On dependence of meromorphic functions sharing some finite sets IM

By Manabu Shirosaki

Department of Mathematical Sciences, School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

(Communicated by Masaki Kashiwara, M.J.A., Nov. 12, 2015)

Abstract: In connection with Nevanlinna's five-value theorem ([2]), the author showed in [3] that two meromorphic functions sharing five one-point or two-point sets IM are Möbius transforms of each other. Now, we consider n + 1 meromorphic functions sharing some finite sets IM.

Key words: Uniqueness theorem; sharing sets; Nevanlinna theory.

1. Introduction. For nonconstant meromorphic functions f and g on C and a finite set S in $\overline{C} = C \cup \{\infty\}$, we say that f and g share S IM (ignoring multiplicities) if $f^{-1}(S) = g^{-1}(S)$. In particular if S is a one-point set $\{a\}$ IM, then we say also that f and g share g IM.

In [2], R. Nevanlinna showed the following theorem:

Theorem A. Let f and g be two nonconstant meromorphic functions on C sharing distinct five points in \overline{C} IM, then f = g.

Let n,q be two positive integer such that q > n+1+2/n. We can easily see, by the same method as the proof of Theorem A, that if n+1 meromorphic functions on C share q pairwise disjoint n-point sets IM, then at least two of them are identical (see, also, Theorem 4).

On the other hand, the author proved in [3]:

Theorem B. Let S_1, \dots, S_5 be one-point or two-point sets in \overline{C} . Assume that S_1, \dots, S_5 are pairwise disjoint. If two nonconstant meromorphic functions f and g on C share S_1, \dots, S_5 IM, then f is a Möbius transform of g.

In the proof of Theorem B, we can see that there is a Möbius transformation T such that T(f)+T(g)=0 if $f\neq g$, and that the case where the number of two-point sets is one and the case where it is greater than one slightly differ. In this paper we consider n+1 meromorphic functions on C sharing some finite sets, and we show the following two theorems:

Theorem 1. Let n be a positive integer and let S_1, \dots, S_{p+q} be pairwise disjoint non-empty finite

sets in \overline{C} with at most n+1 elements, where p and q are non-negative integers with $q \geq 2$. Let $m_j = \sharp S_j$ be the number of elements of S_j . Assume that $m_j \leq n$ for $j=1,\cdots,p$ and $m_j=n+1$ for $j=p+1,\cdots,p+q$, and assume that n+1 mutually distinct nonconstant meromorphic functions f_1,\cdots,f_{n+1} on C share S_1,\cdots,S_{p+q} IM. If $m_1+\cdots+m_p+\frac{(n+1)q}{2}>n(n+1)+2$, then there exists a Möbius transformation T such that $T(f_1)+\cdots+T(f_{n+1})=0$.

Theorem 2. Let n be a positive integer and let S_1, \dots, S_5 be pairwise disjoint non-empty finite sets in \overline{C} such that $\sharp S_1 = \dots = \sharp S_4 = 1, \sharp S_5 = n+1$. Assume that n+1 mutually distinct nonconstant meromorphic functions f_1, \dots, f_{n+1} on C share S_1, \dots, S_5 IM. Then there exists a Möbius transformation T such that $T(f_1) + \dots + T(f_{n+1}) = 0$.

We assume that the reader is familiar with the standard notations and results of the value distribution theory (see, for example, [1]). In particular, we express by S(r,f) quantities such that $\lim_{r\to\infty,r\notin E}S(r,f)/T(r,f)=0$, where E is a subset of $(0,\infty)$ with finite linear measure and it is variable in each cases.

2. A lemma. Before beginning the proofs of Theorems, we show the following

Lemma 3. Let ξ_1, \dots, ξ_m and η_1, \dots, η_n be mutually distinct points in \overline{C} , where m and n are positive integers with $m+n \geq 3$. Then there exists a Möbius transformation T such that all $T(\xi_j), T(\eta_j)$ are in C and that $\sum_{j=1}^m T(\xi_j)/m = \sum_{j=1}^n T(\eta_j)/n$.

who we assume that $\sum_{j=1}^{m} T(\xi_j)/m = \sum_{j=1}^{n} T(\eta_j)/n$.

Proof. We may assume that all points are in C. If $\sum_{j=1}^{m} \xi_j/m = \sum_{j=1}^{n} \eta_j/n$, then let T be the identity.

