On the Iwasawa Invariants of the Cyclotomic \mathbb{Z}_2 -Extensions of Certain Real Quadratic Fields

Yoshinori NISHINO

Waseda University
(Communicated by Y. Yamada)

Abstract. We study some conditions that the Iwasawa λ -, μ -invariants of the the cyclotomic \mathbb{Z}_2 -extension of $k = \mathbb{Q}(\sqrt{pq})$ with $p \equiv 7 \pmod 8$, $q \equiv 1 \pmod 8$, $p \pmod 8$, p

1. Introduction

Let k be a finite extension of the field \mathbf{Q} of rational numbers, l any prime number, and k_{∞} the cyclotomic \mathbf{Z}_l -extension of k, where \mathbf{Z}_l is the ring of l-adic integers. Then k_{∞} has the unique subfield k_n which is a cyclic extension of degree l^n over k for any integer $n \geq 0$. Let e_n be the highest power of l dividing the class number of k_n . The following theorem about e_n is well-known as Iwasawa's class number formula.

THEOREM 1 (Iwasawa) (cf. [4], [9]). There exist integers $\lambda_l(k)$, $\mu_l(k) \geq 0$, $\nu_l(k)$, all independent of n, and an integer n_0 such that

$$e_n = \lambda_l(k)n + \mu_l(k)l^n + \nu_l(k)$$

for all $n \ge n_0$.

 $\lambda_l(k)$, $\mu_l(k)$, and $\nu_l(k)$ are called Iwasawa λ -, μ -, and ν -invariants of k_∞ , respectively. Greenberg conjectured that if k is a totally real number field, then $\lambda_l(k) = \mu_l(k) = 0$ for any prime number l (cf. [2]).Many authors have studied the conditions that Iwasawa λ -, μ -invariants are zero. In this paper, we prove the following theorem related to the Iwasawa λ -, μ -invariants of the cyclotomic \mathbf{Z}_2 -extensions of certain real quadratic fields.

THEOREM 2. Let p, q be prime numbers such that

$$p \equiv 7 \pmod{8}$$
, $q \equiv 1 \pmod{8}$, $\left(\frac{p}{q}\right) = -1$,

where $(\frac{*}{*})$ is Legendre's symbol. Let $k = \mathbf{Q}(\sqrt{pq})$ or $\mathbf{Q}(\sqrt{2pq})$, and $\lambda_2(k)$, $\mu_2(k)$, the Iwasawa λ -, μ -invariants of the cyclotomic \mathbf{Z}_2 -extension k_{∞} of k, respectively.

- (1) If $q \equiv 9 \pmod{16}$, then $\lambda_2(k) = \mu_2(k) = 0$.
- (2) If $q \equiv 1 \pmod{16}$, $p \equiv 7 \pmod{16}$, and $2^{\frac{q-1}{4}} \equiv -1 \pmod{q}$, then $\lambda_2(k) = \mu_2(k) = 0$.

2. Known results

There are many results about the Iwasawa invariants of the cyclotomic \mathbb{Z}_2 -extensions of real quadratic fields. We refer to some of them in this section.

Let n be a non-negative integer, $a_n = 2\cos(\frac{2\pi}{2^{n+2}})$ and $\mathbf{Q}_n = \mathbf{Q}(a_n)$. Then $\mathbf{Q}_n \subset \mathbf{Q}_{n+1}$ by $a_{n+1} = \sqrt{2+a_n}$. \mathbf{Q}_n is a cyclic extension of \mathbf{Q} of degree 2^n and $\mathbf{Q}_\infty = \bigcup_{n=0}^\infty \mathbf{Q}_n$ is the unique \mathbf{Z}_2 -extension of \mathbf{Q} . Weber proved that $\lambda_2(\mathbf{Q}) = \mu_2(\mathbf{Q}) = \nu_2(\mathbf{Q}) = 0$ (cf. [3], Satz 6, p.29).

