TOKYO J. MATH.
VoL. 29, No. 1, 2006

Splittability of Stellar Singular Fiber with Three Branches

Kazushi AHARA and Shigeru TAKAMURA
Meiji University and Kyoto University

Abstract. We are concerned with the splittability problem of degenerations with stellar singular fibers. In
this paper we give an interesting splitting criterion for such degenerations: if astellar singular fiber has exactly three
branches, and its central component (core) isthe projective line, then this degeneration admits a splitting deformation.

1. [Introduction

The purpose of the present paper isto show splittability of stellar singular fiber with three
branches. If thereisafamily ; : M; — A of degenerations of closed Riemann surfaces such
that 7o has only one normally minimal sigular fiber 7, 1(0) and that 7, (¢ # 0) hasmore than
one singular fibers such that they are not obtained as blowing ups of smooth fibers, then the
germs of mg is called splittable. If a singular fiber is not splittable, it is called atomic. We
are very interested in classification problem of atomic singular fibers, and also splittability
problem.

We shall consider splittability problem for stellar singular fiber. The singular fiber X
is stellar if it has a core and some branches (Definition 2.1). We assume that the core is a
projective line and that the number of branchesis 3 or more. In this case, the second author
shows that if X has a simple crust then we obtain a splitting family of degeneration X. Here
asimple crust is a subdivisor of the singular fiber X satisfying some conditions (Definition
2.5).

In this paper, we show that if the number of branches is exactly three then there exists
at least one simple crust of X, and hence the degeneration is not atomic (Theorem 4.1). To
prove this theorem, it is sufficient to construct a simple crust of X combinatrially. To show
it isasimple crust, we prepare an arithemetic lemma (Lemma 3.2). We call this lemma sub-
continued-fractions lemma.

In section 5, we consider the case where X has more than 3 branches. We find many
examples of stellar singular fibers which don’t have asimple crust. We use software Splitica,
which is developed by thefirst author, to find such examples.
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2. Preparation

Inthissection weintroduce astellar singular fiber and asimplecrust. These two concepts
are presented by Takamura[T3]. Simple crust isthe main idea of Takamura's splitting theory.

Let7 : M — A bealinear degeneration of complex curve such that the genus of a
general fiber is positive. (A linear degeneration is defined in p. 273, [T3].) In the sequel we
assume that the degenerationw : M — A isnormally minimal.

DErFINITION 2.1 (Stellar singular fiber). A singular fiber X of alinear degeneration of
complex curve is called stellar if the following five conditions (ST1), (ST2), (ST3), (ST4),
and (ST5) are satisfied:

(ST1) X isdecomposed asfollows:
b .
X = m0@0+23(1) ,

j=1
where b is a positive integer, and BY) = 7m0 Here@p and @) (j = 1,2, ---,
b,i =1,2,---, ;) areirreducible components. mgq and mf-’) are their multiplicities respec-
tively. We call ©@g acoreof X. Wecal mo® + BY) abranchof X for j =1,2,---, b.
(ST2) (~)i(j ) is bihol omorphic to P*. (~)i(j ) and @l.(fl intersect transversally at one point for
j=12---bi=12---,1; -1 Ogand @i-’) intersect transversally at one point p; for
j=1212,---,b,suchthat p;’sare mutualy distinct.
(ST3) Forj=1,2,---,b,m "’ ssatisfy

m0>m(lj) >méj) > .- >m§i) > 0.

(ST4)Letroandr” (i =1,2,---, ;) bedefined by thefollowings:

mP .+l

n=——_—":
WG
J
Myt My (i=1,2 -1 —1
) (]) - ] ) ) J £
r.(]): 4mi
i m('])l
i—
- (l:)nj)
ml(])

ro and rl.('i) areintegersand rl.('i) > 2. Hereméj) = mo.

(ST5) One of the following four conditions is satisfied.
(ST5-1) genus(®@g) =0,b > 3,andmg > 2.
(ST5-2) genus(®g) =0,andb = 2.

