A note on the dimension of global sections of adjoint bundles for polarized 4 -folds

By Yoshiaki Fukuma
Department of Mathematics and Physics, Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan

(Communicated by Shigefumi Mori, M.J.A., April 12, 2018)

Abstract

Let (X, L) be a polarized manifold defined over the field of complex numbers. In this paper, we consider the case where $\operatorname{dim} X=4$ and we prove that the second Hilbert coefficient $A_{2}(X, L)$ of (X, L), which was defined in our previous paper, is non-negative. Furthermore we consider a question proposed by H . Tsuji for $\operatorname{dim} X=4$.

Key words: Polarized manifold; adjoint bundle; sectional geometric genus.

1. Introduction. Let X be a projective variety of dimension n defined over the field of complex numbers, and let L be an ample line bundle on X. Then (X, L) is called a polarized variety. If X is smooth, then we say that (X, L) is a polarized manifold.

In [2, Conjecture 7.2.7], Beltrametti and Sommese proposed the following conjecture.

Conjecture 1.1. Let (X, L) be a polarized manifold of dimension n. Assume that $K_{X}+$ $(n-1) L$ is nef. Then $h^{0}\left(K_{X}+(n-1) L\right)>0$.

At present, there are some answers for Conjecture 1.1. For example, it is known that this conjecture is true if $\operatorname{dim} X \leq 4([2$, Theorem 7.2.6], [8, Theorem 2.4], [4] and [12, Theorem 3.1]) or $h^{0}(L)>0([14,1.2$ Theorem $])$. But it is unknown whether this conjecture is true or not in general. The following conjecture is a generalization of Conjecture 1.1.

Conjecture 1.2 (Ionescu [16, Open problems, p. 321], Ambro [1] and Kawamata [15]). Let (X, L) be a polarized manifold of dimension n. Assume that $K_{X}+L$ is nef. Then $h^{0}\left(K_{X}+L\right)>0$.

At present, there are some partial answers for this conjecture (for example, [9, Theorem 3.2], [3, Théorème 1.8]). Höring [14, 1.5 Theorem] gave a proof of Conjecture 1.2 for the case of $n=3$. But we do not know whether this conjecture is true or not for the case of $n \geq 4$.

These conjectures motivated the author to begin investigating $h^{0}\left(K_{X}+t L\right)$ for a positive

[^0]integer t. Our aim is not only to know the positivity of $h^{0}\left(K_{X}+t L\right)$ but also to evaluate a lower bound for $h^{0}\left(K_{X}+t L\right)$. In [10], in order to investigate $h^{0}\left(K_{X}+t L\right)$ systematically, we introduced an invariant $A_{i}(X, L)$ for every integer i with $0 \leq i \leq n$, which is called the i-th Hilbert coefficient of (X, L) (see Definition 2.2 (ii) below). From the following theorem which shows a relationship between $h^{0}\left(K_{X}+t L\right)$ and $A_{i}(X, L)$, we see that it is important to study the value of $A_{i}(X, L)$ in order to know the value of $h^{0}\left(K_{X}+t L\right)$.

Theorem 1.1 ([10, Corollary 3.1]). Let (X, L) be a polarized manifold of dimension n, and let t be a positive integer. Then we have

$$
h^{0}\left(K_{X}+t L\right)=\sum_{j=0}^{n}\binom{t-1}{n-j} A_{j}(X, L)
$$

So it is interesting and important to study the non-negativity of $A_{i}(X, L)$. In general, there is the following conjecture.

Conjecture 1.3 (see [10, Conjecture 5.1]). Let (X, L) be a polarized manifold of dimension n. Then $A_{i}(X, L) \geq 0$ holds for every integer i with $0 \leq i \leq n$.

In [10] we studied the invariant $A_{i}(X, L)$ in the case where L is ample and spanned by global sections. In particular we proved that $A_{i}(X, L) \geq 0$ for every integer i with $0 \leq i \leq n$ for the case where L is ample and spanned.

