in K$. We note that $\tilde{\eta}(x, t) \rightarrow 1$ in view of (3.1) as $t \rightarrow 0^{+}$. Then clearly I_{3} tends to zero as $t \rightarrow 0^{+}$. Furthermore for every $x \in K, I_{1}$ tends to zero as
$t \rightarrow 0^{+}$since

$$
\left|\xi-\frac{2 e^{-2 t}}{1+e^{-4 t}} x\right|<\delta \Rightarrow|\xi-x|<\delta \text { as } t \rightarrow 0^{+}
$$

and hence applying the uniform continuity of h on K_{δ}. In view of Lemma 3.1, I_{2} tends to zero as $t \rightarrow 0^{+}$. This proves (ii).

Now we prove (iii). Since h is bounded, so is $U(\cdot, 0)$. By Lemma 3.1 and boundedness of $\tilde{\eta}(x, t)$, there exists a constant $C>0$ such that

$$
|U(x, t)| \leq\|h\|_{\infty} \tilde{\eta}(x, t) \int_{\mathbf{R}^{n}} \tilde{E}(x, \xi, t) d \xi \leq C
$$

for all $(x, t) \in \mathbf{R}^{n} \times(0, T]$. Thus $U(x, t)$ is bounded in $\mathbf{R}^{n} \times[0, T]$ which proves the assertion.

4. Main Results

THEOREM 4.1. For fixed $T>0$, the defining function $U(x, t)=\langle u(\xi), E(x, \xi, t)\rangle$ of any u in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ is the smooth solution of the Hermite heat equation $\left(\partial_{t}-\Delta+|x|^{2}\right) U(x, t)=0$ in $\mathbf{R}^{n} \times(0, T)$ such that for some positive constants C and N

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{n}}|U(x, t)| \leq C\left(1+t^{-N}\right) \tag{4.1}
\end{equation*}
$$

Conversely every smooth function $U(x, t)$ in $\mathbf{R}^{n} \times(0, T)$ with the growth of type (4.1) and satisfying the Hermite heat equation can be represented as $U(x, t)=\langle u(\xi), E(x, \xi, t)\rangle$ for unique $u \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ and moreover

$$
\begin{equation*}
U(x, t)=\sum_{\mu} c_{\mu} e^{-(2|\mu|+n) t} \Phi_{\mu}(x), \quad U\left(\cdot, 0^{+}\right)=u \tag{4.2}
\end{equation*}
$$

where $\left|c_{\mu}\right| \leq C(1+|\mu|)^{M}$ for some positive constants C and $M:=M(N)$.
Proof. We easily see that the defining function

$$
U(x, t)=\langle u(\xi), E(x, \xi, t)\rangle=\sum_{\mu} e^{-(2|\mu|+n) t}\left\langle u(\xi), \Phi_{\mu}(\xi)\right\rangle \Phi_{\mu}(x)
$$

satisfies the Hermite heat equation. As such it is smooth in $\mathbf{R}^{n} \times(0, T)$ by the hypoelliptic property of the operator $\partial_{t}-\Delta+|x|^{2}$ (see p. 168, [1]). By Theorem 2.2 and (2.2), there exist a positive integer M and a constant $C_{1}>0$ such that

$$
\begin{aligned}
|U(x, t)| & \leq G C_{1} \sum_{k=0}^{\infty} \sum_{|\mu|=k} e^{-2 t|\mu|}(1+|\mu|)^{M} \\
& =G C_{1}\left(1+\sum_{k=1}^{\infty}\binom{k+n-1}{k} \frac{(1+k)^{M}}{e^{2 t k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq G C_{1}\left(1+\sum_{k=1}^{\infty} \frac{2^{n+M} k^{n+M}(n+M+2)!}{(2 t k)^{n+M+2}}\right) \\
& =G C_{1}\left(1+\frac{\pi^{2}(n+M+2)!}{24} \frac{1}{t^{n+M+2}}\right) \\
& \leq C\left(1+t^{-N}\right)
\end{aligned}
$$

where $N:=n+M+2$ and $C:=\frac{G C_{1} \pi^{2} N!}{24}$ are positive constants.
Conversely for a positive integer m, let