(ST5-3) genus(®g) > 1,b > 2,and mg > 2.
(ST5-4) genus(®g) > 1,andb = 0, and mg > 2.
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Next we prepare definition of asimple crust.
Let X be astellar singular fiber. Suppose that a subdivisor Y of X is represented by the
following.

b
Y =n0(’*)o+25(j),
j=1

where
ej
sO=>"nle o sV =0.
i=1

(If $¢) = 0then weregard e; = 0.) We assume that Supp(Y) is connected and that at least
oneof S isnot zero.
DEFINITION 2.2 (Subbranch). no®o+ S iscalled a subbranch of mo®@o+ BY) if the
following conditions (SB1), (SB2), (SB3) are satisfied:
(SB1) O<e; <xjandife; > Othenng zngj) > > ng) > 0.
(SB2) mgq > no,andife; > Othenandmf-’) > nfj) (i=1---,¢j).
(SB3) Ife; > Lthen
() ()
D 4n .
ni_qg TN _r(]) (l=1,7e]_1)

() i
n;

Herengj) = ng.

REMARK. In Definition 2.2, the case e; = O isallowed. In this case, the subbranch is
no®g + SY) = np®q and we consider that there is a vacant subbranch, and that n(lj) = Ofor
convenience sake.

DEFINITION 2.3 (Crust). Suppose that X is a stellar singular fiber and that ©g = P1.
A subdivisor Y iscalled a crust if the following two conditions are satisfied:

(CR1) Forj=1,2---,b,noOo+ SY isasubbranch of mo@g + B,
(CR2)

) )
Zj”1 >ij1 .

no mo

REMARK. If we don't assume that @y = P1, then the definition of a crust differs. In
[T3] the condition (CR1) isremoved and another condition called ‘tensor condition’ is added.
We call ng®q + S abranch of acrust Y.

For each branch of acrust Y, the type of the branch is defined as follows.
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DEFINITION 2.4 (type of subbranch). Fix j. Inthisdefinition m; (resp. n;, ¢) denotes
mﬁj) (resp. nf-’), e;) for smplicity.

(1) If thereexistsapositiveinteger ¢ and the following conditions (TA1) and (TA2) are
satisfied, then no®g + SV isatype A, subbranch.
(TAL) tnj<m; i=21,2---,¢).

(TA2) et

= Fe.

(2) If there exists a positive integer ¢ and the following conditions (TB1) and (TB2)
are satisfied, then no®o + S/ isatype B, subbranch.
(TBL) tnj<m;j i=1,2---,¢).
(TB2) ¢ =m,andn, = 1.

(3) If there exists a positive integer ¢ and the following conditions (TC1), (TC2), and
(TC3) are satisfied, then ng@q + S isatype C, subbranch.
(TCL) ¢tn;<m; (i=12---,¢).
(TC2) ”n;l isan integer and less than r,.
(TC3) Letu := (me_1— €ne_1) — (re — L(m, — €n,). Then £ isaninteger.

(4) 1f §¢) = 0then we say that the j-th branch of Y isatype O subbranch for conve-
nience sake.

DEFINITION 2.5 (Simplecrust). Supposethat X isastellar singular fiber and that Y is
acrust of X. We assume (ST5-1) @ = P, b > 3, and mg > 2. If there exists an integer ¢
such that the following condition (SC) is satisfied, then Y is called a simple crust of X. We
call ¢ the crust multiplicity.

(SC) Each branch of Y is of type A, or of type B, or of type C; or type O.

The following theorem is aresult by Takamura[T3].

THEOREM 2.6 (Existence of splitting family). If a linear degeneration = with a star-
shaped singular fiber X hasa simple crust Y then there exists a splitting family of degenera-
tionr.

3. Preparation on continued fractions

Inthis section we prepare somelemmason continued fractions. Letry, - - -, r, beintegers
greater than 1. [r1, - - -, r,.] denotes a continued fraction as follows.
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1 1 1
[rlv"'vr)\] = ..
rn.rz s
1
B 1
r1g —
1
rp —
1
S

Let aninteger (r1, - - -, r,) be defined as follows:

(NULL) =1,
(r1) =rn,
(r1,r2) =rirz — L(=r1{r2) — (NULL)),
(ri,r2, o= ) =ralrz, -, ) — (3, -, r) (A =3).

