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Abstract: Let q be an odd prime. Let c > 1 and t be positive integers such that

qt þ 1 ¼ 2c2. Using elementary method and a result due to Ljunggren concerning the Diophantine

equation xn�1
x�1 ¼ y2, we show that the Diophantine equation x2 þ qm ¼ c2n has the only positive

integer solution ðx;m; nÞ ¼ ðc2 � 1; t; 2Þ. As applications of this result some new results on the

Diophantine equation x2 þ qm ¼ cn and the Diophantine equation x2 þ ð2c� 1Þm ¼ cn are

obtained. In particular, we prove that Terai’s conjecture is true for c ¼ 12; 24. Combining this

result with Terai’s results we conclude that Terai’s conjecture is true for 2 � c � 30.
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1. Introduction. Let b; c be positive inte-

gers. The Diophantine equation

x2 þ bm ¼ cnð1:1Þ

has been studied by many authors. For example,

when a2 þ b2 ¼ c2 with gcdða; b; cÞ ¼ 1 and a an even

number, N. Terai [7] conjectured that equation

(1.1) has the only positive integer solution

ðx;m; nÞ ¼ ða; 2; 2Þ. If b ¼ q 6� 7 (mod 8Þ is an odd

prime and m � 1 (mod 2Þ, Arif and Muriefah [1]

and H. L. Zhu [9] have solved the Diophantine

equation

x2 þ qm ¼ cnð1:2Þ

for n > 3, gcdð6hðqÞ; nÞ ¼ 1 and n ¼ 3, with n > 1

and n ¼ 3, gcdðhðqÞ; nÞ ¼ 1 respectively, where hðqÞ
denotes the class number of the quadratic field

Q(q). Let c > 1 and t be positive integers such that

qt þ 1 ¼ 2cs with s ¼ 1; 2. In [8], N. Terai gave

several results ([8], Theorem 1.2–1.4) on equation

(1.2). If c > 1 and b ¼ 2c� 1, he gave five sufficient

conditions for the Diophantine equation

x2 þ ð2c� 1Þm ¼ cnð1:3Þ

to have only the positive integer solution ðx;m; nÞ ¼
ðc� 1; 1; 2Þ, and conjectured that equation (1.3) has

no other solution. He show that his conjecture holds

for 2 � c � 30 apart from c ¼ 12; 24. In what follows

we refer to this conjecture as Terai’s conjecture.

We note from loc. cit that for equation (1.2),

the case where q 6� 7 (mod 8Þ was treated only in

([8], Theorem 1.3) and ([8], Proposition 2.3(v)).

Moreover, in [8] results of Arif and Muriefah [1]

and H. L. Zhu [9] were used to resolve some

Diophantine equations of the form (1.2). But the

related results in [1] and [9] have the restriction

q 6� 7 (mod 8Þ. Due to this fact, N. Terai remarked

in [8] that it can not be proved that equations x2 þ
23m ¼ 12n and x2 þ 47m ¼ 24n have no solution in

case both m and n are odd. In this paper, we

consider the Diophantine equation

x2 þ qm ¼ c2n;ð1:4Þ

and the main results we will prove are:

Theorem 1.1. Let c > 1 and t be positive

integers such that qt þ 1 ¼ 2c2 with q an odd prime.

Then equation (1.4) has only the positive integer

solution ðx;m; nÞ ¼ ðc2 � 1; 1; 2Þ.
Theorem 1.2. Let q � 7 (mod 8Þ be an odd

prime. Let c be a positive integer such that

q2 þ 1 ¼ 2c2 with c � 1 (mod 8Þ and cþ 1 has a

prime factor p satisfying p � 5; 7 (mod 8Þ. Then

equation (1.2) has only the positive integer solution

ðx;m; nÞ ¼ ðc2 � 1; 2; 4Þ.
Theorem 1.3. Let q be an odd prime. Let

c be a positive integer such that q þ 1 ¼ 2c2 with

c � 0; 1; 2 (mod 4Þ and cþ 1 has a prime factor p

satisfying p � 5; 7 (mod 8Þ. Then equation (1.2)

has only the positive integer solution ðx;m; nÞ ¼
ðc2 � 1; 1; 4Þ.

