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Splittability of Stellar Singular Fiber with Three Branches
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Abstract. We are concerned with the splittability problem of degenerations with stellar singular fibers. In
this paper we give an interesting splitting criterion for such degenerations: if a stellar singular fiber has exactly three
branches, and its central component (core) is the projective line, then this degeneration admits a splitting deformation.

1. Introduction

The purpose of the present paper is to show splittability of stellar singular fiber with three
branches. If there is a family πt : Mt → ∆ of degenerations of closed Riemann surfaces such

that π0 has only one normally minimal sigular fiber π−1
0 (0) and that πt (t �= 0) has more than

one singular fibers such that they are not obtained as blowing ups of smooth fibers, then the
germs of π0 is called splittable. If a singular fiber is not splittable, it is called atomic. We
are very interested in classification problem of atomic singular fibers, and also splittability
problem.

We shall consider splittability problem for stellar singular fiber. The singular fiber X

is stellar if it has a core and some branches (Definition 2.1). We assume that the core is a
projective line and that the number of branches is 3 or more. In this case, the second author
shows that if X has a simple crust then we obtain a splitting family of degeneration X. Here
a simple crust is a subdivisor of the singular fiber X satisfying some conditions (Definition
2.5).

In this paper, we show that if the number of branches is exactly three then there exists
at least one simple crust of X, and hence the degeneration is not atomic (Theorem 4.1). To
prove this theorem, it is sufficient to construct a simple crust of X combinatrially. To show
it is a simple crust, we prepare an arithemetic lemma (Lemma 3.2). We call this lemma sub-
continued-fractions lemma.

In section 5, we consider the case where X has more than 3 branches. We find many
examples of stellar singular fibers which don’t have a simple crust. We use software Splitica,
which is developed by the first author, to find such examples.
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2. Preparation

In this section we introduce a stellar singular fiber and a simple crust. These two concepts
are presented by Takamura [T3]. Simple crust is the main idea of Takamura’s splitting theory.

Let π : M → ∆ be a linear degeneration of complex curve such that the genus of a
general fiber is positive. (A linear degeneration is defined in p. 273, [T3].) In the sequel we
assume that the degeneration π : M → ∆ is normally minimal.

DEFINITION 2.1 (Stellar singular fiber). A singular fiber X of a linear degeneration of
complex curve is called stellar if the following five conditions (ST1), (ST2), (ST3), (ST4),
and (ST5) are satisfied:
(ST1) X is decomposed as follows:

X = m0Θ0 +
b∑

j=1

B(j) ,

where b is a positive integer, and B(j) = ∑λj

i=1 m
(j)
i Θ

(j)
i . Here Θ0 and Θ

(j)
i (j = 1, 2, · · · ,

b, i = 1, 2, · · · , λj ) are irreducible components. m0 and m
(j)
i are their multiplicities respec-

tively. We call Θ0 a core of X. We call m0Θ0 + B(j) a branch of X for j = 1, 2, · · · , b.

(ST2) Θ
(j)
i is biholomorphic to P1. Θ

(j)
i and Θ

(j)

i+1 intersect transversally at one point for

j = 1, 2, · · · , b, i = 1, 2, · · · , λj − 1. Θ0 and Θ
(j)

1 intersect transversally at one point pj for
j = 1, 2, · · · , b, such that pi ’s are mutually distinct.

(ST3) For j = 1, 2, · · · , b, m
(j)

i ’s satisfy

m0 > m
(j)

1 > m
(j)

2 > · · · > m
(j)
λj

> 0 .

(ST4) Let r0 and r
(j)
i (i = 1, 2, · · · , λj ) be defined by the followings:

r0 = m
(1)
1 + · · · + m

(b)
1

m0
,

r
(j)

i =




m
(j)
i−1 + m

(j)
i+1

m
(j)
i

(i = 1, 2, · · · , λj − 1) ,

m
(j)

i−1

m
(j)

i

(i = λj ) .

r0 and r
(j)
i are integers and r

(j)
i ≥ 2. Here m

(j)

0 = m0.
(ST5) One of the following four conditions is satisfied.

(ST5-1) genus(Θ0) = 0, b ≥ 3, and m0 ≥ 2.
(ST5-2) genus(Θ0) = 0, and b = 2.
(ST5-3) genus(Θ0) ≥ 1, b ≥ 2, and m0 ≥ 2.
(ST5-4) genus(Θ0) ≥ 1, and b = 0, and m0 ≥ 2.
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Next we prepare definition of a simple crust.
Let X be a stellar singular fiber. Suppose that a subdivisor Y of X is represented by the

following.

Y = n0Θ0 +
b∑

j=1

S(j) ,

where

S(j) =
ej∑

i=1

n
(j)
i Θ

(j)
i or S(j) = 0 .

(If S(j) = 0 then we regard ej = 0.) We assume that Supp(Y ) is connected and that at least

one of S(j) is not zero.

