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Abstract: The aim of this paper is to study relations between regular reductive

prehomogeneous vector spaces (PVs) with one-dimensional scalar multiplication and the

structure of graded Lie algebras. We will show that the regularity of such PVs is described by

an sl2-triplet of a graded Lie algebra.
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Introduction. A prehomogeneous vector

space (abbrev. PV) is a triplet ðG; �; V Þ consisting

of a connected algebraic group G and its finite-

dimensional rational representation ð�; V Þ with a

Zariski-dense orbit. Some particular cases of PVs

are obtained from a graded finite-dimensional semi-

simple Lie algebra l ¼
L

n2Z ln as ðl0; l1Þ. Such

spaces are named PVs of parabolic type by H.

Rubenthaler (see, for example, [2]) and studied by

him. Then, today, it is known that PVs of parabolic

type have rich structures related to the structure of

graded Lie algebras. For example, the regularity of

irreducible PVs of parabolic type ðl0; l1Þ is closely

related to a subalgebra of l which is isomorphic to

sl2 ([2, Corollaire II.2.15]).

In [2], H. Rubenthaler classified PVs of para-

bolic type using Dynkin diagrams of finite-dimen-

sional semisimple Lie algebras. On the other hand,

it is known that there exist infinitely many PVs

which are not of parabolic type.

Recently, the author and H. Rubenthaler

independently showed that any finite-dimensional

reductive Lie algebra and its finite-dimensional

representation can be embedded into some (finite

or infinite-dimensional) graded Lie algebra ([5, the

author], [3, H. Rubenthaler]). Hence, a PV with a

reductive group and its representation can be also

embedded. Thus, it is expected that we can extend

the theory of PVs of parabolic type to the general

theory of PVs. The aim of this paper is to study

relations between the regularity of (not necessarily

of parabolic type) PVs with 1-dimensional scalar

multiplication and the structure of graded Lie

algebras.

Notation 0.1.

. For an arbitrary vector space W , we denote by

HomðW;CÞ the set of all linear maps from W

to C. Moreover, when W is finite-dimensional,

we denote by W � ¼ HomðW;CÞ for simplicity.

. We denote the zero-matrix of size k� l by Ok;l

or Ok when k ¼ l, the unit matrix of size k by

Ik. We denote the set of all matrices of size

k� l by Mðk; lÞ or MðkÞ when k ¼ l.
. In this paper, all objects are defined over the

complex number field C.

1. Constructions of graded Lie algebras.

First of all, we shall introduce the notion of

standard pentads.

Definition 1.1. Let g be a Lie algebra, � a

representation of g on U , U a g-submodule of

HomðU;CÞ, B a non-degenerate invariant bilinear

form on g. When a pentad ðg; �; U;U; BÞ satisfies

the following conditions, we say that the pentad

ðg; �; U;U; BÞ is a standard pentad:

(a) the restriction to U � U of the canonical

pairing h�; �i : U � HomðU;CÞ ! C is non-de-

generate,

(b) there exists a linear map �� : U � U ! g,

called the �-map of the pentad, satisfying an

equation

Bða;��ðv� �ÞÞ ¼ h�ðaÞv; �i

for any a 2 g, v 2 U and � 2 U
(see [5, Definitions 2.1, 2.2]).

Theorem 1.2. Let ðg; �; U;U; BÞ be an ar-

bitrary standard pentad. Then there exists a (finite

or infinite dimensional) graded Lie algebra
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Lðg; �; U;U; BÞ ¼
L

n2Z Un such that

U0 ’ g ðas Lie algebrasÞ;
U1 ’ U; U�1 ’ U ðas U0 ’ g-modulesÞ

and that the restricted bracket product ½�; ��:U1 �
U�1 ! U0 is induced by the �-map of the standard

pentad ðg; �; U;U; BÞ (see [5, Theorem 2.15]).

In the sense of Theorem 1.2, we can obtain a

graded Lie algebra such that a given representation

of a reductive Lie algebra can be embedded into

its local part. To prove Theorem 1.2, the author

constructed graded components U0; U�1; U�2 . . . in-

ductively.

On the other hand, H. Rubenthaler has ob-

tained similar result independently in [3]. In

[3, Theorem 3.1.2], he constructed a local Lie

algebra �ðg0; B0; �Þ from a fundamental triplet

ðg0; B0; ð�; UÞÞ, which consists of a quadratic Lie

algebra ðg0; B0Þ and its finite-dimensional represen-

tation ð�; UÞ, and constructed a graded Lie algebra

gminð�ðg0; B0; �ÞÞ using [1, Proposition 4] by V. G.