$$
f(t)= \begin{cases}0, & t \leq 0 \\ t^{m-1} /(m-1)!, & t>0\end{cases}
$$

Multiplying f by a suitable \mathcal{C}_{0}^{∞} function, we obtain functions $v(t)$ and $w(t)$ with

$$
v(t)= \begin{cases}f(t), & t \leq T / 4 \\ 0, & t \geq T / 2\end{cases}
$$

and the support of $w \subset[T / 4, T / 2]$ such that

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}\right)^{m} v(t)=\delta(t)+w(t) \tag{4.3}
\end{equation*}
$$

where δ is the Dirac measure. Now take the integer $m=\lceil N\rceil+2$ where N is the constant in the condition (4.1) and $\lceil N\rceil$ is the least integer greater than N. Consider the following functions in $\mathbf{R}^{n} \times(0, T / 2)$

$$
L(x, t)=\int_{0}^{T} U(x, t+s) v(s) d s, \quad H(x, t)=\int_{0}^{T} U(x, t+s) w(s) d s
$$

In view of (4.3) it is easy to see that

$$
\begin{equation*}
U(x, t)=\left(-\frac{\partial}{\partial t}\right)^{m} L(x, t)-H(x, t) \tag{4.4}
\end{equation*}
$$

By hypothesis, L and H are bounded solutions of the Hermite heat equation in $\mathbf{R}^{n} \times(0, T / 2)$ and can be continuously extended to $\mathbf{R}^{n} \times[0, T / 2]$ for $m=\lceil N\rceil+2$. Define $L(x, 0)=: l(x)$ and $H(x, 0)=: h(x)$. Then clearly l and h are continuous and bounded functions on \mathbf{R}^{n}. Hence L and H are bounded in $\mathbf{R}^{n} \times[0, T / 2]$. By Theorem 3.1 and Lemma 3.2, we have

$$
L(x, t)=\int_{\mathbf{R}^{n}} l(\xi) E(x, \xi, t) d \xi, \quad H(x, t)=\int_{\mathbf{R}^{n}} h(\xi) E(x, \xi, t) d \xi
$$

in $\mathbf{R}^{n} \times[0, T / 2]$ and hence (4.4) reduces to

$$
U(x, t)=\left(-\frac{\partial}{\partial t}\right)^{m} \int_{\mathbf{R}^{n}} l(\xi) E(x, \xi, t) d \xi-\int_{\mathbf{R}^{n}} h(\xi) E(x, \xi, t) d \xi
$$

$$
\begin{align*}
& =\left(-\frac{\partial}{\partial t}\right)^{m} \sum_{\mu} e^{-(2|\mu|+n) t}\left\langle l, \Phi_{\mu}\right\rangle \Phi_{\mu}(x)-\sum_{\mu} e^{-(2|\mu|+n) t}\left\langle h, \Phi_{\mu}\right\rangle \Phi_{\mu}(x) \\
& =\sum_{\mu} e^{-(2|\mu|+n) t}\left\{(2|\mu|+n)^{m}\left\langle l, \Phi_{\mu}\right\rangle-\left\langle h, \Phi_{\mu}\right\rangle\right\} \Phi_{\mu}(x) . \tag{4.5}
\end{align*}
$$

Put $c_{\mu}:=(2|\mu|+n)^{m}\left\langle l, \Phi_{\mu}\right\rangle-\left\langle h, \Phi_{\mu}\right\rangle$. By Theorem 2.2, we can find some positive constants M^{\prime} and C^{\prime} such that

$$
\begin{equation*}
\left|c_{\mu}\right| \leq 2 C^{\prime}(1+|\mu|)^{M^{\prime}}(2|\mu|+n)^{m} \leq 2 C^{\prime} n^{m}(1+|\mu|)^{M^{\prime}+m}=C(1+|\mu|)^{M} \tag{4.6}
\end{equation*}
$$

where $m=\lceil N\rceil+2, C:=2 C^{\prime} n^{m}>0$ and $M:=M^{\prime}+m>0$. Define $u:=\sum_{\mu} c_{\mu} \Phi_{\mu}$. Then u belongs to $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ by Theorem 2.2 and $\left\langle u, \Phi_{\mu}\right\rangle=c_{\mu}$. Hence (4.5) takes the form

$$
U(x, t)=\sum_{\mu} e^{-(2|\mu|+n) t}\left\langle u, \Phi_{\mu}\right\rangle \Phi_{\mu}(x)=\langle u(\xi), E(x, \xi, t)\rangle \quad \text { in } \mathbf{R}^{n} \times(0, T / 2)
$$