DEFINITION 2.2 (Subbranch). n0Θ0 +S(j) is called a subbranch of m0Θ0 +B(j) if the
following conditions (SB1), (SB2), (SB3) are satisfied:

(SB1) 0 ≤ ej ≤ λj and if ej > 0 then n0 ≥ n
(j)

1 ≥ · · · ≥ n
(j)
ej

> 0.

(SB2) m0 > n0, and if ej > 0 then and m
(j)
i ≥ n

(j)
i (i = 1, · · · , ej ).

(SB3) If ej > 1 then

n
(j)

i−1 + n
(j)

i+1

n
(j)
i

= r
(j)
i (i = 1, · · · , ej − 1) .

Here n
(j)

0 = n0.

REMARK. In Definition 2.2, the case ej = 0 is allowed. In this case, the subbranch is

n0Θ0 + S(j) = n0Θ0 and we consider that there is a vacant subbranch, and that n
(j)

1 = 0 for
convenience sake.

DEFINITION 2.3 (Crust). Suppose that X is a stellar singular fiber and that Θ0 = P1.
A subdivisor Y is called a crust if the following two conditions are satisfied:

(CR1) For j = 1, 2, · · · , b, n0Θ0 + S(j) is a subbranch of m0Θ0 + B(j).

(CR2)

∑
j n

(j)
1

n0
≥

∑
j m

(j)
1

m0
.

REMARK. If we don’t assume that Θ0 = P1, then the definition of a crust differs. In
[T3] the condition (CR1) is removed and another condition called ‘tensor condition’ is added.
We call n0Θ0 + S(j) a branch of a crust Y .

For each branch of a crust Y , the type of the branch is defined as follows.
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DEFINITION 2.4 (type of subbranch). Fix j . In this definition mi (resp. ni , e) denotes

m
(j)

i (resp. n
(j)

i , ej ) for simplicity.
(1) If there exists a positive integer � and the following conditions (TA1) and (TA2) are

satisfied, then n0Θ0 + S(j) is a type A� subbranch.
(TA1) �ni ≤ mi (i = 1, 2, · · · , e) .

(TA2)
ne−1

ne

≥ re.

(2) If there exists a positive integer � and the following conditions (TB1) and (TB2)

are satisfied, then n0Θ0 + S(j) is a type B� subbranch.
(TB1) �ni ≤ mi (i = 1, 2, · · · , e) .

(TB2) � = me and ne = 1.
(3) If there exists a positive integer � and the following conditions (TC1), (TC2), and

(TC3) are satisfied, then n0Θ0 + S(j) is a type C� subbranch.
(TC1) �ni ≤ mi (i = 1, 2, · · · , e) .

(TC2) ne−1
ne

is an integer and less than re.

(TC3) Let u := (me−1 − �ne−1) − (re − 1)(me − �ne). Then �
u

is an integer.

(4) If S(j) = 0 then we say that the j -th branch of Y is a type O subbranch for conve-
nience sake.

DEFINITION 2.5 (Simple crust). Suppose that X is a stellar singular fiber and that Y is

a crust of X. We assume (ST5-1) Θ0 = P1, b ≥ 3, and m0 ≥ 2. If there exists an integer �

such that the following condition (SC) is satisfied, then Y is called a simple crust of X. We
call � the crust multiplicity.
(SC) Each branch of Y is of type A� or of type B� or of type C� or type O .

The following theorem is a result by Takamura [T3].

THEOREM 2.6 (Existence of splitting family). If a linear degeneration π with a star-
shaped singular fiber X has a simple crust Y then there exists a splitting family of degenera-
tion π .

3. Preparation on continued fractions

In this section we prepare some lemmas on continued fractions. Let r1, · · · , rλ be integers
greater than 1. [r1, · · · , rλ] denotes a continued fraction as follows.
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[r1, · · · , rλ] = 1

r1
−

1

r2
···−···

1

rλ

= 1

r1 − 1

r2 − 1

· · · − 1

rλ

.

Let an integer 〈r1, · · · , rλ〉 be defined as follows:


〈NULL〉 = 1 ,

〈r1〉 = r1 ,

〈r1, r2〉 = r1r2 − 1(= r1〈r2〉 − 〈NULL〉) ,

〈r1, r2, · · · , rλ〉 = r1〈r2, · · · , rλ〉 − 〈r3, · · · , rλ〉 (λ ≥ 3) .

We have a lemma.

LEMMA 3.1. (1) Suppose that X is a star-shaped singular fiber and that

m0,m
(j)
i , r

(j)
i are as in Definition 2.1. If g = GCD(m0,m

(j)

1 ) then

m
(j)

i = g〈r(j)

i+1, r
(j)

i+2, · · · , r(j)
λj

〉 .

Remark that if i = λj then m
(j)
i = g〈NULL〉 = g .

