
Rational quotients of two linear forms in roots of a polynomial
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Abstract: Let f and g be two linear forms with non-zero rational coefficients in k and ‘

variables, respectively. We describe all separable polynomials P with the property that for any

choice of (not necessarily distinct) roots �1; . . . ; �kþ‘ of P the quotient between fð�1; . . . ; �kÞ and

gð�kþ1; . . . ; �kþ‘Þ 6¼ 0 belongs to Q. It turns out that each such polynomial has all of its roots in a

quadratic extension of Q. This is a continuation of a recent work of Luca who considered the case

when k ¼ ‘ ¼ 2, fðx1; x2Þ and gðx1; x2Þ are both x1 � x2, solved it, and raised the above problem

as an open question.
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1. Introduction. Consider a class of poly-

nomials P of degree at least 2 such that P ðxÞ 2 P iff

(which throughout means if and only if)

P ðxÞ ¼ x�
Yt

j¼1

ðx2 � e2
jDÞ

for some square-free integer D =2 f0; 1g, some � 2
f0; 1g, and some distinct rational numbers e1; . . . ;

et > 0. Here, t ¼ bn=2c, where n :¼ degP . Through-

out, by ZðP Þ we will denote the set of all roots of

P 2 Q½x�.
Recently, Luca [5, Theorem 1.2] has shown the

following:

Theorem 1. Let P 2 Q½x� be a monic sepa-

rable polynomial of degree at least 2 with at least one

irrational root. Then, for any �1; �2; �3; �4 in ZðP Þ,
where �3 6¼ �4, we have

�1 � �2

�3 � �4
2 Q

iff P ðxþ aÞ 2 P for some rational number a.

His motivation comes from some earlier pa-

pers [4] and [6]. In this direction, we first prove the

following slightly more general theorem:

Theorem 2. Let P 2 Q½x� be a monic sepa-

rable polynomial of degree at least 4 with at least

one irrational root. Then, for any distinct �1; �2;

�3; �4 2 ZðP Þ we have

�1 � �2

�3 � �4
2 Q

iff P ðxþ aÞ 2 P for some rational number a.

Note that the condition of Theorem 2 is weaker

than that of Theorem 1: it does not allow the

quotients like ð�1 � �2Þ=ð�1 � �3Þ, where �1; �2; �3

are distinct, which have been used in the proof of

[5, Theorem 1.2]. Nevertheless, the conclusion is

the same. It is clear that Theorem 2 immediately

implies Theorem 1 in case n ¼ degP > 4. For n ¼ 2

the statement of Theorem 1 is trivial, whereas for

n ¼ 3 it follows from Lemma 6 below.

Let k and ‘ be two positive integers, and let

fðx1; . . . ; xkÞ :¼ a1x1 þ � � � þ akxk
and

gðx1; . . . ; x‘Þ :¼ b1x1 þ � � � þ b‘x‘

be two linear forms with some non-zero rational

coefficients a1; . . . ; ak; b1; . . . ; b‘. In [5, Theorem 1.3],

it was shown that if for some monic separable

polynomial P and any �1; . . . ; �kþ‘ 2 ZðP Þ, where

gð�kþ1; . . . ; �kþ‘Þ 6¼ 0, one has

fð�1; . . . ; �kÞ
gð�kþ1; . . . ; �kþ‘Þ

2 Q;

then the Galois group GP of the splitting field of

P ðxÞ over Q is of order at most 132.

The next theorem completely describes all such

polynomials P . As one can see, Theorem 3 implies

that the Galois group GP has order either 2 (if P
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has at least one irrational root) or 1 (otherwise).

For brevity, let us denote

SðfÞ :¼ fð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
k

Þ and SðgÞ :¼ gð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
‘

Þ:

Theorem 3. Let P 2 Q½x� be a monic sepa-

rable polynomial of degree at least 2 with at least

one irrational root. Then, for any (not necessarily

distinct) �1; . . . ; �kþ‘ 2 ZðP Þ, where gð�kþ1; . . . ;

�kþ‘Þ 6¼ 0, we have

fð�1; . . . ; �kÞ
gð�kþ1; . . . ; �kþ‘Þ

2 Q

iff one of the following is true:

(i) SðfÞ ¼ SðgÞ ¼ 0 and P ðxþ aÞ 2 P for some

rational number a;

(ii) at least one of the numbers SðfÞ, SðgÞ is non-

zero and P ðxÞ 2 P.