Now we assume that $\sum_{j=1}^{m} \xi_j/m \neq \sum_{j=1}^{n} \eta_j/n$. Define

2010 Mathematics Subject Classification. Primary 30D35.

the polynomials $P(z) = (z - \xi_1) \cdots (z - \xi_m)$ and $Q(z) = (z - \eta_1) \cdots (z - \eta_n)$, and we consider Möbius transformations of the form $T(z) = \frac{1}{z+d}$. Since $P'(z)/P(z) = \sum_{i=1}^{m} \frac{1}{z-\xi_i}$, we see that

$$\sum_{j=1}^{m} T(\xi_j) = -\frac{P'(-d)}{P(-d)},$$

and similarly,

$$\sum_{j=1}^{n} T(\eta_j) = -\frac{Q'(-d)}{Q(-d)}.$$

Hence, $\sum_{j=1}^{m} T(\xi_j)/m = \sum_{j=1}^{n} T(\xi_j)/n$ is equivalent to the condition

$$\frac{1}{m} \frac{P'(-d)}{P(-d)} = \frac{1}{n} \frac{Q'(-d)}{Q(-d)}$$

Therefore it is enough to show that the equation

$$nP'(z)Q(z) - mP(z)Q'(z) = 0$$

has a solution distinct from ξ_j, η_j . The assumption that $\sum_{j=1}^m \xi_j/m \neq \sum_{j=1}^n \eta_j/n$ implies that the degree of the left-hand side polynomial is m+n-2(>0), and we see that any of ξ_j and η_j is not solution of the equation since ξ_j, η_j are mutually distinct. Therefore we complete the proof.

3. Proof of Theorem 1 and Corollaries. For the proof we may assume that any S_j does not contain ∞ . Put $N=m_1+\cdots+m_{p+q}$. Then we have $N\geq 3$ and we can see, by the second fundamental theorem, that there is no need to distinguish $S(r,f_j)$. So we express them by S(r). Put $\Phi=\prod\limits_{1\leq j< k\leq n+1}(f_j-f_k)(\not\equiv 0)$. Now, we consider the reduced counting functions $\overline{N}_D(r,S_j)$ and $\overline{N}_E(r,S_j)$. The former counts the points $z\in f_1^{-1}(S_j)$ such that $f_1(z),\cdots,f_{n+1}(z)$ are all distinct, and the latter counts the points $z\in f_1^{-1}(S_j)$ such that at least two of $f_1(z),\cdots,f_{n+1}(z)$ are equal. Then we have, by the first main theorem,

(3.1)
$$\sum_{j=1}^{p+q} \overline{N}_E(r, S_j) \le \overline{N}(r, 1/\Phi)$$
$$\le n \sum_{j=1}^{n+1} T(r, f_j) + O(1)$$

and, by this and the second main theorem,

$$(N-2)T(r,f_k)$$

$$\leq \sum_{j=1}^{p+q} (\overline{N}_D(r, S_j) + \overline{N}_E(r, S_j)) + S(r)$$

$$\leq \sum_{j=1}^{p+q} \overline{N}_D(r, S_j) + n \sum_{j=1}^{n+1} T(r, f_j) + S(r)$$

for $k = 1, \dots, n + 1$. By adding the above inequalities for $k = 1, \dots, n + 1$, we obtain

$$\{N-2-n(n+1)\} \sum_{k=1}^{n+1} T(r, f_k)$$

$$\leq (n+1) \sum_{j=1}^{p+q} \overline{N}_D(r, S_j) + S(r)$$

$$= (n+1) \sum_{j=1}^{q} \overline{N}_D(r, S_{p+j}) + S(r).$$

Then we may assume that there exists a Borel subset I of $[1, +\infty)$ whose measure $|I| = +\infty$ and

(3.2)
$$\left[\frac{2\{N-2-n(n+1)\}}{(n+1)q} + o(1) \right] \sum_{j=1}^{n+1} T(r, f_j)$$

$$\leq \sum_{j=1}^{2} \overline{N}_D(r, S_{p+j}) \quad (r \in I),$$

by rearranging S_{p+1}, \dots, S_{p+q} , if necessary. By Lemma 3, we can take a Möbius transformation T such that $T(S_{p+1}), T(S_{p+2})$ are subsets in C and the sum of all elements of each $T(S_j)$ is the origin for j = p+1, p+2. Put $\Psi = \sum_{j=1}^{n+1} T \circ f_j$. Assume that $\Psi \not\equiv 0$. If $f_1(z), \dots, f_{n+1}(z)$ are distinct elements of $S_{p+1} \cup S_{p+2}$, then $\Psi(z) = 0$. Hence we have, by (3.2),

$$\left[\frac{2\{N-2-n(n+1)\}}{(n+1)q} + o(1)\right] \sum_{j=1}^{n+1} T(r, f_j)$$

$$\leq \overline{N}(r, 1/\Psi) \leq \sum_{j=1}^{n+1} T(r, f_j) + O(1) \quad (r \in I).$$

Therefore we obtain the estimate

$$2\{N-2 - n(n+1)\} \le (n+1)q,$$

which is equivalent to

$$m_1 + \dots + m_p + \frac{(n+1)q}{2} \le n(n+1) + 2.$$

So by assumption we conclude $\Psi \equiv 0$, which implies the conclusion of Theorem 1.