(2)

[r1, · · · , rλ] = 〈r2, · · · , rλ〉
〈r1, · · · , rλ〉 ,

and the right hand side is irreducible. Remark that if λ = 1 then [r1] = 〈NULL〉/〈r1〉 =
1/r1 .

(3)

〈r1, r2, · · · , rλ〉 = 〈rλ, rλ−1, · · · , r1〉 .

(4) If λ > 1 then

1

r1 −
1

r2 · · · − · · ·
1

rλ − x
= −〈r2, · · · , rλ−1〉x + 〈r2, · · · , rλ〉

−〈r1, · · · , rλ−1〉x + 〈r1, · · · , rλ〉 .

Remark that if λ = 2 then

1

r1 −
1

r2 − x
= −〈NULL〉x + 〈r2〉

−〈r1〉x + 〈r1, r2〉 = −x + r2

−r1x + 〈r1, r2〉 .

(5) If w is a rational number such that 0 < w < 1, then there exist integers r1, · · · , rλ
greater than 1 such that

[r1, · · · , rλ] = w .
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PROOF. The formula (1) follows the definition of r
(j)

i in (ST4). (2) and (4) follow the
definition of 〈r1, · · · , rλ〉. (5) follows the Euclidean algorithm. (3) is a well-known fact in
number theory.

Next we prove sub-continued-fractions lemma.

LEMMA 3.2 (Sub-continued-fractions lemma). Let r1, · · · , rm be integers more than 1.
[r1, · · · , rm] denotes a finite continued fraction:

[r1, · · · , rm] := 1

r1 − 1

r2 − 1

· · · − 1

rm

.

Let a, b, c be integers more than 1 and satisfy the following.

a > c, a > b, b + c > a .

Let r1, · · · , rm, r ′
1, · · · , r ′

n be integers more than 1 such that

b

a
= [r1, · · · , rm], c

a
= [r ′

1, · · · , r ′
n] .

Then there exist two integers m′, n′ (1 ≤ m′ ≤ m, 1 ≤ n′ ≤ n) such that

[r1, · · · , rm′ ] + [r ′
1, · · · , r ′

n′ ] = 1 .

In order to show this lemma, we need to prepare some arithmetic lemmas. First we prove
the following lemma.

LEMMA 3.3. (1) If [r1, · · · , rm] + [r ′
1, · · · , r ′

n] = 1 then [2, r1, · · · , rm] + [r ′
1 +

1, r ′
2, · · · , r ′

n] = 1.

(2) If [r1, · · · , rm] + [r ′
1, · · · , r ′

n] = 1, m > 1 and r1 = 2, then r ′
1 ≥ 3 and

[r2, · · · , rm] + [r ′
1 − 1, · · · , r ′

n] = 1.

PROOF. (1) If [r1, · · · , rm] = p
q

then [2, r1, · · · , rm] = q
2q−p

. From the assumption,

[r ′
1, · · · , r ′

n] = q−p
q

and hence [r ′
1 + 1, r ′

2, · · · , r ′
m] = q−p

2q−p
.

(2) Suppose [r1, · · · , rm] = p
q

. If r1 = 2 then 2p > q by definition of continued

fraction. It follows that q − p <
q
2 . r ′

1 satisfies (q − p)(r ′
1 − 1) < q ≤ (q − p)r ′

1. Therefore

we have r ′
1 ≥ 3. Under the assumption of r1 = 2, we obtain [r2, · · · , rm] = 2p−q

p
, [r ′

1 −
1, · · · , r ′

n] = q−p
p

. q.e.d

If rk = rk+1 = · · · = rk+a−1 = 2 in [r1, · · · , rm] then we denote it

[r1, · · · , rk−1, (2)a, rk+a, · · · , rm] .
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Here we remarkd that (2)a must be distinguished from a power 2a of 2. For example, (2)2 �=
4. If r is odd, a1, a3, · · · , ar are integers greater than 1, and a2, a4, · · · , ar−1 are non-negative
integers, then [a1, (2)a2, a3, (2)a4, · · · , (2)ar−1, ar ] means

[a1,

a2︷ ︸︸ ︷
2, · · · , 2, a3,

a4︷ ︸︸ ︷
2, · · · , 2, · · · ,

ar−1︷ ︸︸ ︷
2, · · · , 2, ar ] .

If a = 0 then (2)0 means a sequence with no element. For example,

[3, (2)0, 4, (2)2, 3] = [3, 4, 2, 2, 3] .

LEMMA 3.4. Let a1, a2, · · · , ar be non-negative integers.
(1)

[a1 + 3, (2)a2, a3 + 3, (2)a4, · · · , (2)ar−1, ar + 3]
+[2, (2)a1, a2 + 3, (2)a3, a4 + 3, · · · , ar−1 + 3, (2)ar , 2] = 1 .

