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Abstract. We study some conditions that the lwasawa -, p-invariants of the the cyclotomic Zo-extension of
k=Q(/pg) withp=7 (mod 8),¢ =1 (mod 8), (g) = —1are zero.

1. Introduction

Let k be afinite extension of the field Q of rational numbers, / any prime number, and
k~o the cyclotomic Z;-extension of k, where Z; isthe ring of /-adic integers. Then ky, hasthe
unique subfield &, which is a cyclic extension of degree [ over k for any integer n > 0. Let
e, bethe highest power of [ dividing the class number of k,. The following theorem about e,
iswell-known as Iwasawa's class number formula.

THEOREM 1 (lwasawa) (cf. [4],[9]). There exist integers; (k), u;(k) > 0, v (k), all
independent of, and an integerg such that

en = M (k)n + (k)" + vy (k)
forall n > no.

Ar(k), ny(k), and vy (k) are called Iwasawa -, -, and v-invariants of ko, , respectively.

Greenberg conjectured that if k is atotaly real number field, then A;(k) = u;(k) = 0
for any prime number [ (cf. [2]).Many authors have studied the conditions that Iwasawa -,
wu-invariants are zero. In this paper, we prove the following theorem related to the Iwasawa
A-, u-invariants of the cyclotomic Z>-extensions of certain real quadratic fields.

THEOREM 2. Let p, ¢ be prime numbers such that

p=7(mod8), ¢g=1(mod8), (§>=_1,

where () is Legendre’s symbol. Lét = Q(,/pq) or Q(+/2pq), and Az (k), u2(k), the
Iwasawax-, pu-invariants of the cyclotomizs-extensiork, of k, respectively.
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() If g =9 (mod 16), thenia(k) = pa(k) = 0.
(2) If g =1 (mod16), p = 7 (mod 16), and 2"77l = —1 (mod g), thenia(k) =
p2(k) = 0.

2. Known results

There are many results about the lwasawa invariants of the cyclotomic Z»-extensions of
real quadratic fields. We refer to some of them in this section.

Let n be a non-negative integer, a, = 2 cos( 27y and Q, = Q(a,).Then Q, C Quit1

on+2
by ant1 = V24 a,. Q, isacyclic extension of Q of degree 2" and Qo = U ,Q, isthe
unique Zz-extension of Q. Weber proved that A2(Q) = u2(Q) = v2(Q) = 0 (cf. [3], Satz 6,
p.29).

Let m be a positive square-free integer, let k = Q(y/m), and k, = kQ,. Then the
cyclotomic Zx-extension ke Of k isgiven by UP? ok, = kQeo. If m > 2, k1 = Q(2, /m)
contains just three real quadratic subfields Q1, k, X' = Q(v/2m). Hence k and k' have the
same cyclotomic Z>-extension, which means the Iwasawa invariants are also the same.

Iwasawa proved that for each prime number /, if a Galois /-extension K /k of number
fields has at most one (finite or infinite) ramified prime and the class number of & is not
divisible by Z, then the class number of K isalso not divisible by [ (cf. [5]). Thisimpliesif a
real quadratic field & with odd class number has only one primeideal above the prime number
2, then the class number of k,, isalso odd for eachn > 0, i.e., A2(k) = u2(k) = va(k) = 0.
Moreover, by genustheory and the theorem of Rédel and Reichardt (cf. [8]), we can determine
the real quadratic fields which have odd class number and only one prime ideal above the
prime number 2. Hence we obtain the following:

THEOREM 3. Letk = Q(/m) or Q(v/2m) and letia(k), u2(k), v2(k) be the Iwasawa
A-, u-, andv-invariants of the cyclotomig ;-extensiork., of k, respectively. Suppose that
is one of the following

1 m=2,

2 m=p p=5 (mod8),

@) m=qg ¢g=3(mod34y),

4 m=pg p=3,q=7 (mod8),
wherep andg are prime numbers. Then we havgk) = u2(k) = v2(k) = 0.
These cases are often called trivial cases.

On the other hand, Ozaki and Taya, Fukuda and Komatsu proved the following theorems
which are non-trivial.