Moreover, as Corollaries of Theorem 1.1 we

also derive the following
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Corollary 1.4 ([8], Theorem 1.3). Let q be

an odd prime. Let c be a positive integers such that

q2 þ 1 ¼ 2c2 with c � 5 (mod 8Þ. Then equation

(1.2) has only the positive integer solution

ðx;m; nÞ ¼ ðc2 � 1; 2; 4Þ.
Corollary 1.5 ([8], Theorem 1.4). Let q be

an odd prime. Let c be a positive integers such that

q þ 1 ¼ 2c2 with c � 3 (mod 4Þ. Then equation (1.2)

has only the positive integer solution ðx;m; nÞ ¼
ðc2 � 1; 1; 4Þ.

Corollary 1.6. Let q be an odd prime. Let

c > 1 be a square and let t be positive integers such

that qt þ 1 ¼ 2c. Then equation (1.2) has only the

positive integer solution ðx;m; nÞ ¼ ðc� 1; t; 2Þ.
Let us point out that our Theorem 1.2 covers

the case that q � 7 (mod 8Þ, which was not dealt

with in [8]; that Theorem 1.3 covers the cases that

c � 0; 1; 2 (mod 4Þ and cþ 1 has a prime factor

p satisfying p � 5; 7 (mod 8Þ which were not dealt

with in [8]. Note that, in spite of the restriction on

cþ 1, our Theorem 1.3 deals with much more

cases than that of Theorem 1.4 in [8] (see Remark

1), and when c � 0; 1; 2 (mod 4Þ Theorem 1.3

covers the case that q � 7 (mod 8Þ. Furthermore,

comparing with ([8], Proposition 3.2,(v)), Corollary

1.6 shows that Terai’s conjecture is true for more

c � 0 (mod 4Þ.
In the last section, we give 3 examples, which

can not be treated by the methods used in [8], to

illustrate that these cases can be settled by using a

result due to Z. Cao [3] and Theorem 1.1.

2. Lammas. In the next two sections we

need the following lemmas to prove the main results

and give relevant examples and remarks. Lemma

2.1–2.2 belong to W. Ljunggren ([5], [6]) and

Lemma 2.3 is a corollary of Theorem 3.2.1 of Z.

Cao [3]. Because reference [3] is written in Chinese,

it is not readable for many readers. For the

convenience of the reader, we will give a simple

proof of Lemma 2.3 by using result of [4].

Lemma 2.1. The Diophantine equation

xn � 1

x� 1
¼ y2

has no solutions in integers x, y, n with jxj > 1 and

n � 3, except for ðn; x; yÞ ¼ ð4; 7;�20Þ; ð5; 3;�11Þ.
Lemma 2.2. The only positive integer solu-

tion of the Diophantine equation

x3 þ 1 ¼ 2y2

are ðx; yÞ ¼ ð1; 1Þ; ð23; 78Þ.
Lemma 2.3. Let d; k be integer such that

d � 2; 3 (mod 4Þ, jdj is not a square, gcdðd; kÞ ¼ 1

and jkj > 1. Suppose x; y; z 2 Z; z > 0 and

gcdðx; yÞ ¼ 1. If the Diophantine equation

x2 � dy2 ¼ kz

has solution ðx; y; zÞ with 2 - z, then it must has a

solution ðx0; y0; z0Þ such that hðdÞ � 0 (mod z0Þ,
where hðdÞ denote the class number of the quadratic

field Qð
ffiffiffi
d
p
Þ.