Let m be a positive square-free integer, let $k = \mathbf{Q}(\sqrt{m})$, and $k_n = k\mathbf{Q}_n$. Then the cyclotomic \mathbf{Z}_2 -extension k_∞ of k is given by $\bigcup_{n=0}^\infty k_n = k\mathbf{Q}_\infty$. If m > 2, $k_1 = \mathbf{Q}(\sqrt{2}, \sqrt{m})$ contains just three real quadratic subfields \mathbf{Q}_1 , k, $k' = \mathbf{Q}(\sqrt{2m})$. Hence k and k' have the same cyclotomic \mathbf{Z}_2 -extension, which means the Iwasawa invariants are also the same.

Iwasawa proved that for each prime number l, if a Galois l-extension K/k of number fields has at most one (finite or infinite) ramified prime and the class number of k is not divisible by l, then the class number of K is also not divisible by l (cf. [5]). This implies if a real quadratic field k with odd class number has only one prime ideal above the prime number 2, then the class number of k_n is also odd for each $n \ge 0$, i.e., $\lambda_2(k) = \mu_2(k) = \nu_2(k) = 0$. Moreover, by genus theory and the theorem of Rédei and Reichardt (cf. [8]), we can determine the real quadratic fields which have odd class number and only one prime ideal above the prime number 2. Hence we obtain the following:

THEOREM 3. Let $k = \mathbf{Q}(\sqrt{m})$ or $\mathbf{Q}(\sqrt{2m})$ and let $\lambda_2(k)$, $\mu_2(k)$, $\nu_2(k)$ be the Iwasawa λ -, μ -, and ν -invariants of the cyclotomic \mathbf{Z}_2 -extension k_{∞} of k, respectively. Suppose that m is one of the following:

- (1) m=2,
- (2) m = p $p \equiv 5 \pmod{8}$,
- (3) m = q $q \equiv 3 \pmod{4}$,
- (4) m = pq $p \equiv 3, q \equiv 7 \pmod{8}$,

where p and q are prime numbers. Then we have $\lambda_2(k) = \mu_2(k) = \nu_2(k) = 0$.

These cases are often called trivial cases.

On the other hand, Ozaki and Taya, Fukuda and Komatsu proved the following theorems which are non-trivial.

THEOREM 4 (Ozaki-Taya) (cf. [7]). Let $k = \mathbf{Q}(\sqrt{m})$ or $\mathbf{Q}(\sqrt{2m})$ and let $\lambda_2(k)$, $\mu_2(k)$ be the Iwasawa λ -, μ -invariants of the cyclotomic \mathbf{Z}_2 -extension k_{∞} of k, respectively. Suppose that m is one of the following:

- (1) m = p $p \equiv 1 \pmod{8}$ and $2^{\frac{p-1}{4}} \not\equiv (-1)^{\frac{p-1}{8}} \pmod{p}$,
- (2) m = pq $p \equiv q \equiv 3 \pmod{8}$,
- (3) m = pq $p \equiv 3, q \equiv 5 \pmod{8}$,
- (4) m = pq $p \equiv 5, q \equiv 7 \pmod{8}$,
- (5) m = pq $p \equiv q \equiv 5 \pmod{8}$,

where p and q are distinct prime numbers. Then we have $\lambda_2(k) = \mu_2(k) = 0$.

THEOREM 5 (Fukuda-Komatsu) (cf. [1]). Let $k = \mathbf{Q}(\sqrt{m})$ or $\mathbf{Q}(\sqrt{2m})$ and let $\lambda_2(k)$, $\mu_2(k)$ be the Iwasawa λ -, μ -invariants of the cyclotomic \mathbf{Z}_2 -extension k_{∞} of k, respectively. Suppose that

$$m=pq$$
 $p\equiv 3$, $q\equiv 1\pmod 8$, $\left(\frac{p}{q}\right)=-1$ and $2^{\frac{q-1}{4}}\equiv -1\pmod q$,

where p and q are prime numbers and $(\frac{*}{*})$ is Legendre's symbol. Then we have $\lambda_2(k) = \mu_2(k) = 0$.

Theorem 2 deals with non-trivial cases. We prove it according to the idea of Theorem 5.

3. Preparation

To prove Theorem 2 we need some preparation which were also used in the proof of Theorem 5.