The proofs of the theorems are completely self-

contained except for several simple observations

which follow from some earlier results on additive

and multiplicative relations with conjugate alge-

braic numbers. Specifically, we shall use the fact

that, e.g., by [1, Theorem 4], for any n > 3 distinct

algebraic numbers �1; . . . ; �n conjugate over Q we

have

c1�1 þ � � � þ cn�n =2 Q if c1; . . . ; cn 2 Q�ð1Þ

satisfy jc1j > jc2j þ � � � þ jcnj. Also, if �1; �2 are

distinct algebraic numbers conjugate over Q then

�1 � �2 =2 Q and �1=�2 =2 Q n f�1g:ð2Þ

This easily follows, by a simple trace and norm

considerations, respectively. See, e.g., [2] for the

description of all algebraic numbers expressible as

differences or as quotients of two conjugate alge-

braic numbers and [3], [7] for some further work on

this problem.

2. Auxiliary results.

Lemma 4. If �1; �2; �3 are distinct algebraic

numbers conjugate over Q then

�1 � �2

�1 � �3
=2 Q:

Proof. Suppose that �1 � �2 ¼ rð�1 � �3Þ with

r 2 Q. Clearly, r 6¼ 0 and r 6¼ 1. Writing this equal-

ity in the form

ð1� rÞ�1 � �2 þ r�3 ¼ 0

we see that the rational coefficients 1� r;�1; r are

all non-zero and sum to zero. Hence, the modulus

of one of them equals the sum of the moduli of the

other two. This is impossible, by (1). �

Lemma 5. Suppose that �1; �2; �3; �4 are

distinct algebraic numbers, and three of them (or

all four) are conjugate over Q. Then, at least one of

the following three quotients

�1 � �2

�3 � �4
;

�1 � �3

�2 � �4
;

�1 � �4

�2 � �3

is irrational.

Proof. Without restriction of generality we

may assume that the numbers �2; �3; �4 are con-

jugate over Q. Suppose the quotients considered

in the lemma are q1; q2; q3 2 Q�, respectively. Then,

�1 � �2 ¼ q1ð�3 � �4Þ, �1 � �3 ¼ q2ð�2 � �4Þ and

�1 � �4 ¼ q3ð�2 � �3Þ. Subtracting the second

equality from the first we obtain

ðq2 � 1Þ�2 þ ð1� q1Þ�3 þ ðq1 � q2Þ�4 ¼ 0:ð3Þ

Similarly, subtracting the third equality from the

first we find that

ðq3 � 1Þ�2 � ðq1 þ q3Þ�3 þ ðq1 þ 1Þ�4 ¼ 0:ð4Þ

Let us analyze (3) first. Note that q1 ¼ 1 yields

q2 ¼ 1, since otherwise �2 ¼ �4, which is not the

case. Similarly, q2 ¼ 1 leads to q1 ¼ 1 and q1 ¼ q2

leads to q1 ¼ q2 ¼ 1. (This happens precisely when

�1 þ �4 ¼ �2 þ �3.) Hence, in case q1 6¼ 1, we must

have q2 6¼ 1 and q1 6¼ q2. However, since the coef-

ficients q2 � 1; 1� q1; q1 � q2 of (3) sum to zero, this

is impossible, by the same argument as in the

proof of Lemma 4. Consequently, we must have

q1 ¼ q2 ¼ 1. By exactly the same argument, as the

coefficients q3 � 1;�q1 � q3; q1 þ 1 of (4) sum to

zero, we deduce that q3 ¼ 1 and q1 ¼ �1. This

contradicts to q1 ¼ 1. �

Lemma 6. Let P 2 Q½x� be a monic separa-

ble polynomial of degree at least 3 with at least one

irrational root. If

�1 � �2

�1 � �3
2 Q

for any three distinct �1; �2; �3 2 ZðP Þ then P ðxþ
aÞ 2 P for some rational a.

Proof. By Lemma 4, none of the irreducible

factors of P has degree at least 3. Hence, P is a

product of linear and quadratic polynomials, with

at least one factor being quadratic. Suppose �1;2 ¼
�a� e1

ffiffiffiffi
D
p

are the roots of some quadratic factor.
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(Here, e1 > 0 and a are rational numbers, and

D 6¼ 0; 1 is a square-free integer.) Let � =2 f�1; �2g
be any root of P . From

�1 � �2

�1 � �
¼

2e1

ffiffiffiffi
D
p

�aþ e
ffiffiffiffi
D
p
� �
2 Q

it follows that ð�þ aÞ=
ffiffiffiffi
D
p
2 Q. Now, using

deg� 6 2, we will show that this is only possible

when � ¼ �aþ e
ffiffiffiffi
D
p

with some rational e 6¼ e1.

