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Abstract: Let ðX;LÞ be a polarized manifold defined over the field of complex numbers. In

this paper, we consider the case where dimX ¼ 4 and we prove that the second Hilbert coefficient

A2ðX;LÞ of ðX;LÞ, which was defined in our previous paper, is non-negative. Furthermore we

consider a question proposed by H. Tsuji for dimX ¼ 4.
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1. Introduction. Let X be a projective

variety of dimension n defined over the field of

complex numbers, and let L be an ample line bundle

on X. Then ðX;LÞ is called a polarized variety. If X

is smooth, then we say that ðX;LÞ is a polarized

manifold.

In [2, Conjecture 7.2.7], Beltrametti and

Sommese proposed the following conjecture.

Conjecture 1.1. Let ðX;LÞ be a polarized

manifold of dimension n. Assume that KX þ
ðn� 1ÞL is nef. Then h0ðKX þ ðn� 1ÞLÞ > 0.

At present, there are some answers for Con-

jecture 1.1. For example, it is known that this

conjecture is true if dimX � 4 ([2, Theorem 7.2.6],

[8, Theorem 2.4], [4] and [12, Theorem 3.1]) or

h0ðLÞ > 0 ([14, 1.2 Theorem]). But it is unknown

whether this conjecture is true or not in general.

The following conjecture is a generalization of

Conjecture 1.1.

Conjecture 1.2 (Ionescu [16, Open problems,

p. 321], Ambro [1] and Kawamata [15]). Let

ðX;LÞ be a polarized manifold of dimension n.

Assume that KX þ L is nef. Then h0ðKX þ LÞ > 0.

At present, there are some partial answers for

this conjecture (for example, [9, Theorem 3.2], [3,

Théorème 1.8]). Höring [14, 1.5 Theorem] gave a

proof of Conjecture 1.2 for the case of n ¼ 3. But we

do not know whether this conjecture is true or not

for the case of n � 4.

These conjectures motivated the author to

begin investigating h0ðKX þ tLÞ for a positive

integer t. Our aim is not only to know the positivity

of h0ðKX þ tLÞ but also to evaluate a lower bound

for h0ðKX þ tLÞ. In [10], in order to investigate

h0ðKX þ tLÞ systematically, we introduced an in-

variant AiðX;LÞ for every integer i with 0 � i � n,

which is called the i-th Hilbert coefficient of ðX;LÞ
(see Definition 2.2 (ii) below). From the following

theorem which shows a relationship between

h0ðKX þ tLÞ and AiðX;LÞ, we see that it is impor-

tant to study the value of AiðX;LÞ in order to know

the value of h0ðKX þ tLÞ.
Theorem 1.1 ([10, Corollary 3.1]). Let ðX;LÞ

be a polarized manifold of dimension n, and let t be a

positive integer. Then we have

h0ðKX þ tLÞ ¼
Xn
j¼0

t� 1

n� j

� �
AjðX;LÞ:

So it is interesting and important to study the

non-negativity of AiðX;LÞ. In general, there is the

following conjecture.

Conjecture 1.3 (see [10, Conjecture 5.1]).

Let ðX;LÞ be a polarized manifold of dimension n.

Then AiðX;LÞ � 0 holds for every integer i with

0 � i � n.

In [10] we studied the invariant AiðX;LÞ in the

case where L is ample and spanned by global

sections. In particular we proved that AiðX;LÞ � 0
for every integer i with 0 � i � n for the case where

L is ample and spanned.

And we obtained a lower bound of h0ðKX þ tLÞ
by using some properties of AiðX;LÞ (see [10]). In

[11, Theorem 3.1.1], we proved that this conjecture

for i ¼ 2 is true if either (i) n � 3 or (ii) n � 4 and

�ðXÞ � 0. Finally we studied the following question
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of H. Tsuji ([17, Problem 1]).

Problem 1.1. Let ðX;LÞ be a polarized

manifold of dimension n. Then is it true that

h0ðKX þmLÞ � h0ðKX þ ðm� 1ÞLÞð1Þ

for every integer m with m � 2?

In [11, Theorem 4.3.1] we proved that this

inequality (1) holds for the following cases; (i)

n � 3, (ii) n ¼ 4 and �ðXÞ � 0.

Main purposes of this paper are (i) to prove

A2ðX;LÞ � 0 for n ¼ 4 and (ii) to prove that (1) in

Problem 1.1 is true for n ¼ 4 and every integer

m � 3.