We have alemma.
LEmMmA 3.1. (1) Suppose that X is a star-shaped singular fiber and that
mo, mgj), rl.(j) areasin Definition 2.1. If ¢ = GC D(mo, mgj)) then

m:('j) [C)NEN©)) r(j)).

=9y o)

Remark that if i = X ; then mfj) = g(NULL) =g.

(2

(”Za"'arﬂ

(re,---,m)’

and theright hand sideisirreducible. Remark that if A = 1 then[r1] = (NULL)/(r1) =

[r1,---,n]l=

1/r1.
3
(ri,ro, - - ma) = (rra—1, -+, r1) -
(4) If x> 1then
1 1 1 (2, onx+{r2, - n)
Fl—Tpee— ot — X —{F1, e o)X (P11
Remark that if A = 2 then
1 1 —(NULL)x+(r2)  —x+r
rn—ra—x  —(r)x+(rLr2)  —rix+(r.r2)
(5) If wisarational number suchthat 0 < w < 1, then there exist integersry, - - -,

greater than 1 such that

[rls"'sr)n]zw'
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ProOF. The formula (1) follows the definition of '/ in (ST4). (2) and (4) follow the
definition of (r1,---, ). (5) follows the Euclidean agorithm. (3) is a well-known fact in
number theory.

Next we prove sub-continued-fractions lemma.

LEMMA 3.2 (Sub-continued-fractionslemma). Letrq, - - -, r,, beintegers morethan 1.
[r1, - - -, ] denotes a finite continued fraction:

[r1, -+ rm] =
rs —

rp —

Let a, b, ¢ beintegers more than 1 and satisfy the following.

a>c, a>b, b+c>a.

Letry,---, 7y, rq, -+, 1, beintegers more than 1 such that
b c , ,
;:[rlv"'vrm]s ;:[rls"'srn]'

Thenthereexist two integersm’, n’ (1 <m’ <m, 1 < n’ < n) such that
[rlv"'7rm/]+[riv"'vr;l/] =1.

In order to show thislemma, we need to prepare some arithmetic lemmas. First we prove
the following lemma.

LEMMA 3.3. () If [r1,- -, ] + [y, -+ ] = 1then [2,r1, -+, ] + [r] +
Lry, oo rl=1

2 Wflry, - rml+ 1y, =1, m > landry = 2, thenr; > 3 and
ro, - rml+lr; =1, ]=1

PrOOF. (1) If[ry,---,rml= 5 then[2,ry, -+, rpml = ﬁ. From the assumption,
[ry, -yl = %andhence[ri—i—l,ré,m,rr/n] = %.

(2) Suppose [r1,---,rm]l = g. If r1 = 2then 2p > ¢ by definition of continued
fraction. It followsthat g — p < %. r; satisfies (g — p)(r; — 1) < g < (¢ — p)ry. Therefore

we have r{ > 3. Under the assumption of r; = 2, we obtain [r2, -, ry] = 2”7”1 [r] —
1,...,rr/l]=%_ g.ed
Ifri =rgs1 =+ = rgga—1 = 2iNn[ry, - - -, rpy ] then we denoteit

[r1, -, rk—1, D, Fkgas =+ Fml
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Here we remarkd that (2)¢ must be distinguished from a power 2¢ of 2. For example, (2)? #

4. If risodd, ay, as, - - -, a, areintegersgreater than 1, and ap, a4, - - - , a,_1 are non-negative
integers, then [az1, (2)%2, az, (2)%, - - -, (2)%-1, a,] means
az ag ar—1
—— —— ——
la1,2,---,2,a3,2,---,2,---,2,---,2,a,].