THEOREM 4 (Ozaki-Taya) (cf.[7]). Letk = Q(/m) or Q(+/2m) and let r2(k),
n2(k) be the lwasawa-, u-invariants of the cyclotomi ;-extensiork., of k, respectively.
Suppose that is one of the following
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QD) m=p p=1mod8) and 2'7 £(-1)’F (mod p),
(20 m=pq p=gq=3(mod8),

3 m=pg p=3,9=5 (mad 8),

4 m=pg p=54g=7 (Mmad8),

(5) m=pg p=q=5(mod8),
wherep andgq are distinct prime numbers. Then we haygk) = u2(k) = 0.

THEOREM 5 (Fukuda-Komatsu) (cf. [1]). Letk = Q(4/m) or Q(+~/2m) and letr,(k),
wu2(k) be the Iwasawa-, u-invariants of the cyclotomi ;-extensiork, of &, respectively.
Suppose that

m=pg p=3, g=1(mod8), (E)z—l and 27 = —1 (mod q),
q

where p andg are prime numbers angy) is Legendre’s symbol. Then we hanvgk) =

p2(k) = 0.
Theorem 2 deals with non-trivial cases. We prove it according to the idea of Theorem 5.

3. Preparation

To prove Theorem 2 we need some preparation which were also used in the proof of
Theorem 5.

Let p and g be prime numbers such that p = 7 (mod 8), ¢ = 1 (mod 8), (g) = -1,
andk = Q(\/ﬁ)! kn = kQn, koo = U;.,o:()kn-
Since ky = k(an) = kn-1(v2+ an—1), we have Ni, /k, (2 — an) = (2 — an)(2+ ay) =
2 — a,—1, where Ny, /,_, isthe norm. Thus Ny, /(2 — a,) = 2. Since a, is an algebraic
integer of Q,,, it means20q, = (2 — a,)? g, = (2+ a,)? Oq,, Where Dq, isthe integer
ring of Q,. Sotheidea (2 — a,)Oq, = (2+ a,)Vq, isthe unique primeidea of Q, lying
above 2. Therefore the square of the unique primeideal £, of k, lyingabove2is(2—a,)Ox,,
where Oy, istheinteger ring of k.
First, we show the following important proposition.

ProPOSITION 1. Letk be as above ando(k), u2(k) the Iwasawak-, u-invariants of
the cyclotomicZ,-extensiorks, Of k, respectively. If there exists a non-negative integer
such thatg,, is non-principal ink,,, theni,(k) = pa(k) = 0.

PROOF. Let A, bethe2-Sylow subgroup of theideal class group of k,,, B, the subgroup
of A, consisting of ideal classesinvariant under the action of Gal(k,/k) and B;, the subgroup
of B, consisting of ideal classes containing ideals invariant under the action of Gal(k,/k).
Then by genus formula, we have

o(B,) = 2-part of hi/(Ex : Ex 0 N,k (k) ,

o(By) = 2-part of hi/(Ey : Ni,/k(Ek,))
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where o(B,) is the order of B, h; the class number of k, Ex the unit group of k, k¢ the
group of invertible elements of k,,, (Ex : Ex N N,/ (k,))) theindex of Ex N Ny, /x (k) in Ey,
o(B,,) the order of B;,, Ey, the unit group of k,, (Ex : Ni,/k(Ex,)) theindex of N, (Ex,)
in Ex. By genusfomula, we can also show that k(,/q) isthe 2-genusfield of k/Q. Let G be
Gal(k/Q), o agenerator of G, Ag the subgroup of Ag consisting of ideal classes invariant
under the action of G. Then AO/A(l)*" = Gal(k(,/q)/k) by Artin map. Since (g) = -1,
we have Ag = AgA(l)“’, which shows Ag = A§. It follows that the 2-Hilbelt class field of k
is k(@ and weobtain o(B,) = 2/(Ey : Ex N Nkn/k(k;l()), O(B,'l) = 2/(Ey : N, /k(Ek,)).
Hence by the assumption, we have B, = B), = (cl(£,)) = Z/2Z for dl n > ng , where
cl(£,) istheidea class of k, containing £,, (c/(£,)) the group generated by cI(£,), and Z
thering of rational integers. Since Ni, Jkng (£n) = £y, the norm map Ny, /kng of B, t0 By, is
an isomorphism, which shows that the intersection of B,, and the kernel C,, of the norm map
A, 10 Ay istrivia. 1t means C,, isaso trivial. Therefore, since Nkn/kno (Ap) = Apg, An'is
isomorphic to A,,, whichimpliesAz(k) = ua(k) = 0. O
REMARK 1. Since the 2-Hilbelt class field of k isk(,/g) and ¢ = 1 (mod 8), £o is
principal in k.
Sinceq = 1 (mod 8), g splits completely in Q1. Moreover, the class number of Q1 is1and
Ng, /(1 + V/2) = —1. Hencethere exist positive integers r,s suchthat g = (r + sv/2)(r —
sv/2). Let g1 = r + s+/2, g2 = r — s+/2 (Note that g1, ¢» are totally positive.). Then there
existintegersa, b, ¢, d with g1 = a + by/2+ 4v/2(c +d~/2),0<a < 8,0 < b < 3andwe
have g = q1g2 = a® — 2b% (mod 16). Thusif ¢ = 1 (mod 16), then