Kac. Although the constructions of him and of the

author are based on different theories, their goals

coincide.

Theorem 1.3. Let ðg; �; U; U�; BÞ be a stand-

ard pentad with finite-dimensional objects and a

symmetric bilinear form B. Then the corresponding

Lie algebra Lðg; �; U; U�; BÞ is isomorphic to the Lie

algebra gminð�ðg; B; �ÞÞ as graded Lie algebras.

Proof. To prove our claim, it suffices to show

that Lðg; �; U;U; BÞ is a minimal Lie algebra (for

details on minimal Lie algebras, see [1, Definition

6]). We use a similar argument to the argument

in [1, p. 1278, Proposition 5]. Suppose that Lðg; �;
U; U�; BÞ ¼

L
n2Z Un is not minimal. Then there

exists a non-zero graded ideal J ¼
L

n2ZðJ \ UnÞ
such that J \ ðU�1 	 U0 	 U1Þ ¼ J \ ðU� 	 g	
UÞ ¼ f0g. Take an integer k such that J \ Uk 6¼
f0g and J \ Un ¼ f0g for any jnj < jkj. If k > 0,

there exists a non-zero element v 2 J \ Un such

that ½v; U�1� ¼ f0g. It contradicts the construction

by the author that Uk 
 HomðU�1; Uk�1Þ (see

[5, Definition 2.9]). The case where k < 0 is similar.

�

Thus, the theories of graded Lie algebras by

the author and by H. Rubenthaler are essentially

same. For example, using [6, Theorem 3.2] by the

author, we can find the structure of a graded Lie

algebra gminð�ðg0; B0; �ÞÞ, where g0 is reductive

and � is completely reducible, constructed by H.

Rubenthaler. On the other hand, H. Rubenthaler

obtained important results on relative invariant in

[3, section 4]. In the remaining part of this paper,

we shall use notion and notations based on the

author’s works unless noted otherwise. Here, we

need to import some notions by H. Rubenthaler to

the theory standard pentads.

Definition 1.4. Let ðg; �; U;U; BÞ be a

standard pentad. If H0 2 g 
 Lðg; �; U;U; BÞ ¼L
n2Z Un satisfies the following conditions:

½H0; A� ¼ 0; ½H0; X� ¼ 2X; ½H0; Y � ¼ �2Y

for any A 2 g ’ U0, X 2 U ’ U1, Y 2 U ’ U�1,

we say that H is a grading element of the

pentad ðg; �; U;U; BÞ or the graded Lie algebra

Lðg; �; U;U; BÞ or its local part U 	 g	 U (cf.

[3, Remark 3.4.4]).

Definition 1.5. Let ðg; �; U;U; BÞ be a

standard pentad. When a triplet ðy; h; xÞ 2
Lðg; �; U;U; BÞ3 satisfies the following conditions,

we say that the pentad is an sl2-triplet:

½h; x� ¼ 2x; ½h; y� ¼ �2y; ½x; y� ¼ h

(cf. [3, p. 53]).

We give the notion of prehomogeneity of

standard pentads.

Definition 1.6. Let ðg; �; U;U; BÞ be a

standard pentad with �-map ��. When the pentad

satisfies the following condition, we say that the

pentad ðg; �; U;U; BÞ is a prehomogeneous pentad:

. there exists an element X 2 U such that a

linear map ��ðX � �Þ:U ! g defined by � 2
U 7! ��ðX � �Þ 2 g is injective.

In other words, a pentad ðg; �; U;U; BÞ is prehomo-

geneous if and only if its corresponding Lie algebra

Lðg; �; U;U; BÞ ¼
L

n2Z Un has an element X 2 U1

such that the adjoint map adX:U�1 ! U0 is in-

jective. Moreover, we call such an element a generic

point of the pentad (see [4, Definition 2.2]).

The terms ‘‘prehomogeneous’’ and ‘‘generic

points’’ come from the theory of prehomogeneous

vector spaces.