Let p and q be prime numbers such that $p \equiv 7 \pmod 8$, $q \equiv 1 \pmod 8$, $(\frac{p}{q}) = -1$, and $k = \mathbf{Q}(\sqrt{pq})$, $k_n = k\mathbf{Q}_n$, $k_\infty = \bigcup_{n=0}^\infty k_n$.

Since $k_n = k(a_n) = k_{n-1}(\sqrt{2+a_{n-1}})$, we have $N_{k_n/k_{n-1}}(2-a_n) = (2-a_n)(2+a_n) = 2-a_{n-1}$, where $N_{k_n/k_{n-1}}$ is the norm. Thus $N_{k_n/k}(2-a_n) = 2$. Since a_n is an algebraic integer of \mathbf{Q}_n , it means $2\mathfrak{D}_{\mathbf{Q}_n} = (2-a_n)^{2^n}\mathfrak{D}_{\mathbf{Q}_n} = (2+a_n)^{2^n}\mathfrak{D}_{\mathbf{Q}_n}$, where $\mathfrak{D}_{\mathbf{Q}_n}$ is the integer ring of \mathbf{Q}_n . So the ideal $(2-a_n)\mathfrak{D}_{\mathbf{Q}_n} = (2+a_n)\mathfrak{D}_{\mathbf{Q}_n}$ is the unique prime ideal of \mathbf{Q}_n lying above 2. Therefore the square of the unique prime ideal \mathfrak{L}_n of k_n lying above 2 is $(2-a_n)\mathfrak{D}_{k_n}$, where \mathfrak{D}_{k_n} is the integer ring of k_n .

First, we show the following important proposition.

PROPOSITION 1. Let k be as above and $\lambda_2(k)$, $\mu_2(k)$ the Iwasawa λ -, μ -invariants of the cyclotomic \mathbb{Z}_2 -extension k_{∞} of k, respectively. If there exists a non-negative integer n_0 such that \mathfrak{L}_{n_0} is non-principal in k_{n_0} , then $\lambda_2(k) = \mu_2(k) = 0$.

PROOF. Let A_n be the 2-Sylow subgroup of the ideal class group of k_n , B_n the subgroup of A_n consisting of ideal classes invariant under the action of $Gal(k_n/k)$ and B'_n the subgroup of B_n consisting of ideal classes containing ideals invariant under the action of $Gal(k_n/k)$. Then by genus formula, we have

$$o(B_n) = 2\text{-part of } h_k/(E_k : E_k \cap N_{k_n/k}(k_n^{\times})),$$

 $o(B'_n) = 2\text{-part of } h_k/(E_k : N_{k_n/k}(E_{k_n})),$

where $o(B_n)$ is the order of B_n , h_k the class number of k, E_k the unit group of k, k_n^\times the group of invertible elements of k_n , $(E_k:E_k\cap N_{k_n/k}(k_n^\times))$ the index of $E_k\cap N_{k_n/k}(k_n^\times)$ in E_k , $o(B_n')$ the order of B_n' , E_{k_n} the unit group of k_n , $(E_k:N_{k_n/k}(E_{k_n}))$ the index of $N_{k_n/k}(E_{k_n})$ in E_k . By genus fomula, we can also show that $k(\sqrt{q})$ is the 2-genus field of k/\mathbb{Q} . Let G be $Gal(k/\mathbb{Q})$, σ a generator of G, A_0^G the subgroup of A_0 consisting of ideal classes invariant under the action of G. Then $A_0/A_0^{1-\sigma}\cong Gal(k(\sqrt{q})/k)$ by Artin map. Since $(\frac{p}{q})=-1$, we have $A_0=A_0^GA_0^{1-\sigma}$, which shows $A_0=A_0^G$. It follows that the 2-Hilbelt class field of k is $k(\sqrt{q})$ and we obtain $o(B_n)=2/(E_k:E_k\cap N_{k_n/k}(k_n^\times))$, $o(B_n')=2/(E_k:N_{k_n/k}(E_{k_n}))$. Hence by the assumption, we have $B_n=B_n'=\langle cl(\mathfrak{L}_n)\rangle\cong \mathbb{Z}/2\mathbb{Z}$ for all $n\geq n_0$, where $cl(\mathfrak{L}_n)$ is the ideal class of k_n containing \mathfrak{L}_n , $\langle cl(\mathfrak{L}_n)\rangle$ the group generated by $cl(\mathfrak{L}_n)$, and \mathbb{Z} the ring of rational integers. Since $N_{k_n/k_{n_0}}(\mathfrak{L}_n)=\mathfrak{L}_{n_0}$, the norm map $N_{k_n/k_{n_0}}$ of B_n to B_{n_0} is an isomorphism, which shows that the intersection of B_n and the kernel C_n of the norm map A_n to A_{n_0} is trivial. It means C_n is also trivial. Therefore, since $N_{k_n/k_{n_0}}(A_n)=A_{n_0}$, A_n is isomorphic to A_{n_0} , which implies $\lambda_2(k)=\mu_2(k)=0$.