g ==+1,+1++v2? (mod4v2) — (i)
andif ¢ =9 (mod 16), then
gi =43, +(1+2v2) (mod 4v2). — (ii)

On the other hand, since p = 7 (mod 8), p aso splits completely in Q1. So there exist
positiveintegerst,u suchthat p = (t + u~/2)(t — uv/2). Let pr =t +u~/2, po =t — u/2
(Note that p1, p2 are dso totally positive.). In the same way as above, we can show that if
p =7 (mod 16), then
pi=3++2 -3++/2  (mod4v/2). — (iii)

By classfield theory, we can show the following lemma.

LEMMA 1. (1) Supposethai =1 (mod 16).
If 2"%1 = —1 (mod g), then the ray class fiel@1(modgq;) of Q1 modg; does not contain

any quadratic extension @J;. If 2T =1 (mod g), thenQ1(modg;) contains a quadratic
extension 00)1.
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(2) Suppose tha =9 (mod 16).

If 2‘%1 = —1 (mod ¢q), thenQ1(modg;) contains a quadratic extension Qf. If 2% =1
(mod g), thenQ1 (modg;) does not contain any quadratic extensioraf

(3) Suppose thap = 7 (mod 8). Then the ray class fiel@1(modp;) of Q1 mod p;
does not contain any quadratic extensiortaf

ProOOF. At first we show (1), (2). Note that
@+v2)'7 = (V21+V2)'T =2'T 1+ VDT

If g = 1 (mod 16), then g splits completely in Q2/Q1, which implies (2 + \/ﬁ)% =1
(mod ¢). Henceif 27 = —1 (mod ¢), then (1 + v2)z" = —1 (mod ¢), andif 27 =1
(mod ¢), then (1+ v/2)’z" = 1 (mod ).

If ¢ =9 (mod 16), then (2 + x/i)%l —1 (mod ¢). Hence if 21%1 = —1 (mod gq),
then (1+\/§)95_1 =1 (mod ¢), andif 27 =1 (mod q),then(lJm/?)qg_1 =—1 (mod g).
Let qu ={a:ideal of Q1 | a is relatively prime to g;}, and
Pq’ {() : principal ideal of Q1 | « = 1 (mod g;)}. Then we have J, Q /Pq’ =
Gal(Ql(modq,')/Ql) by classfield theory. Thereis a surjection such that

ZIV2)/giziv2n* — I /PE

o« modg; — () mod Pg"l,

Since the kernel of this morphism is (—1 mod ¢;, 1 4+ +~/2 mod ¢;) and —1 is a quadratic
residue mod ¢;, we obtain (1) and (2).
Similarly, let Jp’ {a:ideal of Q1 | a is relatively prime to p;},

Pp' ={(a) : principal ideal of Q1 | « =1 (mod p;)}. Thenwe aso ha/er'/Pp’ =
Gal(Q1(modp;i)/Q1) and (—1 mod p;, 1+ +/2 mod p;) isthekernd of the surjection

ZIV2/piZIV2)* — 5 P
« mod p; — (¢) mod P(’?’;,
Since p =7 (mod 8),2 | p — 1and 22 { p — 1. Furthermore, the order of —1 mod p; is 2,

which implies the order of the kernel is even. Hence we have (3). |

4. Proof of Theorem 2

We use the following well-known fact to prove Theorem 2.