If « = 0then (2)° means a sequence with no element. For example,
[3,2°%4,(2%31=13,4,2,2,3].
LEMMA 3.4. Letai,ay, ---,a, benon-negative integers.
1)

[al + 37 (2)(12’ as + 31 (2)a41 T (z)ar—l, ar + 3]
+[2, )", a2 +3, (2", a4+ 3, -+, ar-1+ 3, (2, 2] =1.

2

[al + 37 (2)(12’ as + 31 (2)&147 e, dr—1 + 37 (Z)ari 2]
+[21 (z)als az + 31 (2)a37 as + 31 Ty (z)ar—l, ar + 3] =1.

PrRoOOF. First we have [3] + [2,2] = 1. After that, using Lemma 3.3 inductively,
we show these equations. in (1) case, r is an odd number. If » = 1 then the equation is
[B3+a1]+1[2,21,2] = 1. If ag = Othen [3] + [2,2] = listrue. Using Lemma 3.3(1),
[B+ a1+ 1]+ (2, 2,24,2] = 1follows [3+ a1] + [2, 2%, 2] = 1. This complete the case
r = 1. For r > 3, assume that

az + 3,2%, ..., 2% -1 q, 4 3]
+[2,2%, a4+ 3,---,a,—1+3,2,2] =1.
Using Lemma 3.3(1),

ar+1
—
[2,---,2,a3+3,2%,.--, 21, a, + 3]
+[24+a2+1,2% a4+ 3, -, a,_1+3,2%,2] = 1.
Using Lemma3.3(1) again,

az

——
[2+a1+1127"'127a3+372a41"'12ar711ar+3]
ai1+1

—
+[2,---,2,24a2+1,2% a4+ 3,---,a,_1+3,2,2] =1,

[al + 31 2&127 as + 37 2(14, ) 2(lr7]_’ ar + 3]
+[27 2(117 ap + 37 2(13’ aa + 37 e, dr—1 + 37 2(lr7 2] = 1‘
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For example, we show that
[34+0,2°,3+1,22,34+01+(2,2°,3+0,2,,3+2,2%21 =1
Theleft sideisequivalent to
[3,4,2,2,3]1+12,3,2,5,2].
From [3] + [2, 2] = 1, we have followings:

[B1+[2,2]=1

[2,3]+1[3,2] =1
[2,2,3]+[4,2]=1
[2,2,2,3]+1[5,2] =1
[3,2,2,3]+[2,52] =1
[4,2,2,3]+1[2,2,5,2] =1
[2,4,2,2,3]+1[3,2,5,2] =1
[3,4,2,2,3] +12,3,2,5,2] = 1.

S 2 R

In the same way we can show (2).

Asacorollary of Lemma 3.4, we obtain the following Lemma 3.5.

LEMMA 3.5, If [ri,---,rm] + [rg,---,r] = 1 then [ry,--
[riv"'vr;l_lsr;{l—i_l]:l'

PrROOF. By using Lemma 3.4, We see that if [r1,---,rp] + [ry, -+, 7,
[Fm, -+, ral + [y, - -, r1] = 1. Using 3.3, we have the conclusion easily.

g.ed.

'7rm52] +

'] = 1 then

To show sub-continued-fraction lemma, we need a formula of estimation of sub-

continued-fractions.

LEMMA 3.6. Letry,---,r, beintegersmorethan 1. Letaset S = S(ry,---, ry) be

defined as follows:

S(rls"'srl’ﬂ)
— [r PRI r r DY r] n>m,
I A e " Fmal, Fma2, -, Fp areintegersmorethan1 |
(1) Ifr, > 2then
S(rlv"'vrm):{er|[rli"'srl’n]f-x<[r11"'1rn1_1]}‘
(2) Ifthereexistsaninteger p (2 < p <m) suchthatr, =r,11=---=r, =2and
r,,_1>2then
Sy, - rm)={xeQllry, -, rml <x <[r1, -, rp—1—1]}.
@) fri=r=---=r, =2then

Sy, - rm) ={xe€Ql[r1,---,rm] <x <1}.
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Proor. Thereexistsarea number O < x < 1 such that
1 1 1

[rlv"'vrmsrn1+lv"’]:_ - .
rL—r = —x

If we regard the right hand side of this equation as afunction of x, it is easy to show that it is
aincreasing function. The conclusion (1) follows. We show (2) and (3) in the same way but
we need to check the upper bound (in the case x = 1.) It is sufficient to show the following.