And we obtained a lower bound of $h^{0}\left(K_{X}+t L\right)$ by using some properties of $A_{i}(X, L)$ (see [10]). In [11, Theorem 3.1.1], we proved that this conjecture for $i=2$ is true if either (i) $n \leq 3$ or (ii) $n \geq 4$ and $\kappa(X) \geq 0$. Finally we studied the following question
of H. Tsuji ([17, Problem 1]).
Problem 1.1. Let (X, L) be a polarized manifold of dimension n. Then is it true that

$$
\begin{equation*}
h^{0}\left(K_{X}+m L\right) \geq h^{0}\left(K_{X}+(m-1) L\right) \tag{1}
\end{equation*}
$$

for every integer m with $m \geq 2$?
In [11, Theorem 4.3.1] we proved that this inequality (1) holds for the following cases; (i) $n \leq 3$, (ii) $n=4$ and $\kappa(X) \geq 0$.

Main purposes of this paper are (i) to prove $A_{2}(X, L) \geq 0$ for $n=4$ and (ii) to prove that (1) in Problem 1.1 is true for $n=4$ and every integer $m \geq 3$.

In this paper, varieties are always assumed to be defined over the field of complex numbers. We use the standard notation from algebraic geometry.

2. Preliminaries.

Notation 2.1. Let X be a projective variety of dimension n and let L be a line bundle on X. Then $\chi(t L)$ is a polynomial in t of degree at most n, and we can write $\chi(t L)$ as $\chi(t L)=\sum_{j=0}^{n} \chi_{j}(X, L)\binom{t}{j}$.

Definition 2.1 ([7, Definition 2.1]). Let X be a projective variety of dimension n and let L be a line bundle on X. For every integer i with $0 \leq i \leq n$, the i th sectional geometric genus $g_{i}(X, L)$ of (X, L) is defined by the following

$$
\begin{aligned}
g_{i}(X, L)= & (-1)^{i}\left(\chi_{n-i}(X, L)-\chi\left(\mathcal{O}_{X}\right)\right) \\
& +\sum_{j=0}^{n-i}(-1)^{n-i-j} h^{n-j}\left(\mathcal{O}_{X}\right)
\end{aligned}
$$

Remark 2.1. (i) Since $\chi_{n-i}(X, L) \in \mathbf{Z}$, we see that $g_{i}(X, L)$ is an integer.
(ii) If $i=n$, then $g_{n}(X, L)=h^{n}\left(\mathcal{O}_{X}\right)$.
(iii) If $i=0$, then $g_{0}(X, L)=L^{n}$.
(iv) If $i=1$, then $g_{1}(X, L)=g(X, L)$, where $g(X, L)$ is the sectional genus of (X, L). If X is smooth, then the sectional genus $g(X, L)$ is written as $g(X, L)=1+\frac{1}{2}\left(K_{X}+(n-\right.$ 1) $L) L^{n-1}$.

Theorem 2.1. Let X be a smooth projective variety with $\operatorname{dim} X=n$ and let L be a nef and big line bundle on X. Then for any integer i with $0 \leq$ $i \leq n-1$, we have

$$
\begin{aligned}
g_{i}(X, L)= & \sum_{j=0}^{n-i-1}(-1)^{j}\binom{n-i}{j} h^{0}\left(K_{X}+(n-i-j) L\right) \\
& +\sum_{k=0}^{n-i}(-1)^{n-i-k} h^{n-k}\left(\mathcal{O}_{X}\right)
\end{aligned}
$$

Proof. See [7, Theorem 2.3].
Definition 2.2 ([10, Definitions 3.1 and 3.2]). Let (X, L) be a polarized manifold of dimension n.
(i) Let t be a positive integer. Then we set

$$
\begin{aligned}
F_{0}(t) & :=h^{0}\left(K_{X}+t L\right) \\
F_{i}(t) & :=F_{i-1}(t+1)-F_{i-1}(t)
\end{aligned}
$$

for every integer i with $1 \leq i \leq n$.
(ii) For every integer i with $0 \leq i \leq n$, the i th Hilbert coefficient $A_{i}(X, L)$ of (X, L) is defined by $A_{i}(X, L)=F_{n-i}(1)$.