Uniqueness of u follows from the uniqueness of the coefficient of the Hermite series. Moreover (4.2) is obvious in view of (4.5) and (4.6). Furthermore
(4.7) $\lim _{t \rightarrow o^{+}}\langle U(\cdot, t), \phi\rangle=\lim _{t \rightarrow o^{+}} \sum_{\mu} e^{-(2|\mu|+n) t}\left\langle u, \Phi_{\mu}\right\rangle\left\langle\phi, \Phi_{\mu}\right\rangle=\langle u, \phi\rangle, \quad \phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$
from the uniform convergence of the series $\sum_{\mu} e^{-(2|\mu|+n) t}\left\langle u, \Phi_{\mu}\right\rangle\left\langle\phi, \Phi_{\mu}\right\rangle$ in $(0, T / 2)$.
Theorem 4.2. Let $u \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$. Suppose that there exist a constant $L>0$ and $\alpha, \beta \in \mathbf{N}_{0}^{n}$ such that

$$
\begin{equation*}
\left|\left\langle\left(-\Delta+|x|^{2}\right)^{j} u(x), \phi(x)\right\rangle\right| \leq L n^{j}\|\phi\|_{\alpha, \beta} \tag{4.8}
\end{equation*}
$$

for all $j \in \mathbf{N}_{0}$ and all $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. Then $u(x)=C e^{-\frac{|x|^{2}}{2}}$ for some constant C.
Proof. For each $t>0$, the defining function $U(x, t)=\langle u(\xi), E(x, \xi, t)\rangle$ is a \mathcal{C}^{∞} function in \mathbf{R}^{n}. It follows from (4.8) and (2.2) that

$$
\begin{align*}
\left|\left(-\Delta+|x|^{2}\right)^{j} U(x, t)\right| & \leq \sum_{\mu} e^{-2 t|\mu|}\left|\left\langle\left(-\Delta+|\xi|^{2}\right)^{j} u(\xi), \Phi_{\mu}(\xi)\right\rangle\right|\left|\Phi_{\mu}(x)\right| \\
& \leq G L n^{j} \sum_{\mu} e^{-2 t|\mu|}\left\|\Phi_{\mu}\right\|_{\alpha, \beta} \tag{4.9}
\end{align*}
$$

By Lemma 2.1, (4.9) yields that

$$
\begin{align*}
& \left|\left(-\Delta+|x|^{2}\right)^{j} U(x, t)\right| \leq G L C^{n}(2 \sqrt{e})^{|\alpha|+|\beta|}(|\alpha|+|\beta|)^{\frac{|\alpha|+|\beta|}{2}} n^{j} \\
& \quad \times \sum_{\mu} e^{-2 t|\mu|}(1+|\mu|)^{|\alpha|+|\beta|} . \tag{4.10}
\end{align*}
$$

But

$$
\begin{align*}
\sum_{\mu} e^{-2 t|\mu|}(1+|\mu|)^{|\alpha|+|\beta|} & =\sum_{k=0}^{\infty} \sum_{|\mu|=k} e^{-2 t|\mu|}(1+|\mu|)^{|\alpha|+|\beta|} \\
& =1+\sum_{k=1}^{\infty}\binom{k+n-1}{k} \frac{(1+k)^{|\alpha|+|\beta|}}{e^{2 t k}} \\
& \leq 1+\sum_{k=1}^{\infty} \frac{(1+k)^{|\alpha|+|\beta|+n}}{e^{2 t k}} \\
& \leq 1+\sum_{k=1}^{\infty} \frac{2^{|\alpha|+|\beta|+n} k^{|\alpha|+|\beta|+n}}{e^{2 t k}} \\
& \leq 1+\frac{C_{1}}{t^{|\alpha|+|\beta|+n+2}} \tag{4.11}
\end{align*}
$$