Definition 1.7. Let G be a connected linear

algebraic group and ð�; V Þ its finite-dimensional

rational representation. We call a triplet ðG; �; V Þ a

prehomogeneous vector space (abbrev. PV) when

there exists a Zariski-dense orbit �ðGÞx in V . In

particular, when a PV ðG; �; V Þ has a reductive

group G, we call it a reductive PV. An element

x0 2 V is called a generic point when it belongs to
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the Zariski-dense orbit �ðGÞx. When a triplet is a

PV, its Zariski-dense orbit is determined uniquely

(see [7, p. 35, Definition 1]).

Theorem 1.8. We let G be an arbitrary

finite-dimensional reductive algebraic group and

g ¼ LieðGÞ its Lie algebra. Let ð�; V Þ be a finite-

dimensional representation of G and ðd�; V Þ its

infinitesimal representation of g. Then the following

two conditions are equivalent:

(a) A triplet ðG; �; V Þ is a PV,

(b) A pentad ðg; d�; V ; V �; BÞ is a prehomogeneous

pentad for any non-degenerate invariant sym-

metric bilinear form B.

Moreover, an element x 2 V is a generic point of

ðG; �; V Þ in the sense of PVs if and only if x is a

generic point of ðLieðGÞ; d�; V ; V �; BÞ in the sense

of prehomogeneous pentads (see [4, Theorems 2.1,

2.4]).

The theory of PVs has the notion of the

regularity.

Definition 1.9. Let ðG; �; V Þ be a PV with

a generic point x. Let Gx ¼ fg 2 G j �ðgÞx ¼ xg
the isotropy subgroup of G at x. Let g1 be

a subalgebra of LieðGÞ generated by LieðGxÞ
and ½LieðGÞ;LieðGÞ� and put X1 ¼ f! 2 g� ¼
Homðg;CÞ j ! jg1

¼ 0g. Then the PV ðG; �; V Þ is

called quasi-regular if there exist ! 2 X1 and a

rational map ’! : �ðGÞx! V � such that

’!ð�ðgÞx0Þ ¼ ��ðgÞ’!ðx0Þ;
hd�ðAÞx0; ’!ðx0Þi ¼ !ðAÞ

for any A 2 LieðGÞ, g 2 G and x0 2 �ðGÞx and that

the image of ’! is Zariski-dense in V �. In this case,

! is called non-degenerate. In particular, if there

exists a character � : G! C which corresponds to

some relative invariants such that ! ¼ d�, then the

PV ðG; �; V Þ is called regular (see [8, p. 119]).

In general, we need to distinguish the notions of

regularity and quasi-regularity. However, under the

assumption that a group in a triplet is reductive, we

have the following theorem.

Theorem 1.10. We let ðG; �; V Þ be a PV and

assume that G is reductive. Then ðG; �; V Þ is regular

if and only if it is quasi-regular (see [8, Prop-

osition 1.3]).

2. PVs and graded Lie algebras. In this

section, we shall consider how to describe the

regularity of PVs using the theory of graded Lie

algebras. In [3], H. Rubenthaler defined the follow-

ing condition ðP ÞX:

ðP ÞX: X =2 ½½g; g�; X�
and proved that the condition ðP Þx is closely related

to sl2-triplets and relative invariants of a repre-

sentation (see [3, pp. 53–58, section 4]) under the

Assumption ðHÞ.
Definition 2.1. We say that a representa-

tion ðg; �; UÞ of a Lie algebra g satisfies Assumption

ðHÞ when the followings hold:

(a) The Lie algebra g is a reductive Lie algebra

with one-dimensional center:

g ¼ ZðgÞ 	 ½g; g�; dimZðgÞ ¼ 1;

(b) We suppose also that ZðgÞ acts by a non-trivial

character (i.e. �ðZðgÞÞ ¼ CId)

(see [3, p. 53]).

If ðLieðGÞ; d�; V Þ satisfies the Assumption ðHÞ,
it means that ðG; �; V Þ is a group representation of

a reductive group G with 1-dimensional scalar

multiplication.

In the remaining part of this paper, we shall

define similar conditions and consider relations

between these conditions and the regularity of

PVs.

Definition 2.2. Let ðg; �; U;U; BÞ be a

standard pentad. When elements H 2 g and X 2
U (respectively, H 2 g and Y 2 U�) have an element

� 2 U� (respectively, � 2 U) such that a triplet

ð�;H;XÞ (respectively, ðY ;H; �Þ) is an sl2-triplet,

we denote that ðP Þð�;H;XÞ (respectively, ðP ÞðY ;H;�Þ).
Moreover, if an element � (respectively, �) is

determined from H and X (respectively, H and

Y ) uniquely, we denote that ðP Þ!ð�;H;XÞ (respectively,

ðP Þ!ðY ;H;�Þ).
Proposition 2.3. Let ðg; �; U;U; BÞ be a

standard pentad. If there exist elements H 2 g

and X 2 U satisfying ðP Þ!ð�;H;XÞ, then the pentad

ðg; �; U;U; BÞ is prehomogeneous with generic point

X.