Remark 2.2. (i) If $1 \leq i \leq n$, then $A_{i}(X, L)$ can be written as follows (see [10, Proposition 3.2]):

$$
A_{i}(X, L)=g_{i}(X, L)+g_{i-1}(X, L)-h^{i-1}\left(\mathcal{O}_{X}\right)
$$

(ii) By Definition 2.2 and [10, Proposition 3.1 (2)], we have the following
(ii.1) $A_{i}(X, L) \in \mathbf{Z}$ for every integer i with $0 \leq$ $i \leq n$,
(ii.2) $A_{0}(X, L)=L^{n}$,
(ii.3) $A_{1}(X, L)=g_{1}(X, L)+g_{0}(X, L)-h^{0}\left(\mathcal{O}_{X}\right)=$ $\frac{1}{2} K_{X} L^{n-1}+\frac{n+1}{2} L^{n}$,
(ii.4) $A_{n}(X, L)=h^{0}\left(K_{X}+L\right)$.

Theorem 2.2. Let (X, L) be a polarized manifold of dimension n and let t be a positive integer. Then for every integer i with $0 \leq i \leq n$ we have

$$
F_{n-i}(t)=\sum_{j=0}^{i}\binom{t-1}{i-j} A_{j}(X, L)
$$

Proof. See [10, Theorem 3.1]. Here we note that if $i=n$, then this result is Theorem 1.1 in Introduction.

Definition 2.3. (i) Let X (resp. Y) be an n-dimensional smooth projective variety, and L (resp. H) an ample line bundle on X (resp. Y). Then (X, L) is called a simple blowing up of (Y, H) if there exists a birational morphism $\pi: X \rightarrow Y$ such that π is a blowing up at a point of Y and $L=\pi^{*}(H)-E$, where E is the π-exceptional effective reduced divisor.
(ii) Let X (resp. M) be an n-dimensional smooth projective variety, and L (resp. A) an ample line bundle on X (resp. M). Then we say that (M, A) is a reduction of (X, L) if there exists a birational morphism $\mu: X \rightarrow M$ such that μ is a composition of simple blowing ups and (M, A) is not obtained by a simple blowing up of any other polarized manifolds.

Remark 2.3. Let (X, L) be a polarized manifold and let (M, A) be a reduction of (X, L). Let $\mu: X \rightarrow M$ be the reduction map, and let γ be the number of simple blowing ups of its reduction. Then by [7, Proposition 2.6]

$$
g_{i}(X, L)=\left\{\begin{array}{lc}
g_{i}(M, A) & \text { if } 1 \leq i \leq n \\
A^{n}-\gamma & \text { if } i=0
\end{array}\right.
$$

Hence

$$
A_{i}(X, L)= \begin{cases}A_{i}(M, A) & \text { if } 2 \leq i \leq n \\ A_{i}(M, A)-\gamma & \text { if } i=0,1\end{cases}
$$

3. Main results. First we prove the following

Theorem 3.1. Let (X, L) be a polarized manifold of dimension 4. Then $A_{2}(X, L) \geq 0$.

Proof. (A) Assume that $h^{0}\left(K_{X}+L\right)>0$. Then by [13, Claim 2.1] we obtain that $\Omega_{X}\langle L\rangle$ is generically nef. So by [14, 2.11 Corollary] we have

$$
\begin{equation*}
c_{2}(X) L^{2} \geq-3 K_{X} L^{3}-6 L^{4} \tag{2}
\end{equation*}
$$

Hence by [12, Remark 2.3 (iii)]

$$
\begin{aligned}
& A_{2}(X, L) \\
&= \frac{25}{12} L^{4}+K_{X} L^{3}+\frac{1}{12}\left(K_{X}^{2}+c_{2}(X)\right) L^{2} \\
& \geq \frac{25}{12} L^{4}+K_{X} L^{3}+\frac{1}{12} K_{X}^{2} L^{2} \\
&-\frac{1}{12}\left(3 K_{X} L^{3}+6 L^{4}\right) \\
&= \frac{1}{12}\left(K_{X}+L\right)\left(K_{X}+8 L\right) L^{2}+\frac{11}{12} L^{4}>0
\end{aligned}
$$