In this paper, varieties are always assumed to

be defined over the field of complex numbers. We

use the standard notation from algebraic geometry.

2. Preliminaries.

Notation 2.1. Let X be a projective variety

of dimension n and let L be a line bundle on X.

Then �ðtLÞ is a polynomial in t of degree at most n,

and we can write �ðtLÞ as �ðtLÞ ¼
Xn
j¼0

�jðX;LÞ
t

j

� �
.

Definition 2.1 ([7, Definition 2.1]). Let X

be a projective variety of dimension n and let L

be a line bundle on X. For every integer i with

0 � i � n, the ith sectional geometric genus giðX;LÞ
of ðX;LÞ is defined by the following

giðX;LÞ ¼ ð�1Þið�n�iðX;LÞ � �ðOXÞÞ

þ
Xn�i
j¼0

ð�1Þn�i�jhn�jðOXÞ:

Remark 2.1. (i) Since �n�iðX;LÞ 2 Z, we

see that giðX;LÞ is an integer.
(ii) If i ¼ n, then gnðX;LÞ ¼ hnðOXÞ.

(iii) If i ¼ 0, then g0ðX;LÞ ¼ Ln.

(iv) If i ¼ 1, then g1ðX;LÞ ¼ gðX;LÞ, where

gðX;LÞ is the sectional genus of ðX;LÞ. If X

is smooth, then the sectional genus gðX;LÞ
is written as gðX;LÞ ¼ 1þ 1

2 ðKX þ ðn�
1ÞLÞLn�1.

Theorem 2.1. Let X be a smooth projective

variety with dimX ¼ n and let L be a nef and big

line bundle on X. Then for any integer i with 0 �
i � n� 1, we have

giðX;LÞ ¼
Xn�i�1

j¼0

ð�1Þj
n� i
j

� �
h0ðKX þ ðn� i� jÞLÞ

þ
Xn�i
k¼0

ð�1Þn�i�khn�kðOXÞ:

Proof. See [7, Theorem 2.3]. �

Definition 2.2 ([10, Definitions 3.1 and 3.2]).

Let ðX;LÞ be a polarized manifold of dimension n.

(i) Let t be a positive integer. Then we set

F0ðtÞ :¼ h0ðKX þ tLÞ;
FiðtÞ :¼ Fi�1ðtþ 1Þ � Fi�1ðtÞ

for every integer i with 1 � i � n:
(ii) For every integer i with 0 � i � n, the ith

Hilbert coefficient AiðX;LÞ of ðX;LÞ is defined by

AiðX;LÞ ¼ Fn�ið1Þ.
Remark 2.2. (i) If 1 � i � n, then AiðX;LÞ

can be written as follows (see [10, Proposition

3.2]):

AiðX;LÞ ¼ giðX;LÞ þ gi�1ðX;LÞ � hi�1ðOXÞ:

(ii) By Definition 2.2 and [10, Proposition 3.1 (2)],

we have the following

(ii.1) AiðX;LÞ 2 Z for every integer i with 0 �
i � n,

(ii.2) A0ðX;LÞ ¼ Ln,

(ii.3) A1ðX;LÞ ¼ g1ðX;LÞ þ g0ðX;LÞ � h0ðOXÞ ¼
1
2 KXL

n�1 þ nþ1
2 Ln,

(ii.4) AnðX;LÞ ¼ h0ðKX þ LÞ.
Theorem 2.2. Let ðX;LÞ be a polarized

manifold of dimension n and let t be a positive

integer. Then for every integer i with 0 � i � n we

have

Fn�iðtÞ ¼
Xi
j¼0

t� 1

i� j

� �
AjðX;LÞ:

Proof. See [10, Theorem 3.1]. Here we note

that if i ¼ n, then this result is Theorem 1.1 in

Introduction. �

Definition 2.3. (i) Let X (resp. Y ) be an

n-dimensional smooth projective variety, and L

(resp. H) an ample line bundle on X (resp. Y ). Then

ðX;LÞ is called a simple blowing up of ðY ;HÞ if there

exists a birational morphism � : X ! Y such that �

is a blowing up at a point of Y and L ¼ ��ðHÞ � E,

where E is the �-exceptional effective reduced

divisor.

(ii) Let X (resp. M) be an n-dimensional smooth

projective variety, and L (resp. A) an ample line

bundle on X (resp. M). Then we say that ðM;AÞ is

a reduction of ðX;LÞ if there exists a birational

morphism � : X !M such that � is a composition

of simple blowing ups and ðM;AÞ is not obtained

by a simple blowing up of any other polarized

manifolds.
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Remark 2.3. Let ðX;LÞ be a polarized

manifold and let ðM;AÞ be a reduction of ðX;LÞ.
Let � : X !M be the reduction map, and let � be

the number of simple blowing ups of its reduction.

