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Abstract: W. D. Neumann and A. W. Reid conjectured that the figure-eight knot and the

two dodecahedral knots are the only hyperbolic knots admitting hidden symmetries. We

construct an n-component hyperbolic link whose complement admits hidden symmetries for any

n � 4.
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1. Introduction. Hidden symmetry of a

hyperbolic manifold M ¼ H3=� is a homeomor-

phism of finite degree covers of M that does not

descend to an automorphism of M. If Commð�Þ 6¼
Nð�Þ, we say M admits a hidden symmetry, where

Commð�Þ is the commensurator of � and Nð�Þ is

the normalizer of it. We say a link in S3 admits a

hidden symmetry if its complement admits a hidden

symmetry. In [6], W. D. Neumann and A. W. Reid

conjectured that the figure-eight knot and the two

dodecahedral knots are the only hyperbolic knots

admitting hidden symmetries. Many researchers

concerned with this problem. M. L. Macasieb and

T. W. Mattman [4] showed that ð�2; 3; nÞ pretzel

knot does not admit a hidden symmetry (n 2 NÞ.
By using computer, O. Goodman, D. Heard and C.

Hodgson [2] have verified for hyperbolic knots

with 12 or fewer crossings. A. W. Reid and G. S.

Walsh [7] showed that non-arithmetic 2-bridge

knots admit no hidden symmetry.

For two-component links, E. Chesebro and J.

DeBlois [1] constructed infinitely many two-com-

ponent non-arithmetic links admitting hidden sym-

metries. Let Li ði ¼ 1; � � � ; 3Þ be the links as in

Figure 1. S3 � L2 is obtained by cutting along the

colored twice punctured disk of S3 � L1, performing

�-rotation and regluing it. Repeat this process

about the colored twice punctured disk of S3 � L2.

Then we obtain S3 � L3. O. Goodman, D. Heard

and C. Hodgson [2] showed that L2 and L3 have

hidden symmetries by using computer. J. S. Meyer,

C. Millichap and R. Trapp [5] constructed n-com-

ponent links admitting hidden symmetries (n � 6).

They prove this by analyzing the geometry of those

link complements, including their cusp shapes and

totally geodesic surfaces inside these manifolds.

In this paper, we generalize the result of O.

Goodman, D. Heard and C. Hodgson [2]. Let C be

an ðnþ 1Þ-component alternating chain link as in

the top picture of Figure 2 (n � 4Þ. Cut along the

colored twice punctured disk of S3 � C, perform

�-rotation and reglue it. Denote the resulting

n-component link by Cn. In section 3, we prove

the following theorem.

Theorem 1. Let �n be a Kleinian group such

that S3 � Cn ¼ H3=�n. Then �n is non-arithmetic

and we have

jCommð�nÞ : Nð�nÞj ¼ nþ 1:

Thus we get the following corollary.

Corollary 1. The n-component link Cn ad-

mits hidden symmetries.

2. Commensurator and normalizer.

Two subgroups G1, G2 < IsomþðH3Þ are said to be

commensurable if their intersection G1 \G2 has

finite index in both G1 and G2. G1 and G2 are said

to be commensurable in the wide sense if there is

h 2 IsomþðH3Þ such that G1 is commensurable

with h�1G2h. The notion of commensurability can

be directly transported to hyperbolic orbifolds by

considering the respective fundamental groups.

Then, commensurable hyperbolic orbifolds admit

a finite-sheeted common covering orbifold. Com-

mensurability is an equivalence relation.

For a Kleinian group �, the commensurator of

� is defined by

Commð�Þ ¼ fg 2 IsomþðH3Þ : g�g�1 and � are

commensurable.g:
Let � be a finitely generated Kleinian group of finite
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co-volume. It is well known that Commð�Þ is a

commensurability invariant (see [10]). Commð�Þ
contains every member of the commensurability

class. G. Margulis [3] showed that Commð�Þ is

discrete if and only if � is non-arithmetic. For a

non-arithmetic Kleinian group �, Commð�Þ con-

tains every member of the commensurability class

in finite index.

The normalizer of � is

Nð�Þ ¼ fg 2 IsomþðH3Þ : g�g�1 ¼ �g:

Clearly, Nð�Þ < Commð�Þ. Nð�Þ=� ’ IsomþðH3=

�Þ ¼ SymmðH3=�Þ and Nð�Þ is discrete.

For an arithmetic Kleinian group �, Commð�Þ
is not discrete. Thus arithmetic Kleinian group

always admits a hidden symmetry.

3. Proof of Main Theorem. To prove

Theorem 1, we prepare a lemma. Let L be a link

such that S3 � L contains a twice punctured disk

S. Cut S3 � L along S, give a half-twist and

reglue them together. Then we get a new link LS.

In general, S3 � L and S3 � LS are not always

commensurable ([11]). We have the following

Lemma 1.

Lemma 1. Let L be a link as in Figure 3.

Assume that a tangle � is equivalent to the tangle

Fig. 1. Chain links.

Fig. 2. The link Cn.
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obtained by performing a vertical flip. Then S3 � L
and S3 � LS are commensurable.

Proof of Lemma 1. Let eL, fLS, fLS
0 be links as

in Figure 3. Then S3 � eL (resp. S3 � fLS) is a double

cover of S3 � L (resp. S3 � LS).