(B) Assume that $h^{0}\left(K_{X}+L\right)=0$. By [13, Remark 2.4] we may assume that $\kappa\left(K_{X}+2 L\right) \geq 0$. Moreover, by Remark 2.3, we may assume that (X, L) is the reduction of itself. Then we note that $K_{X}+2 L$ is nef by the adjunction theory (see [2, Proposition 7.2.2 and Theorem 7.2.4]). In particular, $K_{X}+3 L$ is ample. In this case, we take the MRCfibration of X. (For the definition of the MRCfibration, see, e.g., [12, Theorem 2.3 and Definition 2.4].) Then there exist smooth projective varieties Y and B, a birational morphism $\pi: Y \rightarrow$ X and a surjective morphism with connected fibers $f: Y \rightarrow B$ such that B is not uniruled and the fiber of f is rationally connected. Let b be the dimension of the base space B of the MRC-fibration.
(B.i) Assume that $b \geq 3$. Then by [12, Remark 2.4
(2)] and the argument of [14, Step 2, p. 741]

$$
\begin{aligned}
A_{2}(X, L) & =\frac{1}{24} L^{2}\left(2\left(K_{X}^{2}+c_{2}(X)\right)+24 K_{X} L+50 L^{2}\right) \\
& >0
\end{aligned}
$$

(B.ii) Assume that $b \leq 2$. Then we note that $h^{i}\left(\mathcal{O}_{X}\right)=0$ for $i \geq 3$. Hence by Theorem 2.1 and the assumption that $h^{0}\left(K_{X}+L\right)=0$ we have
(3) $g_{2}(X, L)=h^{0}\left(K_{X}+2 L\right)+h^{2}\left(\mathcal{O}_{X}\right) \geq 0$.
(B.ii.1) Assume that $b=2$. Then since $h^{2}\left(\mathcal{O}_{X}\right) \geq$ $h^{2}\left(\mathcal{O}_{B}\right)$ and $h^{1}\left(\mathcal{O}_{X}\right)=h^{1}\left(\mathcal{O}_{B}\right)$ we have

$$
\begin{align*}
& g_{2}(X, L)-h^{1}\left(\mathcal{O}_{X}\right) \tag{4}\\
& \quad=h^{0}\left(K_{X}+2 L\right)+h^{2}\left(\mathcal{O}_{X}\right)-h^{1}\left(\mathcal{O}_{X}\right) \\
& \quad \geq h^{2}\left(\mathcal{O}_{X}\right)-h^{1}\left(\mathcal{O}_{X}\right) \\
& \quad \geq \chi\left(\mathcal{O}_{B}\right)-1
\end{align*}
$$

Here we note that we may assume that $g_{1}(X, L) \geq 2$ because we see from $[5,(12.1)$ Theorem and (12.3) Theorem] and [13, Remark 2.4] that $A_{2}(X, L) \geq 0$ holds for any (X, L) with $g_{1}(X, L) \leq$ 1. Since $A_{2}(X, L)=g_{2}(X, L)+g_{1}(X, L)-h^{1}\left(\mathcal{O}_{X}\right)$ and $\kappa(B) \geq 0$, by (4) we have

$$
\begin{aligned}
A_{2}(X, L) & \geq \chi\left(\mathcal{O}_{B}\right)+g_{1}(X, L)-1 \\
& >\chi\left(\mathcal{O}_{B}\right) \geq 0
\end{aligned}
$$