Proof. We take a unique element Y ¼ Y ðH;XÞ
such that ðY ;H;XÞ is an sl2-triplet. If we suppose

that X is not a generic point, there exists 0 6¼ � 2 U
such that ½X; �� ¼ 0. Then we have two sl2-triplets

ðY ;H;XÞ and ðY þ �;H;XÞ, of course Y 6¼ Y þ �. It

contradicts the assumption ðP Þ!ð�;H;XÞ. �

Corollary 2.4. Let ðG; �; V Þ be a triplet and

assume that G is a reductive group. If a pentad

ðLieðGÞ; d�; V ; V �; BÞ has elements H 2 LieðGÞ and

X 2 V satisfying ðP Þ!ð�;H;XÞ, then the triplet ðG; �; V Þ
is a PV.
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Similarly, we have the following proposition.

Proposition 2.5. Let ðg; �; V ; V �; BÞ be a

prehomogeneous pentad and X 2 V be a generic

point of it. If there exists an element H 2 g satisfy-

ing ðP Þð�;H;XÞ, then H and X satisfy ðP Þ!ð�;H;XÞ.
Under these notations, we have the main

theorem of this paper.

Theorem 2.6. Let ðG; �; V Þ be a triplet and

assume that G is a reductive group. Assume that

ðLieðGÞ; d�; V Þ satisfies the Assumption ðHÞ. Then

the following conditions are equivalent:

(a) The triplet ðG; �; V Þ is a regular PV,

(b) For an arbitrary non-degenerate invariant bi-

linear form B on LieðGÞ, a pentad ðLieðGÞ;
d�; V ; V �; BÞ has elements X 2 V and Y 2 V �
such that ðY ;H0; XÞ is an sl2-triplet and

that the conditions ðP Þ!ð�;H0;XÞ and ðP Þ!ðY ;H0;�Þ
hold, where H0 is a grading element of the

pentad.

Proof. ((a) implies (b))

We assume that the triplet ðG; �; V Þ is a regular

PV with a generic point x 2 V . Then there exists a

non-degenerate linear map ! : ZðLieðGÞÞ ! C and a

rational map ’! : �ðGÞx! V � such that

’!ð�ðgÞx0Þ ¼ ��ðgÞ’!ðx0Þ;
hd�ðAÞx0; ’!ðx0Þi ¼ !ðAÞ

for any g 2 G, A 2 LieðGÞ, x0 2 �ðGÞx. Since B

is non-degenerate, there exists H 2 LieðGÞ such

that !ðAÞ ¼ BðA;HÞ for any A 2 LieðGÞ. Since

! j½LieðGÞ;LieðGÞ�¼ 0, we have H ¼ cH0 2 ZðLieðGÞÞ
for some c 2 C. Here, from the assumption that

! is non-degenerate, c 6¼ 0. Thus, in LðLieðGÞ; d�;
V ; V �; BÞ, we have an equation

BðA; ½x0; ’!ðx0Þ�Þ ¼ hd�ðAÞx0; ’!ðx0Þi
¼ !ðAÞ ¼ BðA;HÞ

for any A 2 LieðGÞ and x0 2 �ðGÞx. From this, we

can deduce that

½x; ’!ðxÞ� ¼ H ¼ cH0:

Then, ðY ;H0; XÞ ¼ ðð1=cÞ’!ðxÞ; H0; xÞ is an sl2-trip-

let. Since X belongs to the Zariski-dense orbit, we

have ðP Þ!ð�;H0;XÞ. Moreover, since the orbit ��ðGÞY ¼
ðthe image of ’!Þ is Zariski-dense in V �, we have

ðP Þ!ðY ;H0;�Þ. Thus, we have the condition (b).

((b) implies (a))

We suppose the condition (b) and take an

arbitrary non-degenerate invariant bilinear form B.