(2)

[a1 + 3, (2)a2, a3 + 3, (2)a4, · · · , ar−1 + 3, (2)ar , 2]
+[2, (2)a1, a2 + 3, (2)a3, a4 + 3, · · · , (2)ar−1, ar + 3] = 1 .

PROOF. First we have [3] + [2, 2] = 1. After that, using Lemma 3.3 inductively,
we show these equations. in (1) case, r is an odd number. If r = 1 then the equation is
[3 + a1] + [2, 2a1, 2] = 1. If a1 = 0 then [3] + [2, 2] = 1 is true. Using Lemma 3.3(1),
[3 + a1 + 1] + [2, 2, 2a1, 2] = 1 follows [3 + a1] + [2, 2a1, 2] = 1. This complete the case
r = 1. For r ≥ 3, assume that

[a3 + 3, 2a4, · · · , 2ar−1, ar + 3]
+[2, 2a3, a4 + 3, · · · , ar−1 + 3, 2ar , 2] = 1 .

Using Lemma 3.3(1),

[
a2+1︷ ︸︸ ︷

2, · · · , 2, a3 + 3, 2a4, · · · , 2ar−1, ar + 3]
+[2 + a2 + 1, 2a3, a4 + 3, · · · , ar−1 + 3, 2ar , 2] = 1 .

Using Lemma 3.3(1) again,

[2 + a1 + 1,

a2︷ ︸︸ ︷
2, · · · , 2, a3 + 3, 2a4, · · · , 2ar−1, ar + 3]

+[
a1+1︷ ︸︸ ︷

2, · · · , 2, 2 + a2 + 1, 2a3, a4 + 3, · · · , ar−1 + 3, 2ar , 2] = 1 ,

[a1 + 3, 2a2, a3 + 3, 2a4, · · · , 2ar−1, ar + 3]
+[2, 2a1, a2 + 3, 2a3, a4 + 3, · · · , ar−1 + 3, 2ar , 2] = 1 .
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For example, we show that

[3 + 0, 20, 3 + 1, 22, 3 + 0] + [2, 20, 3 + 0, 21, 3 + 2, 20, 2] = 1

The left side is equivalent to

[3, 4, 2, 2, 3] + [2, 3, 2, 5, 2].
From [3] + [2, 2] = 1, we have followings:

[3] + [2, 2] = 1
⇒ [2, 3] + [3, 2] = 1
⇒ [2, 2, 3] + [4, 2] = 1
⇒ [2, 2, 2, 3] + [5, 2] = 1
⇒ [3, 2, 2, 3] + [2, 5, 2] = 1
⇒ [4, 2, 2, 3] + [2, 2, 5, 2] = 1
⇒ [2, 4, 2, 2, 3] + [3, 2, 5, 2] = 1
⇒ [3, 4, 2, 2, 3] + [2, 3, 2, 5, 2] = 1 .

In the same way we can show (2). q.e.d.

As a corollary of Lemma 3.4, we obtain the following Lemma 3.5.

LEMMA 3.5. If [r1, · · · , rm] + [r ′
1, · · · , r ′

n] = 1 then [r1, · · · , rm, 2] +
[r ′

1, · · · , r ′
n−1, r

′
n + 1] = 1.

PROOF. By using Lemma 3.4, We see that if [r1, · · · , rm] + [r ′
1, · · · , r ′

n] = 1 then

[rm, · · · , r1] + [r ′
n, · · · , r ′

1] = 1. Using 3.3, we have the conclusion easily.

To show sub-continued-fraction lemma, we need a formula of estimation of sub-
continued-fractions.

LEMMA 3.6. Let r1, · · · , rm be integers more than 1. Let a set S = S(r1, · · · , rm) be
defined as follows:

S(r1, · · · , rm)

=
{
[r1, · · · , rm, rm+1, · · · , rn]

∣∣∣∣ . n > m,

rm+1, rm+2, · · · , rn are integers more than 1

}
.

(1) If rm > 2 then

S(r1, · · · , rm) = {x ∈ Q | [r1, · · · , rm] ≤ x < [r1, · · · , rm − 1]} .

(2) If there exists an integer p (2 ≤ p ≤ m) such that rp = rp+1 = · · · = rm = 2 and
rp−1 > 2 then

S(r1, · · · , rm) = {x ∈ Q | [r1, · · · , rm] ≤ x < [r1, · · · , rp−1 − 1]} .

(3) If r1 = r2 = · · · = rm = 2 then

S(r1, · · · , rm) = {x ∈ Q | [r1, · · · , rm] ≤ x < 1} .
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PROOF. There exists a real number 0 ≤ x < 1 such that

[r1, · · · , rm, rm+1, · · · ] = 1

r1 −
1

r2 − · · ·−
1

rm − x
.

If we regard the right hand side of this equation as a function of x, it is easy to show that it is
a increasing function. The conclusion (1) follows. We show (2) and (3) in the same way but
we need to check the upper bound (in the case x = 1.) It is sufficient to show the following.