Indeed, if deg� ¼ 1 then � ¼ �a. If otherwise

deg� ¼ 2 then � ¼ �bþ e
ffiffiffiffiffiffi
D1

p
, where b and e 6¼ 0

are rational numbers and D1 =2 f0; 1g is a square-

free integer. Then,

�1 � �
�1 � �2

¼
a� bþ e

ffiffiffiffiffiffi
D1

p

2e1

ffiffiffiffi
D
p 2 Q:

For a ¼ b we obtain
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D

p
2 Q which implies that

D ¼ D1, and hence � ¼ �aþ e
ffiffiffiffi
D
p

.

Assume that a 6¼ b. Then,

e
ffiffiffiffiffiffi
D1

p
þ e0

ffiffiffiffi
D
p
¼ b� að5Þ

for some e0 2 Q. To show that (5) is impossible

we observe that, by (5), the numbers D and D1 both

must be positive. Squaring (5) we deduce that

ee0
ffiffiffiffiffiffiffiffiffiffi
DD1

p
2 Q. So ee0 ¼ 0 or DD1 is a perfect square.

The case e ¼ 0 combined with (5) leads to e0 ¼ 0,

which is impossible. Similarly, e0 ¼ 0 gives the same

contradiction. Finally, since D > 0 and D1 > 0 are

square-free, their product DD1 is a perfect square

only if D ¼ D1. Combined with (5) this yields that

ðeþ e0Þ
ffiffiffiffi
D
p
¼ b� a 6¼ 0, which is impossible.

It follows that all the roots of P of degree n ¼
degP must be of the form �a� ej

ffiffiffiffi
D
p

, where ej
are distinct positive rational numbers for j ¼ 1; . . . ;
bn=2c, plus, in addition, e0 ¼ 0 if n is odd. This

means that P ðxþ aÞ ¼ x�
Qbn=2c

j¼1 ðx2 � e2
jDÞ 2 P.

(Here, � ¼ 0 if n is even, and � ¼ 1 if n is odd.) �

Lemma 7. Let P 2 Q½x� be a monic separa-

ble polynomial of degree at least 2 with at least one

irrational root. If �2=�1 2 Q for any �1; �2 2 ZðP Þ,
where �1 6¼ 0, then P ðxÞ 2 P.

Proof. For n ¼ degP ¼ 2 the only possibility

is P ðxÞ ¼ x2 � e2D, where D 6¼ 0; 1 is a square-free

integer and e 2 Q�. Thus, P 2 P.

Suppose that n > 3. Then, P cannot have a

rational root other than 0. Write P ðxÞ ¼ x�QðxÞ,
where � 2 f0; 1g and � ¼ 1 iff 0 is a root of P . Take

any two roots of Q which are conjugate over Q,

say �1 and �2 (�2 6¼ �1). Then �2 ¼ q�1 for some

rational q 6¼ 0. By (2), we deduce that q ¼ �1 is the

only possibility. Hence, �1;��1 are all conjugates

of �1 over Q. This means that each irreducible

factor of the polynomial Q must be quadratic and of

the form x2 �Di, where Di 6¼ u2 for u ¼ 0; 1; 2; . . . .

Furthermore, the condition of the lemma implies

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=Dj

p
2 Q. Write any fixed irrational root

of Q in the form e
ffiffiffiffi
D
p

, with e 2 Q� a square-free

integer D 6¼ 0; 1. Then, in view of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=Dj

p
2 Q all

the roots of Q must be of the form ei
ffiffiffiffi
D
p

with

ei 2 Q. This implies the required result. �

3. Proofs of Theorems 2 and 3.

Proof of Theorem 2. By Lemma 5, each irre-

ducible factor of P must be either linear or

quadratic. If P has at least two linear factors, say

�1; �2 2 Q are two distinct roots of P , then the

condition of the theorem implies that �3 � �4 2 Q

for any �3; �4 2 ZðP Þ. Selecting �3 and �4 as two

roots of the same quadratic factor, we arrive at a

contradiction. Consequently, P has at most one

linear factor.