REMARK 1. Since the 2-Hilbelt class field of k is $k(\sqrt{q})$ and $q \equiv 1 \pmod 8$, \mathfrak{L}_0 is principal in k.

Since $q\equiv 1\pmod 8$, q splits completely in \mathbf{Q}_1 . Moreover, the class number of \mathbf{Q}_1 is 1 and $N_{\mathbf{Q}_1/\mathbf{Q}}(1+\sqrt{2})=-1$. Hence there exist positive integers r,s such that $q=(r+s\sqrt{2})(r-s\sqrt{2})$. Let $q_1=r+s\sqrt{2}$, $q_2=r-s\sqrt{2}$ (Note that q_1,q_2 are totally positive.). Then there exist integers a,b,c,d with $q_1=a+b\sqrt{2}+4\sqrt{2}(c+d\sqrt{2})$, $0\leq a\leq 8$, $0\leq b\leq 3$ and we have $q=q_1q_2\equiv a^2-2b^2\pmod {16}$. Thus if $q\equiv 1\pmod {16}$, then

$$q_i \equiv \pm 1, \pm (1 + \sqrt{2})^2 \pmod{4\sqrt{2}} - (i)$$

and if $q \equiv 9 \pmod{16}$, then

$$q_i \equiv \pm 3, \pm (1 + 2\sqrt{2}) \pmod{4\sqrt{2}}$$
. — (ii)

On the other hand, since $p \equiv 7 \pmod 8$, p also splits completely in \mathbb{Q}_1 . So there exist positive integers t,u such that $p = (t + u\sqrt{2})(t - u\sqrt{2})$. Let $p_1 = t + u\sqrt{2}$, $p_2 = t - u\sqrt{2}$ (Note that p_1 , p_2 are also totally positive.). In the same way as above, we can show that if $p \equiv 7 \pmod {16}$, then

$$p_i \equiv 3 \pm \sqrt{2}, -3 \pm \sqrt{2}$$
 (mod $4\sqrt{2}$). – (iii)

By class field theory, we can show the following lemma.

LEMMA 1. (1) Suppose that $q \equiv 1 \pmod{16}$.

If $2^{\frac{q-1}{4}} \equiv -1 \pmod{q}$, then the ray class field $\mathbf{Q}_1(mod\,q_i)$ of $\mathbf{Q}_1 \mod q_i$ does not contain any quadratic extension of \mathbf{Q}_1 . If $2^{\frac{q-1}{4}} \equiv 1 \pmod{q}$, then $\mathbf{Q}_1(mod\,q_i)$ contains a quadratic extension of \mathbf{Q}_1 .

- (2) Suppose that $q \equiv 9 \pmod{16}$.
- If $2^{\frac{q-1}{4}} \equiv -1 \pmod{q}$, then $\mathbf{Q}_1(modq_i)$ contains a quadratic extension of \mathbf{Q}_1 . If $2^{\frac{q-1}{4}} \equiv 1 \pmod{q}$, then $\mathbf{Q}_1(modq_i)$ does not contain any quadratic extension of \mathbf{Q}_1 .
- (3) Suppose that $p \equiv 7 \pmod{8}$. Then the ray class field $\mathbf{Q}_1(mod p_i)$ of $\mathbf{Q}_1 \mod p_i$ does not contain any quadratic extension of \mathbf{Q}_1 .