1 1 1 _ 1
Fp1—2——2-1 rp1-1"
Thisisan easy formula.
PROOF OF LEMMA. 3.2. Let us start the proof of Lemma3.2. Lets!”, ... s be

’ I’l(l)
integers more than 1 such that

(@) @)
[Sl s T n(,)]

— [rl7 ... N r ]
Remark that an integer n(i) is the length of this continued fraction. First we determine the
interval S(s(l) fl’(z))
(Case 1) Suppose thati = 1. If ry = 2then1 —[2] = [2] and (1) = 1. Hence
sV =2and S(s{P) = (x € QIIsiP] < x < 1.

frg > 2then 1 —[rq] = 2% = [2,...,2] and n()) = r1 — 1. Therefore

rn

Gy, osie) = st siy 1 D).
(Case 2) Supposethati > 1. If r; = 2 then using Lemma 3.4 we obtain that
n(i)=n@ -1,
(i) (i-1) @) (i-1)
%l> _sll ] SSa(i)-1 = Sn(i)-1°
4
sn(l) = sn(l) +1.
It follows that
Sy sy =[5y sy L Isy 0, sty D (3.1)
If r; > 2, we show the same conclusion in the similar way.
The formula (3.1) implies
US(s(” ) = [1— —.. (32)
Remark that [s;", -, 5,0, 1= 1= [r1, -+ rm] = 1= 2.
Froma — b < ¢ < a,wehave
b
1--< ¢ <1.

a a



10 KAZUSHI AHARA AND SHIGERU TAKAMURA
Hence there exists i such that

¢ (@) (@)
" €851, s Sy -

ltmeansthat ¢ = [s{”, -, s\, -1 and it is sufficient to teke m’ = i and n’ = n(i). In
fact,
— [¢® ®)
[r:/l_a""r;l/] —[51 a"'asn(,’)]
=1—[r1,---,ri]
=1_[r17”'7rm/]’

This completes the proof of 3.2.

4. Mainresult

We state our main result.

THEOREM 4.1. Supposethat = : M — A isalinear degeneration of curves with a
stellar singular fiber X suchthat @y = P, b = 3, rg > 2, and mg > 2. Then there exists
asimplecrust Y of X. Hence there is a splitting family of X and the degeneration = is not
atomic.

We have the following lemmaand it is enough to consider the case rg = 2.

LEMMA 4.2. rg < b. Hencerg > 2impliesrg = 2incaseb = 3.
PROOF. Zj mgj) < bmo fO||0\NSmgj) < mo, andwehaverg < b, Sorg > 2implies
ro=2incaseb = 3. g.ed.

REMARK. If thesingular fiber X satisfies ©®g = PL, b = 3, ro = 1, and mg > 2, then
Takamura [T 3] showsthat there exists a splitting family of X.

We shall restate our result in atopological way.

COROLLARY 4.3. Letw : M — A be adegeneration with one singular fiber X and
[p] € M beitsmonodroy. Here M isthe mapping class group of a general fiber F = 7 ~1(x).
If the following conditions are satisfied, then there exists a splitting family of the degeneration.
(1) Agroup generated by p isa cyclic group of finite order.
(2) Theorbit space F/{p) hasexactly three singular pointsand F/{p) is homeomorphic to
a 2-sphere.

In the sequel, we prove the main theorem 4.1.
We may assume m(ll) > m(lz) > m(l3). First we consider the case where two of m(l’ ) are

equal to each other. In this case, we can easily construct a simple crust.
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Infact, suppose m{Y = m'?. Letacrust ¥ beasfollows.

Y =60+ 6," + 62

and let the crust multiplicity ¢ be m(ll). The sub-divisor Y has two non-zero subbranches and
these two subbranches are of type B, by definition. Hence Y is a simple crust. In the same
way, if m? =mP theny = @ + 02 + 6> (¢ = m{?) isasmple crust.