1

rp−1 −
1

2 − · · · −
1

2 − 1
= 1

rp−1 − 1
.

This is an easy formula.

PROOF OF LEMMA. 3.2. Let us start the proof of Lemma 3.2. Let s
(i)
1 , · · · , s(i)

n(i) be

integers more than 1 such that

1 − [r1, · · · , ri ] = [s(i)
1 , · · · , s(i)

n(i)] .

Remark that an integer n(i) is the length of this continued fraction. First we determine the

interval S(s
(1)
1 , · · · , s(i)

n(i)).

(Case 1) Suppose that i = 1. If r1 = 2 then 1 − [2] = [2] and n(1) = 1. Hence

s
(1)
1 = 2 and S(s

(1)
1 ) = {x ∈ Q|[s(1)

1 ] ≤ x < 1}.
If r1 > 2 then 1 − [r1] = r1−1

r1
= [2, · · · , 2] and n(1) = r1 − 1. Therefore

S(s
(1)
1 , · · · , s(i)

n(i)) = [[s(1)
1 , · · · , s(1)

n(1)], 1).

(Case 2) Suppose that i > 1. If ri = 2 then using Lemma 3.4 we obtain that

n(i) = n(i − 1),

s
(i)
1 = s

(i−1)
1 , · · · , s(i)

n(i)−1 = s
(i−1)
n(i)−1 ,

s
(i)
n(i) = s

(i−1)
n(i) + 1 .

It follows that

S(s
(i)
1 , · · · , s(i)

n(i)
) = [[s(i)

1 , · · · , s(i)
n(i)

], [s(i−1)
1 , · · · , s(i−1)

n(i−1)
]) . (3.1)

If ri > 2, we show the same conclusion in the similar way.

The formula (3.1) implies
⋃
i

S(s
(i)
1 , · · · , s(i)

n(i)
) = [1 − b

a
, 1) . (3.2)

Remark that [s(m)
1 , · · · , s(m)

n(m)] = 1 − [r1, · · · , rm] = 1 − b
a

.

From a − b < c < a, we have

1 − b

a
<

c

a
< 1 .
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Hence there exists i such that

c

a
∈ S(s

(i)
1 , · · · , s(i)

n(i)) .

It means that c
a

= [s(i)
1 , · · · , s(i)

n(i), · · · ] and it is sufficient to take m′ = i and n′ = n(i). In

fact,

[r ′
1, · · · , r ′

n′ ] = [s(i)
1 , · · · , s(i)

n(i)]
= 1 − [r1, · · · , ri ]
= 1 − [r1, · · · , rm′ ] .

This completes the proof of 3.2.

4. Main result

We state our main result.

THEOREM 4.1. Suppose that π : M → ∆ is a linear degeneration of curves with a
stellar singular fiber X such that Θ0 = P1, b = 3, r0 ≥ 2, and m0 ≥ 2. Then there exists
a simple crust Y of X. Hence there is a splitting family of X and the degeneration π is not
atomic.

We have the following lemma and it is enough to consider the case r0 = 2.

LEMMA 4.2. r0 < b. Hence r0 ≥ 2 implies r0 = 2 in case b = 3.

PROOF.
∑

j m
(j)

1 < bm0 follows m
(j)

1 < m0, and we have r0 < b, So r0 ≥ 2 implies

r0 = 2 in case b = 3. q.e.d.

REMARK. If the singular fiber X satisfies Θ0 = P1, b = 3, r0 = 1, and m0 ≥ 2, then
Takamura [T3] shows that there exists a splitting family of X.

We shall restate our result in a topological way.

COROLLARY 4.3. Let π : M → ∆ be a degeneration with one singular fiber X and
[ρ] ∈ M be its monodroy. Here M is the mapping class group of a general fiber F = π−1(∗).
If the following conditions are satisfied, then there exists a splitting family of the degeneration.
(1) A group generated by ρ is a cyclic group of finite order.
(2) The orbit space F/〈ρ〉 has exactly three singular points and F/〈ρ〉 is homeomorphic to
a 2-sphere.

In the sequel, we prove the main theorem 4.1.

We may assume m
(1)
1 ≥ m

(2)
1 ≥ m

(3)
1 . First we consider the case where two of m

(j)

1 are
equal to each other. In this case, we can easily construct a simple crust.
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In fact, suppose m
(1)
1 = m

(2)
1 . Let a crust Y be as follows.

Y = Θ0 + Θ
(1)
1 + Θ

(2)
1

and let the crust multiplicity � be m
(1)
1 . The sub-divisor Y has two non-zero subbranches and

these two subbranches are of type B� by definition. Hence Y is a simple crust. In the same

way, if m
(2)
1 = m

(3)
1 then Y = Θ0 + Θ

(2)
1 + Θ

(3)
1 (� = m

(2)
1 ) is a simple crust.