PROOF. At first we show (1), (2). Note that

$$(2+\sqrt{2})^{\frac{q-1}{2}} = (\sqrt{2}(1+\sqrt{2}))^{\frac{q-1}{2}} = 2^{\frac{q-1}{4}}(1+\sqrt{2})^{\frac{q-1}{2}}.$$

If $q \equiv 1 \pmod{16}$, then q splits completely in $\mathbb{Q}_2/\mathbb{Q}_1$, which implies $(2 + \sqrt{2})^{\frac{q-1}{2}} \equiv 1 \pmod{q}$. Hence if $2^{\frac{q-1}{4}} \equiv -1 \pmod{q}$, then $(1 + \sqrt{2})^{\frac{q-1}{2}} \equiv -1 \pmod{q}$, and if $2^{\frac{q-1}{4}} \equiv 1 \pmod{q}$, then $(1 + \sqrt{2})^{\frac{q-1}{2}} \equiv 1 \pmod{q}$.

If $q\equiv 9\pmod{16}$, then $(2+\sqrt{2})^{\frac{q-1}{2}}\equiv -1\pmod{q}$. Hence if $2^{\frac{q-1}{4}}\equiv -1\pmod{q}$, then $(1+\sqrt{2})^{\frac{q-1}{2}}\equiv 1\pmod{q}$, and if $2^{\frac{q-1}{4}}\equiv 1\pmod{q}$, then $(1+\sqrt{2})^{\frac{q-1}{2}}\equiv -1\pmod{q}$. Let $J_{\mathbf{Q}_1}^{q_i}=\{\mathfrak{a}:ideal\ of\ \mathbf{Q}_1\mid \mathfrak{a}\ is\ relatively\ prime\ to\ q_i\}$, and $P_{\mathbf{Q}_1}^{q_i}=\{(\alpha):principal\ ideal\ of\ \mathbf{Q}_1\mid \alpha\equiv 1\pmod{q_i}\}$. Then we have $J_{\mathbf{Q}_1}^{q_i}/P_{\mathbf{Q}_1}^{q_i}\cong Gal(\mathbf{Q}_1(modq_i)/\mathbf{Q}_1)$ by class field theory. There is a surjection such that

$$(\mathbf{Z}[\sqrt{2}]/q_i\mathbf{Z}[\sqrt{2}])^{\times} \to J_{\mathbf{Q}_1}^{q_i}/P_{\mathbf{Q}_1}^{q_i}$$

$$\alpha \mod q_i \mapsto (\alpha) \mod P_{\mathbf{Q}_1}^{q_i}$$

Since the kernel of this morphism is $\langle -1 \mod q_i, 1+\sqrt{2} \mod q_i \rangle$ and -1 is a quadratic residue mod q_i , we obtain (1) and (2).

Similarly, let $J_{\mathbf{Q}_1}^{p_i} = \{\mathfrak{a} : ideal \ of \ \mathbf{Q}_1 \mid \mathfrak{a} \ is \ relatively \ prime \ to \ p_i\},$ $P_{\mathbf{Q}_1}^{p_i} = \{(\alpha) : principal \ ideal \ of \ \mathbf{Q}_1 \mid \alpha \equiv 1 \pmod{p_i}\}.$ Then we also have $J_{\mathbf{Q}_1}^{p_i}/P_{\mathbf{Q}_1}^{p_i} \cong Gal(\mathbf{Q}_1(modp_i)/\mathbf{Q}_1)$ and $\langle -1 \mod p_i, 1 + \sqrt{2} \mod p_i \rangle$ is the kernel of the surjection

$$(\mathbf{Z}[\sqrt{2}]/p_i\mathbf{Z}[\sqrt{2}])^{\times} \to J_{\mathbf{Q}_1}^{p_i}/P_{\mathbf{Q}_1}^{p_i}$$

$$\alpha \mod p_i \mapsto (\alpha) \mod P_{\mathbf{Q}_1}^{p_i}$$
,

Since $p \equiv 7 \pmod{8}$, $2 \mid p-1$ and $2^2 \nmid p-1$. Furthermore, the order of $-1 \mod p_i$ is 2, which implies the order of the kernel is even. Hence we have (3).