In the rest of this section, we assume m§1> > m&z) > mf). From the formulamgl) +

m(12) + m(l3) = 2mg, We have:

2
m(ll) > 3Mo- (4.2)
Letk bemg — m:(Ll). From (4.1),
1
k< 3Mo- 4.2)
Next let an integer h be |mg/k]. Here | - | denotes the Gauss's symbol. From (4.2) we obtain
h>3, (4.3)
and
mo > hk.
It follows that

mP =mo—ik (=1---,h—1).

We state the following lemma.

LEMMA 4.4. Let j beaninteger suchthat2 < j < h. Then

h—j
. . 1
J®o + Z ]@i( )
i=1

gives a subbranch of type Cy.

PrROOF. Thecondition (TC1) issatisfied clearly. Infact, mfl)—kngl) =mo—ik—kj >
mo—(h—j)k—kj = mo—hk > 0. Thelengthe of S ish— j. Becausen'”, /ntP = j/j = 1
and r, = 2, the condition (TC2) is satisfied. And we have

u=me-1—kne1) — (re —1(m, — kn,)
= (mo — (e — k) — kj — (2—1)((mo — ek) — kj)
=k.
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It follows that the condition (TC3) is satisfied. This completes the proof of Lemma4.4.

We will construct a simple crust ¥ such that the first subbranch @ is given as above.
And we will show that we can take the second subbranch $@ and the third subbranch S© of
type Ag. In order to show this fact, we need sub-continued-fractions lemma.

Using sub-continued-fraction lemma, we show Theorem 4.1 as follows. Let a = mo,

b= m(lz), c= m(13). Remark that these are integers greater than 1. In fact, a > 2 because

of the assumption of mo. In order to show ¢ > 1, assume that ¢ = m{® = 1. Solving

mgl) + m&z) + 1 = 2mg and m(ll) > m:(LZ) > 1, we have Zm(ll) > 2mg — 1. This contradicts to

m(ll) < mg.

By definition of astellar sigular fiber, wehavea > b, anda > ¢. Solving mgl) +m(12) +

m® = 2mg and mg > m{", we have b + ¢ > a. Using Lemma 3.1(2), we get the following
lemma:

LEMMA 4.5. Let /) be as in Definition 2.4(ST4). If 2 = [r1,---,rul, €
[r.---.r,] asinLemma 3.2, then we have
ri = rl.(z), ri/ = ri(g). (4.9

ProoF. r®"sand r®"s are uniquely determined from mo = a. m? = b, m{¥ = ¢,

by

o, () ) :
0 rmy —myly i=12---,1;-1,
M T Gy o) .

rm; (i =Aj).

On the other hand, if ¢ = GCD(a,b) = 1thena = g(r1,---,ry,) and b = g(ra, - -+, r3,),
and r; satisfy

ri(ri+lv"'vr)\2) - (rl'+27"'7r)»2> (l :11"'7)‘2_2)1
(riy -+, 1) = §hp—1(r,) — (NULL) i=xx-1,
i (NULL) = 1y, (i =Mx2).
From Lemma 3.1 we obtain that mgj) = g(rl.(fl, r,.(fz, . -,ri?), and thisimpliesr; =

ri(z)_ In the similar way we can show r/ = ri(g).

Lemma4.2 impliesthat there exist two integers m” and n’ such that
[Vl’""rm’]+[r]/_""’r,;/] =-1.
We have the followings from Lemma 3.1(2).

<r17"'7rn1,):<r11"'1rl;/)1
(rZs"'1rm’>+<rév"'vrr/,/>:(rlv"'vrm’)°
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Let SO, 5@ and @ be defined as follows.
s =¥ g0,
SO = T i )0 + 02
S® =y e e
Hereq := (r1,---, ry). Let Y beasfollows.
Y =g+ SV + 5@ 4 5O (4.5)

To show that Y isasimple crust, we show some lemmas.