Remark. If we omit, in (3.1), terms $\overline{N}_E(r, S_j)$ $(j = p + 1, \dots, p + q)$, then by the second main theorem we have

$$(m_1 + \dots + m_p - 2)T(r, f_k) \le \sum_{j=1}^p \overline{N}_E(r, S_j) + S(r)$$

$$\le \overline{N}(r, 1/\Phi) + S(r) \le n \sum_{j=1}^{n+1} T(r, f_j) + S(r)$$

for $k = 1, \dots, n + 1$, and hence

$$(m_1 + \dots + m_p - 2) \sum_{k=1}^{n+1} T(r, f_k)$$

$$\leq (n+1) \overline{N}(r, 1/\Phi) + S(r)$$

$$\leq n(n+1) \sum_{j=1}^{n+1} T(r, f_j) + S(r).$$

Therefore we obtain the inequality

$$m_1 + \dots + m_p \le n(n+1) + 2.$$

In the above remark the last inequality holds under the assumption $\Phi \not\equiv 0$. Therefore we have

Theorem 4. Let n be a positive integer and let S_1, \dots, S_p be pairwise disjoint non-empty finite sets in \overline{C} with at most n elements, where p is a positive integer. Let $m_j = \sharp S_j$ be the number of elements of S_j . Assume that n+1 nonconstant meromorphic functions f_1, \dots, f_{n+1} on C share S_1, \dots, S_p IM. If $m_1 + \dots + m_p > n(n+1) + 2$, then at least two of f_1, \dots, f_{n+1} are identical.

Also, we get the following corollaries of Theorem 1:

Corollary 5. Let n be a positive integer and let S_1, \dots, S_{p+q} be pairwise disjoint finite sets in \overline{C} , where p and q are integers with $p \geq 0$ and $q \geq 2$. Assume that $\sharp S_j = n$ for $j = 1, \dots, p$, $\sharp S_{p+j} = n+1$ for $j = 1, \dots, q$ and $np + \frac{(n+1)q}{2} > n(n+1) + 2$. If n+1 mutually distinct nonconstant meromorphic functions f_1, \dots, f_{n+1} on C share S_1, \dots, S_{p+q} IM, then there exists a Möbius transformation T such that $T(f_1) + \dots + T(f_{n+1}) = 0$.

Corollary 6. Let n be a positive integer and let S_1, \dots, S_{p+q} be pairwise disjoint finite sets in \overline{C} , where p and q are integers with $p \geq 0$ and $q \geq 2$. Assume that $\sharp S_j = 1$ for $j = 1, \dots, p$, $\sharp S_{p+j} = n+1$ for $j = 1, \dots, q$ and $p + \frac{(n+1)q}{2} > n(n+1) + 2$. If n+1 mutually distinct nonconstant meromorphic functions f_1, \dots, f_{n+1} on C share S_1, \dots, S_{p+q} IM, then there exists a Möbius transformation T such that $T(f_1) + \dots + T(f_{n+1}) = 0$.

Corollary 7. Let n be a positive integer and let S_1, \dots, S_q be pairwise disjoint (n+1)-point sets in \overline{C} , where q is a positive integer. Assume that

 $q > 2n + \frac{4}{n+1}$. If n+1 mutually distinct nonconstant meromorphic functions f_1, \dots, f_{n+1} on C share S_1, \dots, S_q IM, then there exists a Möbius transformation T such that $T(f_1) + \dots + T(f_{n+1}) = 0$.

4. Proof of Theorem 2. For the proof we may assume that any S_j does not contain ∞ . Let a_j be the unique element of S_j $(j = 1, \dots, 4)$. If $1 \le k, l \le n+1$ and $k \ne l$, then by the second main theorem and by the first main theorem

$$2T(r, f_k) \le \sum_{j=1}^4 \overline{N}\left(r, \frac{1}{f_k - a_j}\right) + S(r, f_k)$$
$$\le \overline{N}\left(r, \frac{1}{f_k - f_l}\right) + S(r, f_k)$$
$$\le T(r, f_k) + T(r, f_l) + S(r, f_k).$$

Hence we have $T(r, f_k) \leq T(r, f_l) + S(r, f_k)$ and $T(r, f_l) \leq T(r, f_k) + S(r, f_k)$. It follows that $S(r, f_k) = S(r, f_l)$ and