4. Proof of Theorem 2

We use the following well-known fact to prove Theorem 2.

LEMMA 2 (cf. [9], p. 183). Let a be an element of \mathbf{Q}_1 which is prime to 2. Then,

- (1) there exists an element α of \mathbf{Q}_1 such that $\alpha^2 \equiv a \pmod{4}$ if and only if $\mathbf{Q}_1(\sqrt{a})/\mathbf{Q}_1$ is unramified at all primes of \mathbf{Q}_1 above 2.
- (2) there exists an element α of \mathbf{Q}_1 such that $\alpha^2 \equiv a \pmod{4\sqrt{2}}$ if and only if all primes of \mathbf{Q}_1 above 2 split in $\mathbf{Q}_1(\sqrt{a})/\mathbf{Q}_1$.

PROOF OF THEOREM 2. Note that for any element α in $\mathfrak{O}_{\mathbf{Q}_1}$ which is prime to 2, we have

$$\alpha^2 \equiv 1, 3 + 2\sqrt{2} \pmod{4\sqrt{2}}. - (iv)$$

(1) Suppose that $2^{\frac{q-1}{4}} \equiv -1 \pmod{q}$. If $q \equiv 9 \pmod{16}$, $\mathbf{Q}_1(modq_i)/\mathbf{Q}_1$ has a quadratic subextension by Lemma 1 (2). First we show the quadratic extension of \mathbf{Q}_1 must be $\mathbf{Q}_1(\sqrt{q_i})/\mathbf{Q}_1$. Let $\mathbf{Q}_1(\sqrt{m})/\mathbf{Q}_1$ be the quadratic subextension, where $m \in \mathfrak{D}_{\mathbf{Q}_1}$. Since $\mathbf{Q}_1(\sqrt{m})/\mathbf{Q}_1$ is unramified at the infinite primes, we have m > 0. Note that we can assume $v_{\mathfrak{p}}(m) = 0$ or 1 for any prime \mathfrak{p} of \mathbf{Q}_1 , where $v_{\mathfrak{p}}$ is the \mathfrak{p} -adic additive valuation. If $v_{\mathfrak{p}}(m) = 1$, then $X^2 - m$ is an Eisenstein polynomial with regard to \mathfrak{p} , which implies \mathfrak{p} is totally ramified in $\mathbf{Q}_1(\sqrt{m})/\mathbf{Q}_1$. Furthermore, since the relative discriminant of $\mathbf{Q}_1(\sqrt{m})/\mathbf{Q}_1$ divides $4m\mathfrak{D}_{\mathbf{Q}_1}$, any prime \mathfrak{p} with $\mathfrak{p} \nmid 4m\mathfrak{D}_{\mathbf{Q}_1}$ is unramified in $\mathbf{Q}_1(\sqrt{m})/\mathbf{Q}_1$. Hence m must be q_i or $q_i \varepsilon$, where $\varepsilon = 1 + \sqrt{2}$. By (ii), (iv) and Lemma 2 (1), $\mathbf{Q}_1(\sqrt{q_i \varepsilon})/\mathbf{Q}_1$ is ramified at a prime of \mathbf{Q}_1 above 2. Therefore $\mathbf{Q}_1(\sqrt{m})$ must be $\mathbf{Q}_1(\sqrt{q_i})$ as desired.

It follows that all primes of \mathbf{Q}_1 above 2 are unramified in $\mathbf{Q}_1(\sqrt{q_i})/\mathbf{Q}_1$. Hence we have $q_i \equiv 1$, $3+2\sqrt{2} \pmod{4}$ by Lemma 2 and (iv), which shows $q_i \equiv -3, -1+2\sqrt{2} \pmod{4\sqrt{2}}$ by (ii). On the other hand, $k_1(\sqrt{q_i})$ is an unramified extension of k_1 . Since \mathfrak{L}_1 does not split in $k_1(\sqrt{q_i})$ by Lemma 2, \mathfrak{L}_1 is non-principal in k_1 . Therefore we have $k_2(k) = \mu_2(k) = 0$ by Proposition 1.