LEMMA 4.6. g <h—1,whereh = [52] andk = mo — m(ll)
PROOF. Let p = (ra,---,r,). We consider the following 4 cases. (case0) g = 2,
(Casel)1- 2 < q—Jlrl,(CaseZ)p =¢g—1lorp=1(Cae3)1l<p<gqg-—1 These

conditions are not exclusiveto each other, but we will provein each case under the assumption
that the previous cases are proved. The proof in Case 0 is obvious. The proof in Case 1 is
obtained from the condition of mi’ ). The proofsin Case 2 and 3 is obtained from the lemma
of continued fractions. This proof is only combinatrical, but the authors believe that we have
another smart and arithemetic (or algebraic) proof.

CAse0. ¢ =2

In this case from (4.3) we obtained 2 — 1 > 2 = g clearly.

CAsel. 1-%2< L1

First we havemgl) = romo — mgz) - mf) = 2a — b — c. The assumption mgl) > mgz)

implies2a — b — ¢ > b. So we have

h=12]=l—m5—a! = la%]
>q+1
CASE2. p=g—1lorp=1
Suppose p = g — 1. Wedso assumethat 1 — 2 > q—_h. Let S(ry, ---) beaninterva
defined in Lemma 3.5, and a power 2¢-1 denotes a sequence of 2 of (g — 1)-times. p = ¢ —1

fo||ows§ e S(29 1 = ["T’l, 1). Seethe proof of Lemma 3.1. In the same say, we have

CeSg) = [%, q—fl). Theassumption1 — 2 > q—}rl follows 2 < 4. Sowe have

b : 1 2
bie g4 1y
a a g+1 g-1 g?—1
2
a qc—1
h = > > 1.
ezl 1zt

To show the last inequality we use the condition ¢ > 3.
CASE3. 1<p<gqg—1.
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Letg’, p’ begivenby ¢’ = (r1, -+, rw—1), p' = {ra,---, rpy_1). Let area number x

bel/[rpr41, -+, rm]. (If m" = m then x = 0.) Then from Lemma 3.1, we get
b 1 1 1 —px+p
a ri"r T rw—x  —q'x4q
b p 1
a q (=q'+q/x)q

(If m" = m then g - g = 0.) Inthe same way, let ¢” and p” be defined by

q”:(ri’...’rl;/i )7 p”:(ré,...,r:ﬂil).
(Here % =[ry,---,r,].) And we obtain
c qg-—p 1
a q (=q" +q/x)q’
where x’ = 1/[r),_ 4, -+, ry]. (Ifn’ = n then & — "q;” = 0.) Here we need the following
lemmas.

LEMMA 4.7. (1) q¢"+4q =q.
(2) g andgq’ areco-prime. g and ¢” are co-prime.
B l<g <g-landl<gqg”" <qg-—1.

The proof iseasy. Only for (1) we need acomment. Using Lemma3.4,if [r1, -+, r ]+

[ry, -, rl=21then[ry,---, ] +1[r,, -, r;] = 1. Using Lemma 3.1(3), we obtain (1).
We show Lemma4.6 in case 3.
b ¢ 1 1
—+--1< / + 7
a a (=¢"+9)q (—=q"+q9)q
1
= q//q/ ’

h=l———]=1q"¢') 2 q+1

b+c—a — - '

This completes the proof of 4.6.
Finally we show that g @ + S@, ¢@o + S@ aretype A; subbranches.

LEMMA 4.8. ¢@p+ 5@ and g©@p+ S@ aretype A, subbranches of the singular fiber
X.

PROOF. By definitionof (- --), we have
(rl.s"'srl’n/) +<ri+21"'1rl’n/) :ri<ri+ls"'1rn1/>7

(=1, r) + 1 =12 {rpr)

() = rpy
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These formulae and (4.4) imply that ¢ @g + S gives a subbranch of the singular fiber.
(TAL) for i = Ois satisfied since kng = kg < k(h — 1) < mo. Foranyi = 1,---,m/,
inductively we have
@ e

m(lZ) =[ria"’a”m]Z[”i"":”m’]zn(i_z)
i—1 i—1
oo ? @ @ l
=>m" = grm 7y > kg
ni_q

Herem? = mo andn? = no. Thelength e of this subbranch ism’ and we obtain

2
ngjl _Tw

W2 1

=Ty =Te.