(B.ii.2) Assume that $b=1$. In this case, $h^{1}\left(\mathcal{O}_{X}\right)=$ $g(B)$ and $g_{1}(X, L)-h^{1}\left(\mathcal{O}_{X}\right)=g_{1}(X, L)-g(B) \geq 0$ by [6, Theorem 1.2.1], where $g(B)$ is the genus of B. Hence by (3) we have $A_{2}(X, L)=g_{2}(X, L)+$ $g_{1}(X, L)-h^{1}\left(\mathcal{O}_{X}\right) \geq g_{2}(X, L) \geq 0$.
(B.ii.3) Assume that $b=0$. Then $h^{1}\left(\mathcal{O}_{X}\right)=0$. Hence by (3) and $[5,(12.1)$ Theorem $]$ we get $A_{2}(X, L)=$ $g_{2}(X, L)+g_{1}(X, L)-h^{1}\left(\mathcal{O}_{X}\right)=g_{2}(X, L)+g_{1}(X$, $L) \geq 0$.

These complete the proof of Theorem 3.1.
Next we consider Problem 1.1 for $\operatorname{dim} X=4$ and $m \geq 3$.

Theorem 3.2. Let (X, L) be a polarized manifold of dimension 4. Then for every integer m with $m \geq 3$, we have

$$
h^{0}\left(K_{X}+m L\right)-h^{0}\left(K_{X}+(m-1) L\right) \geq 0
$$

Proof. In this case, by using Theorem 1.1, we have
(5) $h^{0}\left(K_{X}+m L\right)-h^{0}\left(K_{X}+(m-1) L\right)$

$$
=\binom{m-2}{3} A_{0}(X, L)+\binom{m-2}{2} A_{1}(X, L)
$$

$$
+\binom{m-2}{1} A_{2}(X, L)+\binom{m-2}{0} A_{3}(X, L)
$$

(I) Assume that $h^{0}\left(K_{X}+L\right)>0$. Then we see from [13, Claim 2.1] that $\Omega_{X}\langle L\rangle$ is generically nef. We note that $\kappa\left(K_{X}+3 L\right) \geq 0$. Therefore $K_{X}+3 L$ is nef by the adjunction theory ($[2$, Proposition 7.2 .2 , Theorems 7.2.3 and 7.2.4]). Hence $K_{X}+(2 m-1) L$ is nef for every integer $m \geq 2$. So by $[14,2.11$ Corollary] we have
(6) $c_{2}(X)\left(K_{X}+(2 m-1) L\right) L$

$$
\begin{aligned}
\geq & -\left(3 K_{X} L+6 L^{2}\right)\left(K_{X}+(2 m-1) L\right) L \\
= & -3 K_{X}^{2} L^{2}-(6 m+3) K_{X} L^{3} \\
& -6(2 m-1) L^{4}
\end{aligned}
$$

We note that by Remark 2.2 (ii.2), (ii.3) and [12, Remark 2.3 (iii)]

$$
\begin{align*}
A_{0}(X, L)= & L^{4} \tag{7}\\
A_{1}(X, L)= & \frac{1}{2} K_{X} L^{3}+\frac{5}{2} L^{4} \\
A_{2}(X, L)= & \frac{25}{12} L^{4}+K_{X} L^{3} \\
& +\frac{1}{12}\left(K_{X}^{2}+c_{2}(X)\right) L^{2} \\
A_{3}(X, L)= & \frac{5}{8} L^{4}+\frac{7}{12} K_{X} L^{3}+\frac{1}{8} K_{X}^{2} L^{2} \tag{10}\\
& +\frac{1}{24} c_{2}(X)\left(K_{X}+3 L\right) L
\end{align*}
$$

By (5), (6), (7), (8), (9) and (10), we have

$$
\begin{align*}
& h^{0}\left(K_{X}+m L\right)-h^{0}\left(K_{X}+(m-1) L\right) \tag{11}\\
&=\left(\frac{1}{6} m^{3}-\frac{1}{4} m^{2}+\frac{1}{6} m-\frac{1}{24}\right) L^{4} \\
&+\left(\frac{1}{4} m^{2}-\frac{1}{4} m+\frac{1}{12}\right) K_{X} L^{3} \\
&+\left(\frac{1}{12} m-\frac{1}{24}\right) K_{X}^{2} L^{2} \\
&+\frac{1}{24} c_{2}(X)\left(K_{X}+(2 m-1) L\right) L \\
& \geq\left(\frac{1}{6} m^{3}-\frac{1}{4} m^{2}-\frac{1}{3} m+\frac{5}{24}\right) L^{4} \\
&+\left(\frac{1}{4} m^{2}-\frac{1}{2} m-\frac{1}{24}\right) K_{X} L^{3} \\
&+\left(\frac{1}{12} m-\frac{1}{6}\right) K_{X}^{2} L^{2}
\end{align*}
$$