Proof. Since d � 2; 3 (mod 4Þ, the discrimi-

nant of quadratic field Qð
ffiffiffi
d
p
Þ is 4d. Let h�ð4dÞ denote

the class number of the binary quadratic form with

discriminant 4d. By Theorem 6.1 of [4] we have

h�ð4dÞ � 0 (mod z0Þ, thus hðdÞ � 0 (mod z0Þ or

2hðdÞ � 0 (mod z0Þ. By Theorem 6.2 of [4], z0 j z.
Since 2 - z, it follows that hðdÞ � 0 (mod z0Þ. �

3. Proof of main results.

Proof of Theorem 1.1. From (1.3) we have

qm ¼ ðcn þ xÞðcn � xÞ:

Because q is an odd prime and gcdðcn þ x; cn � xÞ ¼
1, we have

qm ¼ cn þ x; cn � x ¼ 1;

hence

qm þ 1 ¼ 2cn:ð3:1Þ

From qt þ 1 ¼ 2c2 we deduce that m � t. Suppose

m < t, then we have n ¼ 1; 2c� 1 j 2c2 � 1 and

thereby 2c� 1 j 2ð2c2 � 1Þ ¼ ð2c� 1Þð2cþ 1Þ � 1,

which contradicts c > 1. Thus m � t. Now we prove

t j m. We need only consider the case t > 1. Suppose

m ¼ t � 2srþ l with 2 - r and 0 � l < t. If s > 0, then

from qm þ 1 ¼ qlðqt2sr � 1Þ þ ql þ 1, qt2
s � 1 j qt2sr �

1 and qt þ 1 j qt2s � 1 we have qt þ 1 j ql þ 1, which

is impossible. Hence s ¼ 0. Then from qm þ 1 ¼
qlðqtr þ 1Þ � ql þ 1 and qt þ 1 j qtr þ 1 we obtain

qt þ 1 j ql � 1, which implies l ¼ 0 and thus m ¼ tr.
Since qt þ 12c2, (3.1) leads to

ð2c2 � 1Þr þ 1 ¼ 2cn:ð3:2Þ

If c ¼ 3, taking modulo 17, from (3.2) we get

1 � 2 � 3n (mod 17Þ. Then we have

1 ¼
1

17

� �
¼ 2

17

� �
3

17

� �n
¼ ð�1Þn;

where ð��Þ is Legendre’s symbol. Hence n � 0
(mod 2Þ. If c 6¼ 3, taking modulo cþ 1, (3.2) gives
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2 � 2ð�1Þn (mod cþ 1Þ:
Then we have n � 0 (mod 2Þ. Let n ¼ 2N . If

N ¼ 1, then from (3.2) we have r ¼ 1. Therefore

we may suppose r � 3 and N > 1. Then equation

(3.2) can be written as

ð�2c2 þ 1Þr � 1

ð�2c2 þ 1Þ � 1
¼ ðcN�1Þ2:ð3:3Þ

It follows from Lemma 2.1 that equation (3.3) has

no solution. This completes the proof of Theorem

1.1. �

Proof of Theorem 1.2. Since x2 � 0 (mod 4Þ,
taking (1.2) modulo 4 gives ð�1Þm � 1 (mod 4Þ and

thus we have m � 0 (mod 2Þ. Now we prove n is

even. Suppose n is odd, then taking (1.2) modulo p

implies that x2 � �2 (mod pÞ since q2 þ 1 ¼ 2c2;

c � �1 (mod pÞ, and we thus reach a contradiction

that

1 ¼ x2

p

� �
¼

2

p

� �
¼ �1:

Hence n � 0 (mod 2Þ. Let n ¼ 2N . Then equation

x2 þ qm ¼ c2N has only the positive integer solution

ðx;m;NÞ ¼ ðc2 � 1; 2; 2Þ by Theorem 1.1. Thus

equation (1.2) has only the positive integer solution

ðx;m; nÞ ¼ ðc2 � 1; 2; 4Þ. This completes the proof of

Theorem 1.2. �

Proof of Theorem 1.3. We can prove n is even

in a similar way as in the proof of Theorem 1.2. Let

n ¼ 2N. Then equation x2 þ qm ¼ c2N has only the

positive integer solution ðx;m;NÞ ¼ ðc2 � 1; 1; 2Þ by

Theorem 1.1. Thus equation (1.2) has only the

positive integer solution ðx;m; nÞ ¼ ðc2 � 1; 1; 4Þ.
This completes the proof of Theorem 1.3. �

Proof of Corollary 1.4. By the proof of Theo-

rem 1.3 in [8] we know that n is even. Let n ¼
2N. Since t ¼ 2, by Theorem 1.1, equation x2 þ
qm ¼ c2N has only the positive integer solution

ðx;m;NÞ ¼ ðc2 � 1; 2; 2Þ. Thus equation (1.2) has

only the positive integer solution ðx;m; nÞ ¼
ðc2 � 1; 2; 4Þ. This completes the proof of Corollary

1.4. �

Proof of Corollary 1.5. Similar to the proof of

Corollary 1.4, because t ¼ 1, we deduce that equa-

tion (1.2) has only the positive integer solution

ðx;m; nÞ ¼ ðc2 � 1; 1; 4Þ by Theorem 1.1. �

Proof of Corollary 1.6. Since qt þ 1 ¼ 2d2,

equation (1.2) can be written as

x2 þ qm ¼ d2n:ð3:4Þ
By Theorem 1.1 equation (3.4) has the only positive

integer solution ðx;m; nÞ ¼ ðd2 � 1; t; 2Þ. Hence

equation (1.2) has only the positive integer solution

ðx;m; nÞ ¼ ðc� 1; t; 2Þ. �

Remark 1. For 2 � c � 200, we find 44 val-

ues of c that satisfy the conditions of Theorem 1.2

or Theorem 1.3, in which there are two cases

according to t ¼ 1, or 2.

Case 1. t ¼ 1. In this case we have c 2 f4; 6;
13; 22; 24; 25; 28; 34; 36; 38; 41; 45; 46; 49; 52; 62; 64;

69; 73; 76; 92; 102; 108; 109; 118; 125; 126; 132; 134;

137; 140; 141; 153; 154; 157; 158; 160; 164; 172; 181;
185; 188; 196g.

Case 2. t ¼ 2. In this case c ¼ 169, and we have

2392 þ 1 ¼ 2 � 1692. It is clear that all the 44 cases

can not be treated by Theorem 1.2–1.4 of [8]. Note

that, if t ¼ 1, there are 43 values of c satisfying

the condition of Theorem 1.3. On the other hand,

there are only 19 values of c that satisfy the

condition of Theorem 1.4 of [8], that is: c 2 f3; 7;
11; 15; 39; 43; 59; 63; 87; 91; 95; 115; 127; 143; 155; 171;

179; 183; 199g.
4. Examples. In this section we give three

example.

Example 1. The Diophantine equation

x2 þ 23m ¼ 78nð4:1Þ

has only the positive integer solution ðx;m; nÞ ¼
ð782 � 1; 3; 4Þ.

Proof. In fact, taking modulo 4 (4.1) gives

1þ ð�1Þm � 0 (mod 4Þ, and hence m is odd. Sup-

pose n is odd. Then (4.1) can be written as

x2 � 78 � y2 ¼ ð�23Þm;ð4:2Þ

where y ¼ 78
n�1

2 . It follows from Lemma 2.3 that

(4.2) must have a solution ðx0; y0;m0Þ such that

hð78Þ � 0 (mod m0Þ. Hence m0 ¼ 1 since hð78Þ ¼ 2

and m0 is odd. But, by taking modulo 7, it follows

that (4.2) has no solution when m ¼ m0 ¼ 1. Thus

n is even. Let n ¼ 2N . By Theorem 1.1, equation

x2 þ 23m ¼ 782N has only the positive integer solu-

tion ðx;m;NÞ ¼ ð782 � 1; 3; 2Þ. Hence equation (4.1)