Then by [7, Proposition 2.6]

giðX;LÞ ¼
giðM;AÞ if 1 � i � n;
An � � if i ¼ 0:

�

Hence

AiðX;LÞ ¼
AiðM;AÞ if 2 � i � n;
AiðM;AÞ � � if i ¼ 0; 1:

�

3. Main results. First we prove the follow-

ing

Theorem 3.1. Let ðX;LÞ be a polarized

manifold of dimension 4. Then A2ðX;LÞ � 0.

Proof. (A) Assume that h0ðKX þ LÞ > 0. Then

by [13, Claim 2.1] we obtain that �XhLi is generi-

cally nef. So by [14, 2.11 Corollary] we have

c2ðXÞL2 � �3KXL
3 � 6L4:ð2Þ

Hence by [12, Remark 2.3 (iii)]

A2ðX;LÞ

¼
25

12
L4 þKXL

3 þ
1

12
ðK2

X þ c2ðXÞÞL2

�
25

12
L4 þKXL

3 þ
1

12
K2
XL

2

� 1

12
ð3KXL

3 þ 6L4Þ

¼
1

12
ðKX þ LÞðKX þ 8LÞL2 þ

11

12
L4 > 0:

(B) Assume that h0ðKX þ LÞ ¼ 0. By [13, Remark

2.4] we may assume that �ðKX þ 2LÞ � 0. More-

over, by Remark 2.3, we may assume that ðX;LÞ is

the reduction of itself. Then we note that KX þ 2L

is nef by the adjunction theory (see [2, Propo-

sition 7.2.2 and Theorem 7.2.4]). In particular,

KX þ 3L is ample. In this case, we take the MRC-

fibration of X. (For the definition of the MRC-

fibration, see, e.g., [12, Theorem 2.3 and Defini-

tion 2.4].) Then there exist smooth projective

varieties Y and B, a birational morphism � : Y !
X and a surjective morphism with connected fibers

f : Y ! B such that B is not uniruled and the fiber

of f is rationally connected. Let b be the dimension

of the base space B of the MRC-fibration.

(B.i) Assume that b � 3. Then by [12, Remark 2.4

(2)] and the argument of [14, Step 2, p. 741]

A2ðX;LÞ ¼
1

24
L2ð2ðK2

X þ c2ðXÞÞ þ 24KXLþ 50L2Þ

> 0:

(B.ii) Assume that b � 2. Then we note that

hiðOXÞ ¼ 0 for i � 3. Hence by Theorem 2.1 and

the assumption that h0ðKX þ LÞ ¼ 0 we have

g2ðX;LÞ ¼ h0ðKX þ 2LÞ þ h2ðOXÞ � 0:ð3Þ

(B.ii.1) Assume that b ¼ 2. Then since h2ðOXÞ �
h2ðOBÞ and h1ðOXÞ ¼ h1ðOBÞ we have

g2ðX;LÞ � h1ðOXÞð4Þ
¼ h0ðKX þ 2LÞ þ h2ðOXÞ � h1ðOXÞ
� h2ðOXÞ � h1ðOXÞ
� �ðOBÞ � 1:

Here we note that we may assume that

g1ðX;LÞ � 2 because we see from [5, (12.1) Theorem

and (12.3) Theorem] and [13, Remark 2.4] that

A2ðX;LÞ � 0 holds for any ðX;LÞ with g1ðX;LÞ �
1. Since A2ðX;LÞ ¼ g2ðX;LÞ þ g1ðX;LÞ � h1ðOXÞ
and �ðBÞ � 0, by (4) we have

A2ðX;LÞ � �ðOBÞ þ g1ðX;LÞ � 1

> �ðOBÞ � 0:

(B.ii.2) Assume that b ¼ 1. In this case, h1ðOXÞ ¼
gðBÞ and g1ðX;LÞ � h1ðOXÞ ¼ g1ðX;LÞ � gðBÞ � 0
by [6, Theorem 1.2.1], where gðBÞ is the genus of B.

Hence by (3) we have A2ðX;LÞ ¼ g2ðX;LÞ þ
g1ðX;LÞ � h1ðOXÞ � g2ðX;LÞ � 0.