$$
\begin{aligned}
= & \frac{m-2}{12}\left(K_{X}+L\right)\left(K_{X}+3 L\right) L^{2} \\
& +\left\{\frac{1}{12}(3 m-1)(m-3)\right. \\
& \left.+\frac{9}{24}\right\}\left(K_{X}+2 L\right) L^{3} \\
& +\left\{\frac{1}{12} m(2 m-6)\left(m-\frac{3}{2}\right)\right. \\
& \left.+\frac{1}{3} m-\frac{13}{24}\right\} L^{4} .
\end{aligned}
$$

If $m \geq 3$, we have

$$
\begin{aligned}
& \frac{m-2}{12}>0 \\
& \frac{1}{12}(3 m-1)(m-3)+\frac{9}{24} \geq \frac{9}{24} \\
& \frac{1}{12} m(2 m-6)\left(m-\frac{3}{2}\right)+\frac{1}{3} m-\frac{13}{24} \geq \frac{11}{24} .
\end{aligned}
$$

Here we note that $\left(K_{X}+L\right)\left(K_{X}+3 L\right) L^{2} \geq 0$ since $h^{0}\left(K_{X}+L\right)>0$ and $K_{X}+3 L$ is nef. Moreover $\left(K_{X}+2 L\right) L^{3}>0$ since $h^{0}\left(K_{X}+L\right)>0$ and L is ample. Hence, for every integer m with $m \geq 3$, we have $h^{0}\left(K_{X}+m L\right)-h^{0}\left(K_{X}+(m-1) L\right)>0$.
(II) Assume that $h^{0}\left(K_{X}+L\right)=0$. First we note that in this case $A_{3}(X, L) \geq 0$ because $A_{4}(X, L)=$ $h^{0}\left(K_{X}+L\right)=0$ and $0 \leq h^{0}\left(K_{X}+2 L\right)=A_{4}(X, L)+$ $A_{3}(X, L)$. Since $A_{2}(X, L) \geq 0$ by Theorem 3.1, we get $\quad h^{0}\left(K_{X}+m L\right)-h^{0}\left(K_{X}+(m-1) L\right) \geq 0 \quad$ for every integer $m \geq 3$ by [11, Remark 2.2 (2.2) and Theorem 3.1.1 (1)] and (5).

Next we consider the case of $\operatorname{dim} X=4$ and $m=2$ in Problem 1.1.

Theorem 3.3. Let (X, L) be a polarized manifold of dimension 4 such that (X, L) does not have the following structure (*). Then $h^{0}\left(K_{X}+\right.$ $2 L) \geq h^{0}\left(K_{X}+L\right)$.
(*) There exist smooth projective varieties \widetilde{X} and Y with $\operatorname{dim} \widetilde{X}=4$ and $\operatorname{dim} Y=3$, a birational morphism $\mu: \widetilde{X} \rightarrow X$, and a fiber space $f: \widetilde{X} \rightarrow Y$ such that $F \cong \mathbf{P}^{1}$ and $\left(\mu^{*} L\right)_{F}=$ $\mathcal{O}_{\mathbf{P}^{1}}(2)$, where F is a general fiber of f.
Proof. If $h^{0}\left(K_{X}+L\right)=0$, then $h^{0}\left(K_{X}+2 L\right)-$ $h^{0}\left(K_{X}+L\right)=h^{0}\left(K_{X}+2 L\right) \geq 0$. So we may assume that $h^{0}\left(K_{X}+L\right)>0$. Then we can prove the following