has only the positive integer solution ðx;m; nÞ ¼
ð782 � 1; 3; 4Þ. �

Remark 2. For t ¼ 3, the only pair ðq; cÞ
satisfying equation q3 þ 1 ¼ 2 � c2 is ðq; cÞ ¼ ð23; 78Þ
by Lemma 2.2. If t > 3, there is no pair ðq; cÞ
satisfying the equation qt þ 1 ¼ 2 � c2 by a result
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due to Bennett and Skinner [2]. It is quite natural

to ask whether there are only finitely many pairs

ðq; cÞ satisfying the equation q2 þ 1 ¼ 2 � c2 ? For

2 � c � 200, we find only 3 pairs: ðq; cÞ ¼
ð7; 5Þ; ð41; 29Þ; ð239; 169Þ. For 200 < c � 1050, by

a computer searching (using Maple 18) we find

only four more pairs, namely: ðq; cÞ ¼
ð9369319; 6625109Þ; ð63018038201; 44560482149Þ;
ð489133282872437279; 345869461223138161Þ; ð1917

5002942688032928599; 13558774610046711780701Þ.
Example 2. The Diophantine equation

x2 þ 23m ¼ 12n;ð4:3Þ

has only the positive integer solution ðx;m; nÞ ¼
ð11; 1; 2Þ.

Proof. We first prove that m is odd. In fact,

taking modulo 4, (4.3) gives x2 þ ð�1Þm � 0
(mod 4Þ, and hence m is odd. If n is odd, then

equation (4.3) can be written as

x2 � 3y2 ¼ ð�23Þm;ð4:4Þ

where y ¼ 2n � 3n�1
2 . If (4.4) has positive integer

solution, then from Lemma 2.3 it must have a

solution ðx0; y0;m0Þ such that hð3Þ � 0 (mod m0Þ,
and we then obtain that m0 ¼ 1 since hð3Þ ¼ 1. But,

taking modulo 13, (4.4) gives x2 � 2 (mod 13Þ,
which is impossible. Hence n is even. Let n ¼ 2N.

Then equation (4.3) implies 2 � 12N ¼ 23m þ 1. If

N ¼ 1, then we get m ¼ 1 and thus x ¼ 11. If

N > 1, since 2 � 12N � 0 (mod 16Þ but 23m þ 1 �
8 (mod 16Þ, thus 2 � 12N ¼ 23m þ 1 has no solution.

�

Example 3. The Diophantine equation

x2 þ 47m ¼ 24n;ð4:5Þ

has only the positive integer solution ðx;m; nÞ ¼
ð23; 1; 2Þ.

Proof. As in the proof of Example 2 we deduce

that m is odd. If n is odd, equation (4.5) can be

written as

x2 � 6y2 ¼ ð�47Þm;ð4:6Þ

y ¼ 2n � 3n�1
2 . If equation (4.6) has positive integer

solution, then from Lemma 2.3 it must have a

solution ðx0; y0;m0Þ such that hð6Þ � 0 (mod m0Þ,
and we then obtain that m0 ¼ 1 since hð6Þ ¼ 1. But,

taking modulo 5, (4.6) gives x2 � 2 (mod 5Þ, which

is impossible. Hence n is even. Let n ¼ 2N . Then

(4.5) gives 2 � 24N ¼ 47m þ 1. If N ¼ 1, then we get

m ¼ 1 and thus x ¼ 23. If N > 1, since 2 � 24N �
0 (mod 32Þ but 47m þ 1 � 16 (mod 32Þ, thus 2 �
24N ¼ 47m þ 1 has no solution. �

Remark 3. Combining Example 2–3 with

the results in [8] we conclude that Terai’s conjec-

ture is true for 2 � c � 30.
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