In the rest of this section, we assume m
(1)
1 > m

(2)
1 > m

(3)
1 . From the formula m

(1)
1 +

m
(2)
1 + m

(3)
1 = 2m0, we have:

m
(1)
1 >

2

3
m0 . (4.1)

Let k be m0 − m
(1)
1 . From (4.1),

k <
1

3
m0 . (4.2)

Next let an integer h be �m0/k�. Here �·� denotes the Gauss’s symbol. From (4.2) we obtain

h ≥ 3 , (4.3)

and

m0 ≥ hk.

It follows that

m
(1)
i = m0 − ik (i = 1, · · · , h − 1) .

We state the following lemma.

LEMMA 4.4. Let j be an integer such that 2 ≤ j < h. Then

jΘ0 +
h−j∑
i=1

jΘ
(1)
i

gives a subbranch of type Ck .

PROOF. The condition (TC1) is satisfied clearly. In fact, m(1)
i −kn

(1)
i = m0 −ik−kj ≥

m0−(h−j)k−kj = m0−hk ≥ 0. The length e of S(1) is h−j . Because n
(1)
e−1/n

(1)
e = j/j = 1

and re = 2, the condition (TC2) is satisfied. And we have

u = (me−1 − kne−1) − (re − 1)(me − kne)

= (m0 − (e − 1)k) − kj − (2 − 1)((m0 − ek) − kj)

= k .
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It follows that the condition (TC3) is satisfied. This completes the proof of Lemma 4.4.

We will construct a simple crust Y such that the first subbranch S(1) is given as above.

And we will show that we can take the second subbranch S(2) and the third subbranch S(3) of
type Ak. In order to show this fact, we need sub-continued-fractions lemma.

Using sub-continued-fraction lemma, we show Theorem 4.1 as follows. Let a = m0,

b = m
(2)
1 , c = m

(3)
1 . Remark that these are integers greater than 1. In fact, a ≥ 2 because

of the assumption of m0. In order to show c > 1, assume that c = m
(3)
1 = 1. Solving

m
(1)
1 + m

(2)
1 + 1 = 2m0 and m

(1)
1 > m

(2)
1 > 1, we have 2m

(1)
1 ≥ 2m0 − 1. This contradicts to

m
(1)
1 < m0.

By definition of a stellar sigular fiber, we have a > b, and a > c. Solving m
(1)
1 + m

(2)
1 +

m
(3)
1 = 2m0 and m0 > m

(1)
1 , we have b + c > a. Using Lemma 3.1(2), we get the following

lemma:

LEMMA 4.5. Let r
(j)
i be as in Definition 2.1(ST4). If b

a
= [r1, · · · , rm], c

a
=

[r ′
1, · · · , r ′

n] as in Lemma 3.2, then we have

ri = r
(2)
i , r ′

i = r
(3)
i . (4.4)

PROOF. r
(2)
i ’s and r

(3)
i ’s are uniquely determined from m0 = a. m

(2)
1 = b, m

(3)
1 = c,

by

m
(j)

i+1 =



r
(j)
i m

(j)
i − m

(j)
i−1 (i = 1, 2, · · · , λj − 1) ,

r
(j)
i m

(j)
i (i = λj ) .

On the other hand, if g = GCD(a, b) = 1 then a = g〈r1, · · · , rλ2〉 and b = g〈r2, · · · , rλ2〉,
and ri satisfy

〈ri , · · · , rλ2〉 =



ri〈ri+1, · · · , rλ2〉 − 〈ri+2, · · · , rλ2〉 (i = 1, · · · , λ2 − 2) ,

rλ2−1〈rλ2〉 − 〈NULL〉 (i = λ2 − 1) ,

rλ2〈NULL〉 = rλ2 (i = λ2) .

From Lemma 3.1 we obtain that m
(j)
i = g〈r(j)

i+1, r
(j)

i+2, · · · , r(j)
λj

〉, and this implies ri =
r
(2)
i . In the similar way we can show r ′

i = r
(3)
i .

Lemma 4.2 implies that there exist two integers m′ and n′ such that

[r1, · · · , rm′ ] + [r ′
1, · · · , r ′

n′ ] = 1 .

We have the followings from Lemma 3.1(2).

〈r1, · · · , rm′ 〉 = 〈r ′
1, · · · , r ′

n′ 〉 ,

〈r2, · · · , rm′ 〉 + 〈r ′
2, · · · , r ′

n′ 〉 = 〈r1, · · · , rm′ 〉 .
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Let S(1), S(2) and S(3) be defined as follows.

S(1) = ∑h−q

i=1 qΘ
(1)
i ,

S(2) = ∑m′−1
i=1 〈ri+1, · · · , rm′ 〉Θ(2)

i + Θ
(2)

m′ ,

S(3) = ∑n′−1
i=1 〈r ′

i+1, · · · , r ′
n′ 〉Θ(3)

i + Θ
(3)

n′ .

