# Concordant pairs in ratios with rank at least two and the distribution of $\boldsymbol{\theta}$-congruent numbers 

By Jerome Tomagan Dimabayao<br>Institute of Mathematics, College of Science, University of the Philippines-Diliman, C.P. Garcia Avenue, U.P. Campus, Diliman, Quezon City 1101, Philippines

(Communicated by Kenji Fukaya, m.J.A., March 14, 2022)


#### Abstract

Let $k$ and $\ell$ be distinct nonzero integers. We show that in every congruence class modulo an integer $m>1$, there exist infinitely many integers $n$ such that the Mordell-Weil rank over $\mathbf{Q}$ of the elliptic curve $E(k n, \ell n): y^{2}=x(x+k n)(x+\ell n)$ is at least two. We also find that for sufficiently large $T$, the number of square-free integers $n$ with $|n| \leq T$ for which the elliptic curve $E(k n, \ell n)$ has rank at least two is at least $\mathcal{O}\left(T^{2 / 7}\right)$.


Key words: Elliptic curve; concordant forms; rank.

1. Introduction. Let $M$ and $N$ be nonzero integers. Euler's problem on concordant forms asks whether there are integer solutions $(X, Y, Z, W)$ with $\operatorname{gcd}(X, Y)=1$ to the system

$$
\begin{equation*}
X^{2}+M Y^{2}=Z^{2}, \quad X^{2}+N Y^{2}=W^{2} \tag{1.1}
\end{equation*}
$$

Following [7], a pair of integers $(M, N)$ such that $M N \neq 0$ and $M \neq N$ is called a concordant pair if the system (1.1) has a solution $(X, Y, Z, W)$ with $X Y Z \neq 0$. We note that in studying the system (1.1), we may further assume that $\operatorname{gcd}(M, N)$ is squarefree. It is well known [10] that $(M, N)$ is a concordant pair if and only if the elliptic curve

$$
E(M, N): y^{2}=x^{3}+(M+N) x^{2}+M N x
$$

has a nontrivial rational point of order different from 2. In particular, solutions to (1.1) which correspond to torsion points on $E(M, N)$ have been classified completely ([10], Main Corollary 1).

When $M=-N$, we are reduced to the congruent number problem and an integer $N$ is called a congruent number if (1.1) has a nontrivial solution; equivalently, $N$ is the area of a right triangle with rational sides. Bennett [2] proved the existence of infinitely many congruent numbers in any congruence class modulo an integer $m>1$. In [9], Johnstone and Spearman proved a similar result where the rank of the associated elliptic curve is at least two.

[^0]When $M=(s+r) n$ and $N=(s-r) n$ with relatively prime integers $r$ and $s$ such that $r>$ $|s| \geq 0$, we have the more general $\theta$-congruent number problem, which was considered by Fujiwara [6]. An integer $n$ is said to be a $\theta$ congruent number if there is a triangle with rational sides of angle $\theta$ such that $\cos (\theta)=s / r$ and area $A=n \sqrt{r^{2}-s^{2}}$. Abe, Rajan and Ramaroson [1] proved the existence of infinitely many $\theta$-congruent numbers in congruence classes modulo an integer $m>1$, represented by an integer $a$ such that $\operatorname{gcd}(a, m)$ is squarefree. They further proved that for sufficiently large $T$, the number of integers in the interval $[1, T]$ that are $\theta$-congruent numbers belonging to the residue class $a(\bmod m)$ is at least $\mathcal{O}(\sqrt{T})$. In the case where $A$ is rational, Davis and Spearman [4] proved the existence of infinitely many $\tau$-congruent numbers in any congruence class modulo an integer $m>1$. Later, Davis [3] proved a similar result where the rank of the associated elliptic curve is at least two.

In this note, we consider concordant pairs in given ratios. In [7], Im has proved that for a positive integer $m>1$ and an integer $k$, there are infinitely many concordant pairs $(M, N)$ such that $M, N \equiv$ $k(\bmod m)$. Im [8] subsequently provided a parametrization of infinitely many concordant pairs of the form ( $k n, \ell n$ ) where $n$ is squarefree and used it to obtain a formula for the density of $\theta$-congruent numbers. In this note, we expand upon the abovementioned results to concordant pairs $(k n, \ell n)$ such
that the Mordell-Weil rank of $E(k n, \ell n)(\mathbf{Q})$ is at least two.

Theorem 1.1. Let $k$ and $\ell$ be distinct nonzero integers and let $m$ be a positive integer. Then:
(i) Any congruence class modulo $m$ contains infinitely many integers $n$, inequivalent modulo squares, such that the rank of $E(k n, \ell n)$ is at least two. In particular, there are infinitely many concordant pairs $(M, N)$ with $M \equiv$ $k(\bmod m)$ and $N \equiv \ell(\bmod m)$ such that the rank of $E(M, N)$ is at least two.
(ii) Moreover, there exist positive real numbers $C_{1}$ and $C_{2}$, which depend on $k$ and $\ell$, such that if $T>C_{1}$, then the number of square-free integers $n$ with $|n| \leq T$ for which the elliptic curve $E(k n, \ell n)$ has rank at least two is at least $C_{2} T^{2 / 7}$.
This gives the following consequence for $\theta$-congruent numbers.