Cut S3 � fLS along S, give a full-twist and

reglue them together as in Figure 4. Then we get

S3 � fLS 0. Thus S3 � fLS is homeomorphic to S3 �
fLS
0. Moreover, by the assumption on � , S3 � fLS 0 is

homeomorphic to S3 � eL. Thus S3 � eL is a common

double cover of S3 � L and S3 � LS. �

Proof of Theorem 1. Let �1 and �2 be the

�-rotations of S3 � C as in Figure 5, and �3 the

2�=ðnþ 1Þ-rotation of it. SymmðS3 � CÞ is gener-

ated by �1, �2, �3 and jSymmðS3 � CÞj ¼
4ðnþ 1Þ [6]. Let P and P 0 be ideal polyhedra as in

Figure 2 in H3, the top and bottom faces are regular

ðnþ 1Þ-gons, the dihedral angles � at the edges of

ðnþ 1Þ-gons are arccosððcos�=ðnþ 1ÞÞ=
ffiffiffi
2
p
Þ and the

other angles are �� 2�. W. Thurston showed that

S3 � C is obtained by glueing P and P 0 as depicted

in Figure 2. (See section 6.8 [9].) Each link compo-

nent corresponds to four ideal vertices of P and P 0.
M. Sakuma and J. Weeks [8] showed this ideal

polyhedral decomposition is the canonical decom-

position of S3 � C. Any symmetry of S3 � C pre-

serves the canonical decomposition. The twice

punctured disk is the common image of the quad-

rangles labeled with the letter ‘‘A’’ as in Figure 2.

We can see that �1 is the �-rotation around the

diagonal of A. �2 is the �-rotation around the

geodesic which is perpendicular to A and which

passes through the center of A. �3 is the 2�=ðnþ
1Þ-rotation around the geodesic which is perpendic-

ular to the top and bottom faces of P . Assume

S3 � C ¼ H3=�. As Commð�Þ ¼ Nð�Þ [6], H3=

Commð�Þ ¼� ðS3 � CÞ=SymmðS3 � CÞ. We have

volðH3=Commð�ÞÞ ¼ volðP Þ=2ðnþ 1Þ:

The chain link C can be deformed as in Figure 6.

The tangle � in Figure 6 is equivalent to the

tangle obtained by performing a vertical flip. By

Lemma 1, S3 � C and S3 � Cn are commensurable.

We have

volðH3=Commð�nÞÞ ¼ volðH3=Commð�ÞÞð1Þ
¼ volðP Þ=2ðnþ 1Þ:

Neumann and Reid showed S3 � C is non-arith-

metic [6]. Since commensurability preserves arith-

meticity, S3 � Cn is also non-arithmetic. �

Let c0i be the cusp corresponding to the

component of Cn as depicted in Figure 2. Then c02
corresponds to eight ideal vertices of P , P 0 and c0i
ði ¼ 1; 3; � � � ; nÞ corresponds to four ideal vertices.

Let Vi be the set of ideal points in @H3 which

corresponds to c0i. If g 2 SymmðS3 � CnÞ, gðc0iÞ ¼
c0�ðiÞ for some � 2 Sn where Sn denotes the group of

Fig. 3. Double cover of S3 � L and S3 � LS .

Fig. 4. fLS and fL0S .
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Fig. 5. The symmetries of S3 � C.

Fig. 6. Deformation of � .

Fig. 7. Symmetry of S3 � Cn.
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permutations of f1; � � � ; ng. We have Nð�nÞ < f� 2
Commð�Þj�ðViÞ ¼ V�ðiÞ ði ¼ 1; � � � ; nÞ for some � 2
Sng.

Let eP be a lift of P and eA a face of eP , which is a

lift of A, eP 0 a lift of P 0 such that eP \ eP 0 ¼ eA.

Let f�1, f�2, f�3 2 IsomþðH3Þ be a lifts of �1, �2,

�3 respectively such that f�1 is the �-rotation

around the diagonal of eA, f�2 is the �-rotation

around the geodesic which is perpendicular to eA

and which passes through the center of eA, f�3 is

the 2�=ðnþ 1Þ-rotation around the geodesic which

is perpendicular to the top and bottom faces of eP .

For any � 2 Nð�Þ, there exists � 2 Sn such

that �ðViÞ ¼ V�ðiÞ and �ð eP Þ is a lift of P or P 0. As

�1ðP Þ ¼ P 0, there is �0 2 hf�1;�i such that �0�ð eP Þ ¼
eP . Since �0ðViÞ ¼ Vi, �0�ðViÞ ¼ V�ðiÞ for any i. Hence

�0� fixes the four ideal points of eP which correspond

to the cusp c02. Hence �0� ¼f�2 or identity. We get

Nð�nÞ < hf�1; f�2; �i:

Thus

volðH3=Nð�nÞÞ � volðH3=hf�1; f�2; �iÞð2Þ
¼ volðP Þ=2:

Let �01, �
0
2 be the symmetries of S3 � Cn as

depicted in Figure 7. It is easy to see that

jh�01; �02ij ¼ 4. Thus we obtain

volðH3=Nð�nÞÞ � volðP Þ=2:ð3Þ

Therefore

volðH3=Nð�nÞÞ ¼ volðP Þ=2;ð4Þ

by (2), (3). Hence

jCommð�nÞ : Nð�nÞj ¼ nþ 1

by (1), (4).
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