Secondly, suppose that $2^{\frac{q-1}{4}} \equiv 1 \pmod{q}$. If $q \equiv 9 \pmod{16}$, then $\mathbb{Q}_1(\sqrt{q_i})$ is not contained in $\mathbb{Q}_1(modq_i)$ by Lemma 1 (2), which shows $q_i \equiv 3$, $1+2\sqrt{2} \pmod{4\sqrt{2}}$ by Lemma 2 and (ii), (iv). Hence we have $pq_i \equiv -3, -1+2\sqrt{2} \pmod{4\sqrt{2}}$. Since \mathfrak{L}_1 does not split in an unramified extension $k_1(\sqrt{pq_i})/k_1$, \mathfrak{L}_1 is non-principal in k_1 . Therefore we also have $\lambda_2(k) = \mu_2(k) = 0$ by Proposition 1. This completes the proof of Theorem 2 (1).

(2) Suppose that $q \equiv 1 \pmod{16}$, $p \equiv 7 \pmod{16}$, and $2^{\frac{q-1}{4}} \equiv -1 \pmod{q}$. By Lemma 1 (1), Lemma 2, (i) and (iv), we have $q_i \equiv -1, -3 + 2\sqrt{2} \pmod{4\sqrt{2}}$. By (iii) we have $p_i \varepsilon \equiv \pm 3, \pm 1 + 2\sqrt{2} \pmod{4\sqrt{2}}$. Lemma 1 (3) implies that all primes of \mathbf{Q}_1 above 2 are ramified in $\mathbf{Q}_1(\sqrt{p_i \varepsilon})/\mathbf{Q}_1$, which shows $p_i \varepsilon \equiv 3, 1 + 2\sqrt{2} \pmod{4\sqrt{2}}$ by Lemma 2 and (iv). Hence we have $p_i q_j \varepsilon \equiv -3, -1 + 2\sqrt{2} \pmod{4\sqrt{2}}$. Since \mathfrak{L}_1 does not split in an unramified extension $k_1(\sqrt{p_i q_j \varepsilon})/k_1$, \mathfrak{L}_1 is non-principal. Therefore we have $\lambda_2(k) = \mu_2(k) = 0$ by Proposition 1.

REMARK 2. Suppose that $q \equiv 1 \pmod{16}$, $p \equiv -1 \pmod{16}$, and $2^{\frac{q-1}{4}} \equiv -1 \pmod{q}$. Then we can show that \mathfrak{L}_1 splits in an unramified extension $k_1(\sqrt{p_iq_j\varepsilon})/k_1$. But Kuroda's class number formula (cf. [6]) shows that the 2-Hilbelt class field of k_1 is $k_1(\sqrt{p_1q_1\varepsilon},\sqrt{p_1q_2\varepsilon})$. Hence \mathfrak{L}_1 is principal in k_1 , i.e., we can not decide $\lambda_2(k)=\mu_2(k)=0$ by using Proposition 1.

ACKNOWLEDGEMENT. The author expresses his appreciation to Professor Takashi Fukuda and Professor Keiichi Komatsu for many valuable advice.

References

- [1] T. FUKUDA and K. KOMATSU, On the Iwasawa λ -invariant of the cyclotomic \mathbf{Z}_2 -extension of a real quadratic field, to appear in Tokyo J. Math.
- [2] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976) 263–284.
- [3] H. HASSE, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag (1952).
- [4] K. IWASAWA, On Γ -extension of algebraic number fields, Bull. Amer. Math. Soc. **65** (1959), 183–226.
- [5] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [6] S. KURODA, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo Sec. I. 4 (1943), 383-406.
- [7] M. OZAKI and H. TAYA, On the Iwasawa λ_2 -invariants of certain families of real quadratic fields, Manuscripta Math. **94** (1997), 437–444.
- [8] L. RÉDEI and H. REICHARDT, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine. Angew. Math. 170 (1933), 69–74.
- [9] L. C. WASHINGTON, Introduction to Cyclotomic Fields (2nd. Edition), GTM 83, Springer (1997).

Present Address: NEC SOFT, LTD., SHINKIBA, KOTO-KU, TOKYO, 136–8627 JAPAN. e-mail: screwpile@suou.waseda.jp