Corollary 1.2. Let $0<\theta<\pi$ such that $\cos (\theta)=s / r$ with relatively prime integers $r$ and $s$ such that $r>0$. Let $m$ be an integer with $m>1$. Then
(i) Any congruence class modulo $m$ contains infinitely many $\theta$-congruent numbers $n$, inequivalent modulo squares, such that the eliptic curve $E((s+r) n,(s-r) n)$ has rank at least two.
(ii) There exist positive real numbers $C_{1}$ and $C_{2}$, which depend on $\theta$, such that if $T>C_{1}$, then the number of square-free $\theta$-congruent numbers $n$ in the interval $[1, T]$ for which the elliptic curve $E((s+r) n,(s-r) n)$ has rank at least two is at least $C_{2} T^{2 / 7}$.
2. A parametrization of concordant pairs in ratios. Henceforth, we fix distinct nonzero integers $k$ and $\ell$. If $d$ is a squarefree rational number, the elliptic curve

$$
E(k d, \ell d): y^{2}=x^{3}+(k+\ell) d x^{2}+k \ell d^{2} x
$$

is $\mathbf{Q}$-isomorphic to the elliptic curve

$$
E(k, \ell)^{d}: d y^{2}=x^{3}+(k+\ell) x^{2}+k \ell x
$$

which is the $d$-quadratic twist of $E(k, \ell)$. We eliminate the quadratic term in the right-hand side and clear denominators to obtain the following alternative model of $E(k, \ell)^{d}$ :

$$
E_{a, b}^{d}: d y^{2}=(x+a)(x+b)(x-(a+b))
$$

where

$$
a:=3(2 k-\ell) \quad \text { and } \quad b:=3(2 \ell-k)
$$

Clearly, $a$ and $b$ are distinct and $a / b \notin\{-2,-1 / 2\}$.
We use a well-known method for constructing infinitely many $d$ such that the Mordell-Weil group of the $d$-quadratic twist $E_{a, b}^{d}$ has rank at least two. This method is based upon the idea of finding a suitable polynomial $d(t)$ and considering the elliptic curve

$$
E_{a, b}^{d(t)}: d(t) y^{2}=(x+a)(x+b)(x-(a+b))
$$

over $\mathbf{Q}(t)$. If $E_{a, b}^{d(t)}(\mathbf{Q}(t))$ has a non-torsion point $P$, then for all but finitely many rational numbers $t_{0}$, the quadratic twist $E(a, b)^{d\left(t_{0}\right)}$ will have a nontorsion point upon specializing the variable $t$ to $t_{0}$ ([11], Theorem 11.4 p. 271). The parametrization that we will use is derived from [12]. Put

$$
D(t)=t(t+1)\left(t^{2}+t+1\right) f(t) g(t) h(t)
$$

where

$$
\begin{aligned}
f(t) & =(a-b) t+(2 a+b) \\
g(t) & =(a+2 b) t+(b-a) \\
h(t) & =(2 a+b) t+(a+2 b)
\end{aligned}
$$

Then

$$
D(t)=3^{6} d(t)
$$

where

$$
\begin{align*}
d(t):= & t(t+1)\left(t^{2}+t+1\right)((k-\ell) t+k)  \tag{2.1}\\
& \times(\ell t+(\ell-k))(k t+\ell)
\end{align*}
$$

and we see that the elliptic curve $E_{a, b}^{D(t)}$ is $\mathbf{Q}(t)$ isomorphic to the elliptic curve $E_{a, b}^{d(t)}$.

Lemma 2.1. Let $t \notin\left\{0,-1, \frac{k}{\ell-k}, \frac{k-\ell}{\ell}\right.$, $\left.-\frac{\ell}{k}\right\}$ be a rational number and consider the quadratic twist of $E_{a, b}$ by $d(t)$, where $d(t)$ is as in (2.1). Then $E_{a, b}^{d(t)}(\mathbf{Q})$ has rank greater than or equal to 2 , for all but finitely many values of $t$.