Here q := 〈r1, · · · , rm′ 〉. Let Y be as follows.

Y = qΘ0 + S(1) + S(2) + S(3) . (4.5)

To show that Y is a simple crust, we show some lemmas.

LEMMA 4.6. q ≤ h − 1, where h = �m0
k

� and k = m0 − m
(1)
1

PROOF. Let p = 〈r2, · · · , rm′ 〉. We consider the following 4 cases: (case 0) q = 2,

(Case 1) 1 − b
a

≤ 1
q+1 , (Case 2) p = q − 1 or p = 1, (Case 3) 1 < p < q − 1. These

conditions are not exclusive to each other, but we will prove in each case under the assumption
that the previous cases are proved. The proof in Case 0 is obvious. The proof in Case 1 is

obtained from the condition of m
(j)
1 . The proofs in Case 2 and 3 is obtained from the lemma

of continued fractions. This proof is only combinatrical, but the authors believe that we have
another smart and arithemetic (or algebraic) proof.

CASE 0. q = 2.
In this case from (4.3) we obtained h − 1 ≥ 2 = q clearly.

CASE 1. 1 − b
a

≤ 1
q+1 .

First we have m
(1)
1 = r0m0 − m

(2)
1 − m

(3)
1 = 2a − b − c. The assumption m

(1)
1 > m

(2)
1

implies 2a − b − c > b. So we have

h = �m0
k

� = � a
a−(2a−b−c)

� ≥ � a
a−b

�
≥ q + 1.

CASE 2. p = q − 1 or p = 1.

Suppose p = q − 1. We also assume that 1 − b
a

> 1
q+1 . Let S(r1, · · · ) be an interval

defined in Lemma 3.5, and a power 2q−1 denotes a sequence of 2 of (q − 1)-times. p = q − 1

follows b
a

∈ S(2q−1) = [ q−1
q

, 1). See the proof of Lemma 3.1. In the same say, we have
c
a

∈ S(q) = [ 1
q
, 1

q−1 ). The assumption 1 − b
a

> 1
q+1 follows b

a
<

q
q+1 . So we have

b

a
+ c

a
− 1 <

q

q + 1
+ 1

q − 1
− 1 = 2

q2 − 1

h = � a

b + c − a
� ≥ �q2 − 1

2
� ≥ q + 1 .

To show the last inequality we use the condition q ≥ 3.
CASE 3. 1 < p < q − 1.
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Let q ′, p′ be given by q ′ = 〈r1, · · · , rm′−1〉, p′ = 〈r2, · · · , rm′−1〉. Let a real number x

be 1/[rm′+1, · · · , rm]. (If m′ = m then x = 0.) Then from Lemma 3.1, we get

b

a
= 1

r1
−

1

r2
−···−

1

rm′ − x
= −p′x + p

−q ′x + q
.

b

a
− p

q
= 1

(−q ′ + q/x)q
.

(If m′ = m then b
a

− p
q

= 0.) In the same way, let q ′′ and p′′ be defined by

q ′′ = 〈r ′
1, · · · , r ′

n′−1〉, p′′ = 〈r ′
2, · · · , r ′

n′−1〉 .

(Here q−p
q

= [r ′
1, · · · , r ′

n′ ].) And we obtain

c

a
− q − p

q
= 1

(−q ′′ + q/x ′)q
,

where x ′ = 1/[r ′
n′+1, · · · , r ′

n]. (If n′ = n then c
a

− q−p
q

= 0.) Here we need the following

lemmas.

LEMMA 4.7. (1) q ′′ + q ′ = q.

(2) q and q ′ are co-prime. q and q ′′ are co-prime.
(3) 1 < q ′ < q − 1 and 1 < q ′′ < q − 1 .

The proof is easy. Only for (1) we need a comment. Using Lemma 3.4, if [r1, · · · , rm′ ]+
[r ′

1, · · · , r ′
n′ ] = 1 then [rm′ , · · · , r1] + [r ′

n′ , · · · , r ′
1] = 1. Using Lemma 3.1(3), we obtain (1).

We show Lemma 4.6 in case 3.

b

a
+ c

a
− 1 <

1

(−q ′ + q)q
+ 1

(−q ′′ + q)q

= 1

q ′′q ′ ,

h = � a

b + c − a
� ≥ �q ′′q ′� ≥ q + 1 .

This completes the proof of 4.6.

Finally we show that qΘ0 + S(2), qΘ0 + S(3) are type Ak subbranches.

LEMMA 4.8. qΘ0 +S(2) and qΘ0 +S(3) are type Ak subbranches of the singular fiber
X .

PROOF. By definition of 〈· · · 〉, we have

〈ri , · · · , rm′ 〉 + 〈ri+2, · · · , rm′ 〉 = ri〈ri+1, · · · , rm′ 〉 ,

〈rm′−1, rm′ 〉 + 1 = rm′−1〈rm′ 〉 ,

〈rm′ 〉 = rm′ .