Hence the condition (TA2) is satisfied. In the case of @, we can prove in the same way.
LEMMA 4.9. Y as(4.5) isasimple crust of the singular fiber X.
PROOF. From Lemma4.4and Lemma4.8, ¢@g + S) (j = 1, 2, 3) give subbranches
of type C, Ax, and Ay respectively. And we get

n(ll) +n(12) +n(13) g2 )+ (g

no q
This compl etes the proof.

=2=ry.

5. Thecasewhereasingular fiber has morethan three branches

In this section we discuss the splittability problem when a star-shaped singular fiber has
more than three branches.

In section 4 we assume that the number of branches equals three. We assumethat rg > 2
and we have an inequality ro < b. (It is easy to show this inequlity from the formulae
mo > m§ and moro = Y-"_; m{.) So the condition b = 3impliesro = 2.

In this section we remove the assumption » = 3. That is, weonly have2 < rg < b. In
this case there exists a stellar singular fiber without asimple crust. If (ro, b) = (2, 4) thenthe
smallest mq of such example is 33. We cannot check this by hand calculation. We need help
of computers. To find such singular fiber, the software Splitica [A] is very useful.

Solitica is developed by thefirst author and it allows usto list up all of crustsfor astellar
singular fiber.

The following proposition are obtained by computer experiments. As mentioned in

section 3, all of the multiplicities of components are determined by mq and mii) (G =

1,2,---,b). Soin this section we will represent a stellar singular fiber with genus O core
by the sequence
(mO; mg_l)v mg_Z)s et ) .
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PropPosITION 5.1. Thefollowing star shaped singular fibers with genus O core don't
have a simple crust.

(1) Inthecase (ro, b) = (2,4)
(33;25,19,12,10)
(33; 24,19, 13, 10)
(35;27, 21,12, 10)
(36;27,22,16,7)
(37; 29, 23,12, 10)
(38;29,24,16,7)
(38; 24, 23, 18, 11)

(If mo < 38then there are no other examples.)

(2) Inthecase (ro, b) = (2,5)
(20;15,11,7, 4, 3)
(20;13,11,8,5,3)
(21;15,11,7,5,4)
(21;12,11,8,7,4)
(22;15,11,9,6,3)
(22;13,11,8,7,5)
(24;18,14,8,5,3)
(24;17,16,6,5,4)
(24;17,13,9,5,4)
(24;17,13,8,6,4)
(24;17,12,8,6,5)
(24;16,14,7,6,5)
(24;16,11,9,7,5)
(24; 14,13,9,7,5)
(24; 14, 13,8,7,6)
(24;14,12,9, 8,5)

(If mo < 24 then there are no other examples.)

(3) Inthecase (ro, b) = (3, 4), thereis no example within mg < 24.

(4) Inthecase(rg,b) = (3,5)
(20; 17, 15,13, 11, 4)
(21;17,15,13,11,7)
(21;17,14,13,10,9)
(22;17, 15,13, 11, 10)

(If mo < 22 then there are no other examples.)

Observing these results, we have the following conjectures. Oneisinthecaserg = b—1.
When (rg, b) = (2, 3), we have Theorem 4.1. It seems a similar theorem holds when rg =
b — 1. In order to show this conjecture, we need more complicated version of ’sub-continued-
fractions lemma.’ The other isin the case mg is a prime number. For along time, we have
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a conjecture that if mg is prime then we have the similar criterion. But there is a counter
example in the case (mo, ro, b) = (37, 2, 4). Thisisarare example.

CONJECTURE 5.2. (1) Ifrp = b — 1 then every stellar singular fiber with genus 0

core hasa simple crust.

(Al
(T4

(72
(73]
(T4
(9]

(2) Ifmoisprime, itiseaser tofind out a simple crust in some sense.
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