where $C_{1}=\frac{\pi^{2}(|\alpha|+|\beta|+n+2)!}{24}$ is a positive constant. So from (4.10) and (4.11), we have

$$
\begin{align*}
\left|\left(-\triangle+|x|^{2}\right)^{j} U(x, t)\right| \leq & G L C^{n}(2 \sqrt{e})^{|\alpha|+|\beta|}(|\alpha|+|\beta|)^{\frac{|\alpha|+|\beta|}{2}} \\
& \times\left(1+\frac{C_{1}}{t^{|\alpha|+|\beta|+n+2}}\right) n^{j} \tag{4.12}
\end{align*}
$$

Since for each $t>0, G L C^{n}(2 \sqrt{e})^{|\alpha|+|\beta|}(|\alpha|+|\beta|)^{\frac{|\alpha|+|\beta|}{2}}\left(1+\frac{C_{1}}{t^{|\alpha|+|\beta|+n+2}}\right)$ in (4.12) is a positive constant and independent of j, it follows from Theorem 1.1 that

$$
\begin{equation*}
U(x, t)=C_{t} e^{-\frac{|x|^{2}}{2}} \tag{4.13}
\end{equation*}
$$

for some constant C_{t} depending on t. Since the defining function $U(x, t)$ satisfies the Hermite heat equation, we have

$$
\begin{equation*}
\left(\partial_{t}-\Delta+|x|^{2}\right) C_{t} e^{-\frac{|x|^{2}}{2}}=0 \tag{4.14}
\end{equation*}
$$

Using $\left(-\triangle+|x|^{2}\right) e^{-\frac{|x|^{2}}{2}}=n e^{-\frac{|x|^{2}}{2}}$ in (4.14), we have $C_{t}^{\prime}+n C_{t}=0$ so that

$$
\begin{equation*}
C_{t}=C e^{-n t} \tag{4.15}
\end{equation*}
$$

for some constant C. Then for every $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$, it follows from (4.7), (4.13) and (4.15) that

$$
\langle u(x), \phi(x)\rangle=\lim _{t \rightarrow 0^{+}}\langle U(x, t), \phi(x)\rangle=\left\langle C e^{-\frac{|x|^{2}}{2}}, \phi(x)\right\rangle .
$$

This completes the proof.

Acknowledgements. The author is thankful to Professor Dohan Kim and Professor Soon-Yeong Chung for their valuable suggestions.

References

[1] Yu. V. Egorov and M. A. Shubin, Partial differential equation I, Springer-Verlag, Berline-New York (1988).
[2] A. Ilin, A. Kalašnikov and O. Olejnik, Second order linear equations of parabolic type, Uspekhi Mat. Nauk SSSR 173 (105) (1962), 3-146.
[3] T. MatsuZawa, A calculus approach to hyperfunctions III, Nagoya Math. J. 118 (1990), 133-153.
[4] B. SIMON, Distributions and Hermite expansions, Jour. Math. Phy. 12 (1972), 140-148.
[5] R. S. StrichartZ, Characterization of eigenfunctions of the Laplacian by boundedness conditions, Trans. Amer. Math. Soc. 338 (1993), 971-979.
[6] S. Thangavelu, A lecture notes on Hermite and Laguerre expansions, Princeton Univ. Press, Princeton (1993).
[7] E. C. Titchmarsh, Eigenfunction expansions associated with second order differential equations, Part I, Oxford Univ. Press, Oxford (1962).
[8] M. W. Wong, Weyl transforms, Springer-Verlag, New York, Inc (1998).

Present Address:
Department of Mathematics, Mahendra Ratna Campus,
Tribhuvan University, Kathmandu, Nepal.
Department of Mathematics, Meijo University, Nagoya, 468-8502 Japan.
e-mail: bishnupd2001@yahoo.com

