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A p-analogue of Euler’s constant and congruence zeta functions
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Abstract: A p-analogue of a formula of Euler on the Euler constant is given, and it is

interpreted in terms of the absolute zeta functions of tori.
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1. Introduction. We show the following

result:
Theorem 1. For a prime number' p, we
have
O logp
—1lo n .
n;n 8Cayr,(n) = =7 7()

Here, (Gu UF, denotes the congruence zeta function
of the direct product of n— 1 copies of the multi-
plicative group scheme Gy, over F,, and (p) is the
p-analogue of the Euler constant® ~, which is defined

by
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or, what amounts to the same, by the Jackson
integral
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The constant ~(p) appears naturally as the
Euler constant for a p-analogue of the Riemann zeta
function (Kurokawa-Wakayama [10] (2004)), with
the slight difference that our ~(p) equals their
q—1)log(g—1) ¢
v(q) — (g = 1)loglg — 1)

+ with ¢ =p
logq 2
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1 Although p here and elsewhere can be a prime power, it
would be natural to say “prime p” in such a context where we
consider the absolute limit p — 1.

2 Recall that the Euler constant v := limy, oo (3o -
is a renormalization of the dlvergent serleb Z
also expressed ([4]) by the integral ]” £+
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Note also that
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where d(m) denotes the number of positive divisors
of m, and that ~(p) is known (essentially by
Erdos [3] (1948)) to be an irrational number for
any p (cf. [10], Thm. 2.4). Some numerical examples
of the values of v(p) are as follows:

~(2) = 1.606695152415291763783301523190924580. . .,

~(3) = 1.364307005210476133522526372453248019 . . .,
~(5) = 1.206935414391889831792648637575964770 . . .,
~(7) = 1.145460374461569469213197866506147012 ... .,
7(11) = 1.091603492169399206806457419309760799.. . .,
~(13) = 1.077348233237343981324828032800199231 . . .,
~v(17) = 1.059016428471695020791417452897433801 .. .,

~v(19) = 1.052770466826310566486436314239587146 . . .,

whereas the classical Euler constant is
v = 0.577215664901532860606512090082402431 . . ..
Euler [5] (1776) proved the formula

Z —log (H AR ) vy
n=1" k=1
for the original Euler constant 7. From the point of
view of zeta functions over F; of Soulé [11] (2004)
(see also Kurokawa [7] (2005), Deitmar [2] (2006),
Connes-Consani [1] (2010) and Kurokawa-Ochiai [§]
(2013)), the equality of Euler is nothing but

<1

Z_IOgCG” U, (n) =

n=1
we explain the proof of it in §3. Our Theorem 1 is
a p-analogue of Euler’s result using the congruence
zeta function (o1 /p (8).
We prove Theorem 1 in a bit stronger form:
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Theorem 2.
complex number s with Re(s) > 0, we have

o0

1 logp & 1
—logCgmip (s+n—1)= .
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Theorem 1 is obtained by letting s=1 in
Theorem 2.

2. Proof of Theorems. It is sufficient to
prove Theorem 2. A direct calculation shows

Corym, (s —1) = [ (1 = pretn) 0 (),

m
k=1

Hence
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where we used the formula

—log(1 —x)

00
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n=1

for0<x=1-p ™ < 1. Thus we obtain
(o) 1 *7775
> ~loglgyym, (s +n—1) =logp Z
n=1

Now, we use the formula

o0 IVL

>
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for 0 < |ul, |v\ < 1, which is shown as follows:

(3 )

m:l

For a prime number p and a
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By using the above formula for u = p~* and v = p~,

we obtain
<1 < 1
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B logpi 1
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3. Variation of Euler’s formula. In this
section, we first explain that Euler’s formula

Z—log(Hk (=) )

n=1

is equivalent to

o0

1
>~ loglgrym, (n) =1

n=1

(3.1)

This follows from the equality

Cantyr, (0 H’C ()

for all integers n > 1. In fact, we show:
Theorem 3. For any integer n>1 and a
complex variable s, we have

Caryp, (8) = ﬁ(s —n+k)! v (),

k=1

This is Theorem C (2) of [8]. We shall summa-
rize the proof below for the convenience of the
reader. Let us begin by recalling the definition of
absolute zeta functions from [8] and [9]. For a
function

f: R>0HR7

we define the absolute zeta function (¢(s) of f by

)
w=0

logz)" de,

Cr(s) :==exp <£D Zi(w, s)

where

Zg(w, / f(x
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if the integral exists. For a scheme X of finite type
over Z, we define the absolute zeta function (x/p, (s)
of X by

Cx/r, (8) = Cpy (),

if there exists a polynomial function fy : R.g — R
such that fx(x) equals the number |X(F,)| of
F,-valued points of X whenever z is a prime power.
Note that fy for some typical X (including G™ 1)
are known to be absolute automorphic forms ([9],
§3).

G we have

Proof of Theorem 3. For X =

fx(@) =G (Fy)| = (- 1)" "
Hence
Zap- e, (W, 8)
1 [ee)
= ) /1 (z— 1)z logz)" dx
— k-1
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it follows that
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and hence
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Next we consider a variation of the formula

(3.1). Hasse proved the following identity ([6],
p. 451)°
(3.2) wC(w—+1,s)

o0

- (e (o)

3 This formula is proved in [6] only for the Riemann zeta
function, but it is remarked that the same holds for the
Hurwitz zeta function and Dirichlet L-functions as well.
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for the Hurwitz zeta function defined by

= 1

C(w, s) = Zm

n=0

(Re(w) > 1)
for s € R\ Z.y, and, using this, proved the mer-
omorphic continuation of ((w,s) to the whole

w-plane. The Euler constant ~y(s) for {(w, s) should
be defined by

(o) = tim (o 1.9) - )

= (w(w+1,9)

w=0
It follows from Hasse’s formula (3.2) that

~(s) = i%i(—l)k(z: i) log(s+k—1).
n=1 k=1

Here, the term-by-term differentiation is allowed
because the right-hand side of (3.2) converges
uniformly on each compact subset of C by Hasse

(6], p. 452).
On the other hand, by Lerch’s formula
1 I
C(w+1,8) =———=(8) +O(w) asw— 0,
w T
we have

w—0

(34)  lim (C(w +1,s)— i) = FF (s).

Putting (3.3) and (3.4) together, we obtain the
formula

x 1 n
> D (-
n=1 k=1

According to Theorem 3, this result can be inter-

1)’“(’;:1) log(s + k— 1) = —%(s).

preted as:
Theorem 4. Fors e R\ Z.y, we have
o0 1 F/
;;IOgCG;;;'/FI(S +n—1)=—5(s)

This reduces to (3.1) when s=1, because
I'l)=—vyand T'(1) =
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