Claim 3.1. $\Omega_{X}\left\langle\frac{3}{4} L\right\rangle$ is generically nef.
Proof. Assume that $\Omega_{X}\left\langle\frac{3}{4} L\right\rangle$ is not generically nef. By $[14,3.1$ Theorem $]$ there exist a smooth
projective variety \tilde{X} of dimension 4, a smooth projective variety Y of dimension m with $m \leq 3$, a birational morphism $\mu: \widetilde{X} \rightarrow X$, and a surjective morphism $f: \widetilde{X} \rightarrow Y$ with connected fibers such that the following (\#) holds:
(\#) Any general fiber F of f is rationally connected and $h^{0}(D)=0$ for any Cartier divisor D on F such that $D \sim_{\mathbf{Q}} K_{F}+j \mu^{*}\left(\frac{3}{4} L\right)_{F}$ for any $j \in[0, n-m] \cap \mathbf{Q}$, where $\sim_{\mathbf{Q}}$ denotes the linear equivalence of \mathbf{Q}-divisors.
(a) Assume that $\operatorname{dim} Y \leq 2$. Then we see from (\#) that $h^{0}\left(K_{F}+\mu^{*}(L)_{F}\right)=h^{0}\left(K_{F}+\frac{4}{3} \mu^{*}\left(\frac{3}{4} L\right)_{F}\right)=0$ for any general fiber F of f. But since $h^{0}\left(K_{\tilde{X}}+\right.$ $\left.\mu^{*}(L)\right)=h^{0}\left(K_{X}+L\right)>0, \quad$ we have $h^{0}\left(K_{F}^{X}+\right.$ $\left.\mu^{*}(L)_{F}\right)>0$ holds for any general fiber F. Hence this is a contradiction.
(b) Assume that $\operatorname{dim} Y=3$. In this case $F \cong \mathbf{P}^{1}$. If $\operatorname{deg} \mu^{*}(L)_{F} \geq 3$, then there exists $j \in[0,1] \cap \mathbf{Q}$ such that $K_{F}+j \mu^{*}\left(\frac{3}{4} L\right)_{F}$ is a Cartier divisor with $\operatorname{deg}\left(K_{F}+j \mu^{*}\left(\frac{3}{4} L\right)_{F}\right) \geq 0$. Hence $h^{0}\left(K_{F}+\right.$ $\left.j \mu^{*}\left(\frac{3}{4} L\right)_{F}\right)>0$ and this contradicts (\#). So we have $\operatorname{deg}\left(\mu^{*}(L)_{F}\right) \leq 2$. On the other hand, we get $\operatorname{deg}\left(\mu^{*}(L)_{F}\right) \geq 2 \quad$ because $\quad h^{0}\left(K_{F}+\mu^{*}(L)_{F}\right)>0$. Therefore $\operatorname{deg}\left(\mu^{*}(L)_{F}\right)=2$. But this case is excluded by the assumption that (X, L) does not have the structure (*). Therefore we get the assertion of Claim 3.1.

We note that $K_{X}+3 L$ is nef because $h^{0}\left(K_{X}+\right.$ $L)>0$ (see (I) in the proof of Theorem 3.2). By the same argument as in the proof of Theorem 3.2, we see from Claim 3.1 and [14, 2.11 Corollary] that

$$
\begin{align*}
& c_{2}(X)\left(K_{X}+3 L\right) L \tag{12}\\
& \quad \geq-\frac{81}{8} L^{4}-\frac{81}{8} K_{X} L^{3}-\frac{9}{4} K_{X}^{2} L^{2} .
\end{align*}
$$

On the other hand by (11) in the proof of Theorem 3.2, we have

$$
\begin{align*}
& h^{0}\left(K_{X}+2 L\right)-h^{0}\left(K_{X}+L\right) \tag{13}\\
&= \frac{5}{8} L^{4}+\frac{7}{12} K_{X} L^{3}+\frac{1}{8} K_{X}^{2} L^{2} \\
&+\frac{1}{24} c_{2}(X)\left(K_{X}+3 L\right) L
\end{align*}
$$