(B.ii.3) Assume that b ¼ 0. Then h1ðOXÞ ¼ 0. Hence

by (3) and [5, (12.1) Theorem] we get A2ðX;LÞ ¼
g2ðX;LÞ þ g1ðX;LÞ � h1ðOX Þ ¼ g2ðX;LÞ þ g1ðX;
LÞ � 0.

These complete the proof of Theorem 3.1. �

Next we consider Problem 1.1 for dimX ¼ 4
and m � 3.

Theorem 3.2. Let ðX;LÞ be a polarized

manifold of dimension 4. Then for every integer m

with m � 3, we have

h0ðKX þmLÞ � h0ðKX þ ðm� 1ÞLÞ � 0:

Proof. In this case, by using Theorem 1.1, we

have

h0ðKX þmLÞ � h0ðKX þ ðm� 1ÞLÞð5Þ

¼ m� 2

3

� �
A0ðX;LÞ þ

m� 2

2

� �
A1ðX;LÞ
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þ
m� 2

1

� �
A2ðX;LÞ þ

m� 2

0

� �
A3ðX;LÞ:

(I) Assume that h0ðKX þ LÞ > 0. Then we see from

[13, Claim 2.1] that �XhLi is generically nef. We

note that �ðKX þ 3LÞ � 0. Therefore KX þ 3L is

nef by the adjunction theory ([2, Proposition 7.2.2,

Theorems 7.2.3 and 7.2.4]). Hence KX þ ð2m� 1ÞL
is nef for every integer m � 2. So by [14, 2.11

Corollary] we have

c2ðXÞðKX þ ð2m� 1ÞLÞLð6Þ
� � 3KXLþ 6L2

� �
ðKX þ ð2m� 1ÞLÞL

¼ �3K2
XL

2 � ð6mþ 3ÞKXL
3

� 6ð2m� 1ÞL4:

We note that by Remark 2.2 (ii.2), (ii.3) and

[12, Remark 2.3 (iii)]

A0ðX;LÞ ¼ L4;ð7Þ

A1ðX;LÞ ¼
1

2
KXL

3 þ
5

2
L4;ð8Þ

A2ðX;LÞ ¼
25

12
L4 þKXL

3ð9Þ

þ
1

12
ðK2

X þ c2ðXÞÞL2;

A3ðX;LÞ ¼
5

8
L4 þ

7

12
KXL

3 þ
1

8
K2
XL

2ð10Þ

þ
1

24
c2ðXÞðKX þ 3LÞL:

By (5), (6), (7), (8), (9) and (10), we have

h0ðKX þmLÞ � h0ðKX þ ðm� 1ÞLÞð11Þ

¼
1

6
m3 �

1

4
m2 þ

1

6
m� 1

24

� �
L4

þ
1

4
m2 �

1

4
mþ

1

12

� �
KXL

3

þ
1

12
m�

1

24

� �
K2
XL

2

þ
1

24
c2ðXÞðKX þ ð2m� 1ÞLÞL

�
1

6
m3 �

1

4
m2 �

1

3
mþ

5

24

� �
L4

þ
1

4
m2 �

1

2
m�

1

24

� �
KXL

3

þ
1

12
m� 1

6

� �
K2
XL

2

¼
m� 2

12
ðKX þ LÞðKX þ 3LÞL2

þ
�

1

12
ð3m� 1Þðm� 3Þ

þ
9

24

�
ðKX þ 2LÞL3

þ
�

1

12
mð2m� 6Þ m�

3

2

� �

þ 1

3
m� 13

24

�
L4:

If m � 3, we have

m� 2

12
> 0;

1

12
ð3m� 1Þðm� 3Þ þ 9

24
� 9

24
;

1

12
mð2m� 6Þ m�

3

2

� �
þ

1

3
m�

13

24
�

11

24
:

Here we note that ðKX þ LÞðKX þ 3LÞL2 � 0

since h0ðKX þ LÞ > 0 and KX þ 3L is nef. Moreover

ðKX þ 2LÞL3 > 0 since h0ðKX þ LÞ > 0 and L is

ample. Hence, for every integer m with m � 3, we

have h0ðKX þmLÞ � h0ðKX þ ðm� 1ÞLÞ > 0.

(II) Assume that h0ðKX þ LÞ ¼ 0. First we note

that in this case A3ðX;LÞ � 0 because A4ðX;LÞ ¼
h0ðKX þ LÞ ¼ 0 and 0 � h0ðKX þ 2LÞ ¼ A4ðX;LÞ þ
A3ðX;LÞ. Since A2ðX;LÞ � 0 by Theorem 3.1, we

get h0ðKX þmLÞ � h0ðKX þ ðm� 1ÞLÞ � 0 for

every integer m � 3 by [11, Remark 2.2 (2.2) and

Theorem 3.1.1 (1)] and (5). �

Next we consider the case of dimX ¼ 4 and

m ¼ 2 in Problem 1.1.