Then ðG; �; V Þ is a PV with a Zariski-dense orbit

�ðGÞX 
 V . We can define a map ’ : �ðGÞX ! V �

by

ðx0; H0; ’ðx0ÞÞ is an sl2-triplet for x0 2 �ðGÞX

satisfying

��ðgÞ’ðx0Þ ¼ ’ð�ðgÞx0Þ ðg 2 G; x0 2 �ðGÞXÞ

(see [3, proof of Proposition 4.2.7]). That is, � ¼
’ðx0Þ is a unique solution of a linear equation

adðx0Þ� ¼ H0. Thus, ’ is a rational map. If we define

! : LieðGÞ ! C by !ðAÞ ¼ BðA;H0Þ, then we have

an equation

hd�ðAÞx0; ’ðx0Þi ¼ BðA;H0Þ ¼ !ðAÞ:

In the notations of Definition 1.9, ! clearly belongs

to X1. From the assumption ðP Þ!ðY ;H0;�Þ, we have that

(the image of ’) = ��ðGÞ’ðXÞ ¼ ��ðGÞY is Zariski-

dense in V �. Thus, we have that ðG; �; V Þ is quasi-

regular, and thus, regular. �

Under the notation of Theorem 2.6, note that

ðP ÞX is equivalent to ðP Þð�;H0;XÞ (see [3, Theorem

4.1.2]).

Definition 2.7. Define a bilinear form Tn on

gln by

TnðX; Y Þ ¼ TrðXY Þ

for any X; Y 2 gln. Clearly, the bilinear form Tn is

non-degenerate and invariant. Moreover, for a Lie

subalgebra l 
 gln, we also denote the restriction

Tn jl�l by the same symbol Tn.

Example 2.8. An irreducible PV

ðG; �; V Þ
¼ ðGL1 � Spn � SO3;�� �1 � �1;Mð2n; 3ÞÞ

ð2n � 3Þ is very important for us since it is an

example of a non-regular PV which has a relative

invariant (see [7, p. 105, Proposition 19]). Let us

show this claim using a pentad

ðLieðGÞ; d�; V ; V �; BÞ
¼ ðgl1 	 spn 	 so3;�� �1 � �1;Mð2n; 3Þ;
Mð2n; 3Þ; T1 	 T2n 	 T3Þ;

where

spn ¼ fA 2Mð2nÞ j A � Jn þ Jn �t A ¼ O2ng;

Jn ¼
On In

�In On

� �
:

The representations d� and its dual d�� are given

by:
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d�ða;A;BÞv ¼ avþAv� vB;
d��ða;A;BÞu ¼ �auþ Au� uB

ða 2 gl1; A 2 spn; B 2 so3Þ via a bilinear form

hv; ui ¼ Trðtv � Jn � uÞ ðv; u 2Mð2n; 3ÞÞ:

The �-map �d� of this pentad is given by

�d�ðv� uÞ

¼
�

Trðtv � Jn � uÞ;�
1

2
ðv �t uþ u �t vÞJn;

1

2
ðtv � Jn � uþ tu � Jn � vÞ

�
:

We can easily check that the pentad has a grading

element H0 and a generic point X

H0 ¼ ð2; O2n; O3Þ;

X ¼ t

1 0

0 1

0 0

O3;n�2

0

0

1

O3;n�1

0
B@

1
CA

and satisfies the Assumption ðHÞ. We can easily

check that H0 and X satisfy ðP Þ!ð�;H0;XÞ. In fact, if

we put

� ¼ t

0

0

�1

O3;n�1

1

0

0

O3;n�1

0
B@

1
CA;

then we can obtain an sl2-triplet ð�;H0; XÞ, and

thus, ðP Þð�;H0;XÞ holds. Since X is a generic point, we

have ðP Þ!ð�;H0;XÞ. From the result of H. Rubenthaler,

[3, Theorem 4.2.3], we can deduce that there exists

a non-trivial relative invariant on V = (the Zariski

closure of �ðGÞX). Here, ðG; �; V Þ is not regular. If

we suppose that ðG; �; V Þ is regular, then we have

an sl2-triplet ðY 0; H0; X
0Þ such that ðP Þ!ð�;H0;X0Þ and

ðP Þ!ðY 0;H0;�Þ hold. Then, there exists g 2 G such

that X0 ¼ �ðgÞX. Then, we have that � ¼
��ðg�1ÞY 0 belongs to the Zariski-dense orbit

��ðGÞY 0 in V �. However, since rank � ¼ 2, the

orbit ��ðGÞ� cannot be Zariski-dense in Mð2n; 3Þ.
It is a contradiction.
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