Take an irrational root of P of the form

�aþ e
ffiffiffiffi
D
p

, where D 6¼ 0; 1 is a square-free integer,

a; e 2 Q and e > 0. Since �a� e
ffiffiffiffi
D
p

is also the root

of P , we must have ð�1 � �2Þ=
ffiffiffiffi
D
p
2 Q for any

�1; �2 2 ZðP Þ n f�aþ e
ffiffiffiffi
D
p

;�a� e
ffiffiffiffi
D
p
g. Selecting

any other pair of quadratic conjugate roots, we

see that they should be �b� e0
ffiffiffiffi
D
p

with rational b

and e0 > 0. Moreover, the quotient between �aþ
e
ffiffiffiffi
D
p
� ð�bþ e0

ffiffiffiffi
D
p
Þ ¼ b� aþ ðe� e0Þ

ffiffiffiffi
D
p

and �a�
e
ffiffiffiffi
D
p
� ð�b� e0

ffiffiffiffi
D
p
Þ ¼ b� a� ðe� e0Þ

ffiffiffiffi
D
p

must be

rational. Hence, a ¼ b or e ¼ e0. However, in case

e ¼ e0 and a 6¼ b the quotient

�aþ e
ffiffiffiffi
D
p
� ð�b� e

ffiffiffiffi
D
p
Þ

�a� e
ffiffiffiffi
D
p
� ð�bþ e

ffiffiffiffi
D
p
Þ
¼
b� aþ 2e

ffiffiffiffi
D
p

b� a� 2e
ffiffiffiffi
D
p

equals

ðb� aÞ2 þ 4e2Dþ 4eðb� aÞ
ffiffiffiffi
D
p

ðb� aÞ2 � 4e2D
;

and so is irrational, which is a contradiction. Hence,

a ¼ b is the only possibility.

Consequently, all irrational roots of P have the

form �a� ei
ffiffiffiffi
D
p

, i ¼ 1; . . . ; t, where ei are distinct

positive rational numbers. If P is of odd degree, it

has a rational root �. Then, from

�aþ e1

ffiffiffiffi
D
p
� �

2e1

ffiffiffiffi
D
p ¼

1

2
� aþ �

2e1

ffiffiffiffi
D
p 2 Q

and � 2 Q, we conclude that � ¼ �a. This implies

that P ðxþ aÞ 2 P. The converse is clear. �
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Proof of Theorem 3. Suppose first that SðfÞ ¼
SðgÞ ¼ 0. Then, k; ‘ > 2. Selecting xi ¼ �1 for each

i 2 f1; . . . ; kg with ai > 0 and xi ¼ �2 for each i with

ai < 0, we find that fðx1; . . . ; xkÞ ¼ a�1 � a�2, where

a is a positive rational number. Similarly, we select

xi ¼ �3 for each i 2 f1; . . . ; ‘g with bi > 0 and xi ¼
�4 for each i with bi < 0. Then, gðx1; . . . ; x‘Þ ¼
b�3 � b�4 for some rational b > 0. This yields

ð�1 � �2Þ=ð�3 � �4Þ 2 Q. The result now follows,

by Theorem 1. The converse is clear.

Suppose that SðfÞ; SðgÞ 6¼ 0. Then, we can

select x1 ¼ � � � ¼ xk ¼ �2 in f and x1 ¼ � � � ¼ x‘ ¼
�1 6¼ 0 in g. This yields �2=�1 2 Q for any �1 6¼ 0,

and the required result follows from Lemma 7. The

converse is also clear.

Suppose next that SðfÞ 6¼ 0 and SðgÞ ¼ 0.

Then, we select x1 ¼ � � � ¼ xk ¼ �1 6¼ 0 in f and xi ¼
�2 for each i 2 f1; . . . ; ‘g with bi > 0 and xi ¼ �1 for

each i with bi < 0 in g. This yields fðx1; . . . ; xkÞ ¼
a�1 and gðx1; . . . ; x‘Þ ¼ b�2 � b�1 for some rational

a 6¼ 0 and b > 0. Consequently, �1=ð�2 � �1Þ 2 Q

for any pair of roots �1; �2 satisfying �2 6¼ �1 and

�1 6¼ 0. Equivalently, �2=�1 2 Q, so that in view of

Lemma 7 we find again that P ðxÞ 2 P. The proof in

the case SðfÞ ¼ 0 and SðgÞ 6¼ 0 is exactly the same.

The converse in both cases is clear. �

In conclusion, we observe that the same result

as in Theorem 3 also holds under assumption that

the roots �1; . . . ; �kþ‘ 2 ZðP Þ are distinct and n ¼
degP > kþ ‘ except that in addition to (i), (ii) we

will have one more option (iii) when n ¼ kþ ‘, all

the coefficients ai of fðx1; . . . ; xkÞ ¼ a1x1 þ � � � þ
akxk are equal, a1 ¼ � � � ¼ ak, all the coefficients

bj of gðx1; . . . ; x‘Þ ¼ b1x1 þ � � � þ b‘x‘ are equal,

b1 ¼ � � � ¼ b‘, and the sum of the roots of P is zero.

The proof is essentially the same as that of the

present version of Theorem 3. (It is based on the

above lemmas, but contains more technical details,

so we omit it.)
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