Theorem 3.3. Let ðX;LÞ be a polarized

manifold of dimension 4 such that ðX;LÞ does not

have the following structure ð�Þ. Then h0ðKX þ
2LÞ � h0ðKX þ LÞ.
ð�Þ There exist smooth projective varieties eX and

Y with dim eX ¼ 4 and dimY ¼ 3, a birational

morphism � : eX ! X, and a fiber space

f : eX ! Y such that F ¼� P1 and ð��LÞF ¼
OP1ð2Þ, where F is a general fiber of f.

Proof. If h0ðKX þ LÞ ¼ 0, then h0ðKX þ 2LÞ �
h0ðKX þ LÞ ¼ h0ðKX þ 2LÞ � 0. So we may assume

that h0ðKX þ LÞ > 0. Then we can prove the

following

Claim 3.1. �Xh34 Li is generically nef.

Proof. Assume that �X
3
4 L
� 	

is not generically

nef. By [14, 3.1 Theorem] there exist a smooth

56 Y. FUKUMA [Vol. 94(A),



projective variety eX of dimension 4, a smooth

projective variety Y of dimension m with m � 3, a

birational morphism � : eX ! X, and a surjective

morphism f : eX ! Y with connected fibers such

that the following (#) holds:

(#) Any general fiber F of f is rationally con-

nected and h0ðDÞ ¼ 0 for any Cartier divisor

D on F such that D �Q KF þ j��ð34 LÞF for

any j 2 ½0; n�m� \Q, where �Q denotes the

linear equivalence of Q-divisors.

(a) Assume that dimY � 2. Then we see from (#)

that h0ðKF þ ��ðLÞF Þ ¼ h0ðKF þ 4
3 �
�ð34 LÞF Þ ¼ 0

for any general fiber F of f . But since h0ðKeX þ
��ðLÞÞ ¼ h0ðKX þ LÞ > 0, we have h0ðKF þ
��ðLÞF Þ > 0 holds for any general fiber F . Hence

this is a contradiction.

(b) Assume that dim Y ¼ 3. In this case F ¼� P1. If

deg��ðLÞF � 3, then there exists j 2 ½0; 1� \Q

such that KF þ j��ð34 LÞF is a Cartier divisor

with degðKF þ j��ð34 LÞF Þ � 0. Hence h0ðKF þ
j��ð34 LÞF Þ > 0 and this contradicts (#). So we have

degð��ðLÞF Þ � 2. On the other hand, we get

degð��ðLÞF Þ � 2 because h0ðKF þ ��ðLÞF Þ > 0.

Therefore degð��ðLÞF Þ ¼ 2. But this case is exclud-

ed by the assumption that ðX;LÞ does not have the

structure (�). Therefore we get the assertion of

Claim 3.1. �

We note that KX þ 3L is nef because h0ðKX þ
LÞ > 0 (see (I) in the proof of Theorem 3.2). By the

same argument as in the proof of Theorem 3.2, we

see from Claim 3.1 and [14, 2.11 Corollary] that

c2ðXÞðKX þ 3LÞLð12Þ

� �
81

8
L4 �

81

8
KXL

3 �
9

4
K2
XL

2:

On the other hand by (11) in the proof of

Theorem 3.2, we have

h0ðKX þ 2LÞ � h0ðKX þ LÞð13Þ

¼
5

8
L4 þ

7

12
KXL

3 þ
1

8
K2
XL

2

þ
1

24
c2ðXÞðKX þ 3LÞL:

Hence, by noting that h0ðKX þ LÞ > 0, L is

ample and KX þ 3L is nef, we see from (12) and (13)

that

h0ðKX þ 2LÞ � h0ðKX þ LÞ

�
5

8
L4 þ

7

12
KXL

3 þ
1

8
K2
XL

2

�
3

64
ð9L4 þ 9KXL

3 þ 2K2
XL

2Þ

¼
13

64
L4 þ

31

192
KXL

3 þ
1

32
K2
XL

2

¼
1

32
ðKX þ LÞðKX þ 4LÞL2

þ
1

192
ðKX þ 15LÞL3 > 0:

This completes the proof of Theorem 3.3. �
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