SPLITTABILITY OF STELLAR SINGULAR FIBER 15

These formulae and (4.4) imply that qΘ0 + S(2) gives a subbranch of the singular fiber.
(TA1) for i = 0 is satisfied since kn0 = kq ≤ k(h − 1) < m0. For any i = 1, · · · ,m′,
inductively we have

m
(2)
i

m
(2)
i−1

= [ri , · · · , rm] ≥ [ri, · · · , rm′ ] = n
(2)
i

n
(2)
i−1

⇒ m
(2)
i ≥ n

(2)
i

n
(2)
i−1

m
(2)
i−1 > kn

(2)
i .

Here m
(2)
0 = m0 and n

(2)
0 = n0. The length e of this subbranch is m′ and we obtain

n
(2)
e−1

n
(2)
e

= rm′

1
= rm′ = re .

Hence the condition (TA2) is satisfied. In the case of S(3), we can prove in the same way.

LEMMA 4.9. Y as (4.5) is a simple crust of the singular fiber X.

PROOF. From Lemma 4.4 and Lemma 4.8, qΘ0 + S(j) (j = 1, 2, 3) give subbranches
of type Ck , Ak , and Ak respectively. And we get

n
(1)
1 + n

(2)
1 + n

(3)
1

n0
= q + 〈r2, · · · , rm′ 〉 + 〈r ′

2, · · · , r ′
n′ 〉

q
= 2 = r0 .

This completes the proof.

5. The case where a singular fiber has more than three branches

In this section we discuss the splittability problem when a star-shaped singular fiber has
more than three branches.

In section 4 we assume that the number of branches equals three. We assume that r0 ≥ 2
and we have an inequality r0 < b. (It is easy to show this inequlity from the formulae

m0 > m
(j)

1 and m0r0 = ∑b
j=1 m

(j)

1 .) So the condition b = 3 implies r0 = 2.

In this section we remove the assumption b = 3. That is, we only have 2 ≤ r0 < b. In
this case there exists a stellar singular fiber without a simple crust. If (r0, b) = (2, 4) then the
smallest m0 of such example is 33. We cannot check this by hand calculation. We need help
of computers. To find such singular fiber, the software Splitica [A] is very useful.

Splitica is developed by the first author and it allows us to list up all of crusts for a stellar
singular fiber.

The following proposition are obtained by computer experiments. As mentioned in

section 3, all of the multiplicities of components are determined by m0 and m
(j)

1 (j =
1, 2, · · · , b). So in this section we will represent a stellar singular fiber with genus 0 core
by the sequence

(m0; m
(1)
1 ,m

(2)
1 , · · · ) .
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PROPOSITION 5.1. The following star shaped singular fibers with genus 0 core don’t
have a simple crust.

(1) In the case (r0, b) = (2, 4)

(33;25,19,12,10)
(33;24,19,13,10)
(35;27,21,12,10)
(36;27,22,16,7)
(37;29,23,12,10)
(38;29,24,16,7)
(38;24,23,18,11)

(If m0 ≤ 38 then there are no other examples.)
(2) In the case (r0, b) = (2, 5)

(20;15,11,7,4,3)
(20;13,11,8,5,3)
(21;15,11,7,5,4)
(21;12,11,8,7,4)
(22;15,11,9,6,3)
(22;13,11,8,7,5)
(24;18,14,8,5,3)
(24;17,16,6,5,4)
(24;17,13,9,5,4)
(24;17,13,8,6,4)
(24;17,12,8,6,5)
(24;16,14,7,6,5)
(24;16,11,9,7,5)
(24;14,13,9,7,5)
(24;14,13,8,7,6)
(24;14,12,9,8,5)

(If m0 ≤ 24 then there are no other examples.)
(3) In the case (r0, b) = (3, 4), there is no example within m0 ≤ 24.

(4) In the case (r0, b) = (3, 5)

(20;17,15,13,11,4)
(21;17,15,13,11,7)
(21;17,14,13,10,9)
(22;17,15,13,11,10)

(If m0 ≤ 22 then there are no other examples.)

Observing these results, we have the following conjectures. One is in the case r0 = b−1.
When (r0, b) = (2, 3), we have Theorem 4.1. It seems a similar theorem holds when r0 =
b − 1. In order to show this conjecture, we need more complicated version of ’sub-continued-
fractions lemma.’ The other is in the case m0 is a prime number. For a long time, we have
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a conjecture that if m0 is prime then we have the similar criterion. But there is a counter
example in the case (m0, r0, b) = (37, 2, 4). This is a rare example.

CONJECTURE 5.2. (1) If r0 = b − 1 then every stellar singular fiber with genus 0
core has a simple crust.

(2) If m0 is prime, it is easier to find out a simple crust in some sense.
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