(4.1)
$$T(r, f_l) = T(r, f_k) + S(r),$$

where $S(r) = S(r, f_k)$ as in the proof of Theorem 1. Also, we have

$$(4.2) 2T(r, f_k) = \sum_{j=1}^4 \overline{N}\left(r, \frac{1}{f_k - a_j}\right) + S(r)$$
$$= \overline{N}\left(r, \frac{1}{f_k - f_l}\right) + S(r).$$

Put $S_5 = \{a_5, \dots, a_{n+5}\}$, then we have

$$(n+3)T(r,f_k) \le \sum_{j=1}^{n+5} \overline{N}\left(r, \frac{1}{f_k - a_j}\right) + S(r)$$
$$= 2T(r,f_k) + \sum_{j=5}^{n+5} \overline{N}\left(r, \frac{1}{f_k - a_j}\right) + S(r)$$
$$\le (n+3)T(r,f_k) + S(r)$$

for $k = 1, \dots, n + 1$. It follows from this that

(4.3)
$$\sum_{j=5}^{n+5} \overline{N}\left(r, \frac{1}{f_k - a_j}\right) = (n+1)T(r, f_k) + S(r).$$

Take distinct k, l with $1 \le k, l \le n + 1$. Let $\overline{N}_0(r, \frac{1}{f_k - f_l})$ be the reduced counting function of the zeros of $f_k - f_l$ outside $f_1^{-1}(S_1 \cup \cdots \cup S_4)$. Then we get, by (4.2),

$$(4.4) \overline{N}_0 \left(r, \frac{1}{f_k - f_l} \right)$$

$$= \overline{N} \left(r, \frac{1}{f_k - f_l} \right) - \sum_{j=1}^4 \overline{N} \left(r, \frac{1}{f_k - a_j} \right)$$

$$= S(r).$$

Let $\overline{N}_D(r, S_5)$ be the reduced counting function which counts the points $z \in f_1^{-1}(S_5)$ such that $f_1(z), \dots, f_{n+1}(z)$ are all distinct. Then, we have, by (4.3),

$$\overline{N}_D(r, S_5) \le \sum_{j=5}^{n+5} \overline{N} \left(r, \frac{1}{f_k - a_j} \right)$$
$$= (n+1)T(r, f_k) + S(r)$$

and, by (4.3) and (4.4),

 $\overline{N}_D(r, S_5)$

$$\geq \sum_{j=5}^{n+5} \overline{N} \left(r, \frac{1}{f_k - a_j} \right) - \sum_{1 \leq l < m \leq n+1} \overline{N}_0 \left(r, \frac{1}{f_l - f_m} \right)$$

$$= (n+1)T(r, f_k) + S(r).$$

Therefore

(4.5)
$$\overline{N}_D(r, S_5) = (n+1)T(r, f_k) + S(r)$$

is obtained. Also, from the second main theorem for f_1 and a_1, \dots, a_4 , we may assume that there exists a Borel set $I \subset [1, +\infty)$ whose measure $|I| = +\infty$ and that

$$(4.6) \quad \overline{N}\left(r, \frac{1}{f_1 - a_1}\right)$$

$$\geq \frac{1}{2}T(r, f_1) + o(T(r, f_1)) \quad (r \in I)$$

by rearranging a_1, \dots, a_4 , if necessary. By Lemma 3, we can take a Möbius transformation T such that

$$T(a_1) = \sum_{j=5}^{n+5} T(a_j) = 0$$
, and put $\Psi = T(f_1) + \cdots + T(f_{n+1})$. Assume that $\Psi \not\equiv 0$. Then by (4.1) we have

$$T(r, \Psi) \le \sum_{k=1}^{n+1} T(r, f_k) + O(1)$$

= $(n+1)T(r, f_1) + o(T(r, f_1)) \quad (r \in I)$

and

$$\overline{N}_D(r, S_5) + \overline{N}\left(r, \frac{1}{f_1 - a_1}\right) \le \overline{N}(r, 1/\Psi).$$

Therefore we obtain, by (4.5), (4.6) and these inequalities,

$$(n+1)T(r,f_1) + \frac{1}{2}T(r,f_1) + o(T(r,f_1))$$

$$\leq \overline{N}(r,1/\Psi) + o(T(r,f_1)) \leq T(r,\Psi) + o(T(r,f_1))$$

$$\leq (n+1)T(r,f_1) + o(T(r,f_1)) \quad (r \in I),$$

which is a contradiction. Hence $\Psi \equiv 0$, which implies the conclusion of Theorem 2.

References

- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [2] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der Meromorphen Funktionen, Acta Math. 48 (1926), no. 3-4, 367-391.
- 3] M. Shirosaki, On meromorphic functions sharing five one-point or two-point sets IM, Proc. Japan Acad. Ser. A Math. Sci. **86** (2010), no. 1, 6–9.