Hence, by noting that $h^{0}\left(K_{X}+L\right)>0, L$ is ample and $K_{X}+3 L$ is nef, we see from (12) and (13) that

$$
\begin{aligned}
& h^{0}\left(K_{X}+2 L\right)-h^{0}\left(K_{X}+L\right) \\
& \quad \geq \frac{5}{8} L^{4}+\frac{7}{12} K_{X} L^{3}+\frac{1}{8} K_{X}^{2} L^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3}{64}\left(9 L^{4}+9 K_{X} L^{3}+2 K_{X}^{2} L^{2}\right) \\
= & \frac{13}{64} L^{4}+\frac{31}{192} K_{X} L^{3}+\frac{1}{32} K_{X}^{2} L^{2} \\
= & \frac{1}{32}\left(K_{X}+L\right)\left(K_{X}+4 L\right) L^{2} \\
& +\frac{1}{192}\left(K_{X}+15 L\right) L^{3}>0 .
\end{aligned}
$$

This completes the proof of Theorem 3.3.
Acknowledgements. This work is supported by JSPS KAKENHI Grant Number 16K05103. The author would like to thank the referee for giving a comment.

References

[1] F. Ambro, Ladders on Fano varieties, J. Math. Sci. (New York) 94 (1999), no. 1, 1126-1135.
[2] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective variet$i e s$, De Gruyter Expositions in Mathematics, 16, Walter de Gruyter \& Co., Berlin, 1995.
[3] A. Broustet, Non-annulation effective et positivité locale des fibrés en droites amples adjoints, Math. Ann. 343 (2009), no. 4, 727-755.
[4] A. Broustet and A. Höring, Effective non-vanishing conjectures for projective threefolds, Adv. Geom. 10 (2010), no. 4, 737-746.
[5] T. Fujita, Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, 155, Cambridge University Press, Cambridge, 1990.
[6] Y. Fukuma, A lower bound for sectional genus of quasi-polarized manifolds, J. Math. Soc. Japan 49 (1997), no. 2, 339-362.
[7] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties. I, Comm. Algebra 32 (2004), no. 3, 1069-1100.
[8] Y. Fukuma, On a conjecture of BeltramettiSommese for polarized 3 -folds, Internat. J. Math. 17 (2006), no. 7, 761-789.
[9] Y. Fukuma, On the dimension of global sections of adjoint bundles for polarized 3 -folds and 4folds, J. Pure Appl. Algebra 211 (2007), no. 3, 609-621.
[10] Y. Fukuma, A study on the dimension of global sections of adjoint bundles for polarized manifolds, J. Algebra 320 (2008), no. 9, 3543-3558.
[11] Y. Fukuma, A study on the dimension of global sections of adjoint bundles for polarized manifolds, II, Hokkaido Math. J. 40 (2011), no. 2, 251-277.
[12] Y. Fukuma, On a conjecture of BeltramettiSommese for polarized 4-folds, Kodai Math. J. 38 (2015), no. 2, 343-351.
[13] Y. Fukuma, On the dimension of $H^{0}\left(K_{X}+m L\right)$ of polarized n-folds (X, L) with $m \geq n$, Kyushu J. Math. 71 (2017), no. 1, 115-128.
[14] A. Höring, On a conjecture of Beltrametti and Sommese, J. Algebraic Geom. 21 (2012), no. 4, 721-751.
[15] Y. Kawamata, On effective non-vanishing and base-point-freeness, Asian J. Math. 4 (2000), no. 1, 173-181.
[16] A. Lanteri, M. Palleschi and D. C. Struppa (Eds.), Geometry of complex projective varieties, Pro-
ceedings of the conference held in Cetraro, May 28-June 2, 1990, Seminars and Conferences, 9, Mediterranean Press, Rende, 1993.
[17] R. Miyaoka and M. Kotani (Eds.), Mathematics in the 21st century, unscaled peaks of geometry, Nippon Hyoron sha, Tokyo, 2004. (in Japanese).

[^0]: 2010 Mathematics Subject Classification. Primary 14C20; Secondary 14J35.