LEMMA 2 (cf.[9], p. 183). Leta be an element dP; which is prime t@2. Then
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(1) there exists an element of Q; such thate? = a (mod 4) if and only if
Q1(/a)/Q1 is unramified at all primes d®; above2.

(2) there exists an elementof Q; such thatw? = a (mod 4v/2) if and only if all
primes ofQ1 above2 split in Q1(y/a)/Q1.

PROOF OF THEOREM 2. Note that for any element o in O, which is prime to 2, we
have

o?=1,3+2v2 (mod4/2). —(iv)

(1) Suppose that 2{%1 = —1 (mod gq). If ¢ = 9 (mod 16), Q1(modq;)/Q1 has a
quadratic subextension by Lemma 1 (2). First we show the quadratic extension of Q; must
be Q1(,/gi)/Q1. Let Q1(/m)/Q1 be the quadratic subextension, wherem € Oq,. Since
Q1(y/m)/Qq is unramified at the infinite primes, we have m > 0. Note that we can assume
vp(m) = 0or 1 forany primeyp of Q1, where vy, isthe p-adic additivevaluation. If vy (m) = 1,
then X2 —m isan Eisenstein polynomial with regard to p, which impliesp istotally ramifiedin
Q1(4/m)/Q1. Furthermore, since the relative discriminant of Q1(/m)/Q1 divides 4m©Oq,,
any primep withp t 4n9Oq, isunramified in Q1(y/m)/Q1. Hencem must beg; or ¢;¢, where
e = 1+ +/2. By (ii), (iv) and Lenma2 (1), Q1(/gi€)/Q1 isramified at a prime of Q; above
2. Therefore Q1(y/m) must be Q1(,/g;) as desired.

It follows that al primes of Q1 above 2 are unramified in Q1(,/g:)/Q1. Hence we
haveq; = 1, 3+ 2+/2 (mod 4) by Lemma 2 and (iv), which shows ¢; = —3, -1+ 2/2
(mod 4+/2) by (ii). On the other hand, k1(/g:) is an unramified extension of k3. Since
£1 does not split in k1(,/g;) by Lemma 2, £; is non-principal in k1. Therefore we have
A2(k) = u2(k) = 0 by Proposition 1.

Secondly, suppose that 2‘14;l = 1 (mod g). If ¢ = 9 (mod 16), then Q1(,/g;) is not
contained in Q1(modg;) by Lemmal (2), which shows ¢; = 3, 1+ 2+/2 (mod 4+/2) by
Lemma2 and (ii), (iv). Hencewe have pg; = —3, —1+ 2+/2 (mod 4+/2). Since £ doesnot
split in an unramified extension k1(,/pg:)/ k1, £1 is non-principal in k1. Therefore we also
have A2(k) = u2(k) = 0 by Proposition 1.

This completes the proof of Theorem 2 (1).

(2) Supposethat ¢ = 1 (mod 16), p = 7 (mod 16), and 27" = —1 (mod ¢). By
Lemma1l (1), Lemma2, (i) and (iv), we have g; = —1, —3+ 2/2 (mod 4v/2). By (iii) we
have pie = +3, +1 + 2+/2 (mod 4+/2). Lemma 1 (3) implies that all primes of Q; above
2 are ramified in Q1(,/p;¢)/Q1, which shows p;e = 3,1+ 2v/2 (mod 4+/2) by Lemma 2
and (iv). Hence we have p;g;je = -3, -1+ 2v/2 (mod 4+/2). Since £1 does not split in
an unramified extension k1(,/piq;€)/ki, £1 is non-principal. Therefore we have 12(k) =
u2(k) = 0 by Proposition 1.
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REMARK 2. Supposethat ¢ = 1 (mod 16), p = —1 (mod 16), and 2 = 1
(mod ¢). Then we can show that £; splits in an unramified extension k1(,/piq;€)/ k1.
But Kuroda's class number formula (cf. [6]) shows that the 2-Hilbelt class field of k1 is

k1(/P1q1€, /P192¢)- Hence £1 isprincipa in ky, i.e., we can not decide Ap(k) = u2(k) =0
by using Proposition 1.
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