Proof. Put

$$
\begin{aligned}
& P_{1}:=\left(\frac{\left((a+b) t^{2}+2 b t-a\right)}{t^{2}+t+1}, \frac{1}{\left(t^{2}+t+1\right)^{2}}\right) \\
& P_{2}:=\left(\frac{\left(-b t^{2}+2 a t+a+b\right)}{t^{2}+t+1}, \frac{1}{\left(t^{2}+t+1\right)^{2}}\right)
\end{aligned}
$$

The proof of Theorem 4 of [12] shows that $P_{1}$ and $P_{2}$ are independent points in $E_{a, b}^{D(t)}(\mathbf{Q}(t))$. The conclusion is obtained by specialization.
3. The proof of the theorem. We prove statement (i) of Theorem 1.1. Suppose $e$ and $m$ are integers with $m>1$. Define the set $S$ by

$$
S=\{s \in \mathbf{Z} \mid s \equiv e(\bmod m)\}
$$

Put $c=k \ell(\ell-k)$ and let $s \in S$. For $x=1,2, \ldots$, define $n:=\frac{d\left(s c x^{2} m^{2}\right)}{c^{2} x^{2} m^{2}}$. That is,

$$
\begin{equation*}
n=s\left(s c x^{2} m^{2}+1\right) \alpha \beta \gamma \delta \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha & =s \ell(\ell-k)^{2} x^{2} m^{2}+1 \\
\beta & =s k \ell^{2} x^{2} m^{2}+1 \\
\gamma & =s(\ell-k) k^{2} x^{2} m^{2}+1, \text { and } \\
\delta & =s^{2} c^{2} x^{4} m^{4}+s c x^{2} m^{2}+1
\end{aligned}
$$

By considering all the possibilities of the signs of $k$ and $\ell$, we notice that $n>0$ if and only if $s>0$. By Lemma 2.1, we know that $E(a, b)^{n}(\mathbf{Q})$ has rank at least two with at most finitely many exceptions. Moreover, we have

$$
n \equiv e(\bmod m)
$$

It remains to verify that infinitely many of these integers $n$ are inequivalent modulo $\left(\mathbf{Q}^{\times}\right)^{2}$. Indeed, if not, then we can find a finite set of nonzero rational numbers, say $\left\{n_{i}: i=1, \ldots, g\right\}$ which are inequivalent modulo $\left(\mathbf{Q}^{\times}\right)^{2}$, such that for each $x$ in (3.1), we have

$$
\begin{equation*}
\frac{d\left(s c x^{2} m^{2}\right)}{c^{2} x^{2} m^{2}}=n_{i} y^{2} \tag{3.2}
\end{equation*}
$$

with rational numbers $y$ and $n_{i}$ that depend on $x$. Note that for each $i=1, \ldots, g$, Eq. (3.2) defines a hyperelliptic curve

$$
\begin{equation*}
C_{i}: n_{i} Y^{2}=\frac{d\left(s c X^{2} m^{2}\right)}{c^{2} X^{2} m^{2}} \tag{3.3}
\end{equation*}
$$

of genus 5 . The infinitely many distinct values of $x$ that we took give infinitely many distinct rational points on the set $\left\{C_{i}: i=1, \ldots, g\right\}$. On the other hand, a theorem of Faltings [5] implies that each $C_{i}$
has only finitely many rational points. We arrive at a contradiction. This completes the proof of (i).

To prove statement (ii), we consider the binary form $F(X, Y)=Y^{7} d(X / Y)$ of degree 7 . We know that $F$ has nonzero discriminant since the polynomial $d(t)$ has distinct roots. The largest degree of an irreducible factor of $F$ is 2 , which is less than 5 . Thus, the hypotheses of Theorem 1 of [12] are satisfied, giving the desired result. This concludes the proof of Theorem 1.1.

## References

[ 1 ] T. Abe, A. Rajan and F. Ramaroson, A few remarks on congruent numbers, Rocky Mountain J. Math. 39 (2009), no. 4, 1083-1088.
[ 2 ] M. A. Bennett, Lucas' square pyramid problem revisited, Acta Arith. 105 (2002), no. 4, 341347.
[ 3 ] C. T. Davis, On the distribution of rank two $\tau$-congruent numbers, Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 5, 37-40.
[ 4 ] C. T. Davis and B. K. Spearman, On the distribution of $\tau$-congruent numbers, Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 7, 101-103.
[5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349-366.
[ 6 ] M. Fujiwara, $\theta$-congruent numbers, in Number theory (Eger, 1996), 235-241, de Gruyter, Berlin, 1998.
[ 7 ] B.-H. Im, Concordant numbers within arithmetic progressions and elliptic curves, Proc. Amer. Math. Soc. 141 (2013), no. 3, 791-800.
[ 8 ] B.-H. Im, Elliptic curves and the density of $\theta$-congruent numbers and concordant pairs in ratios, J. Pure Appl. Algebra 218 (2014), no. 1, 18-26.
[ 9 ] J. A. Johnstone and B. K. Spearman, On the distribution of congruent numbers, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 5, 89-90.
[ 10 ] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101-123.
[11] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994.
[ 12 ] C. L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, J. Amer. Math. Soc. 8 (1995), no. 4, 943973.


[^0]:    2010 Mathematics Subject Classification. Primary 11G05; Secondary 11D09, 11D45.

