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Finite sum Cauchy identity for dual Grothendieck polynomials

By Alain LAScoux* and Hiroshi NARUSE*")

(Communicated by Masaki KASHIWARA, M.J.A., June 12, 2014)

Abstract:

We notice that dual Grothendieck polynomials are specializations of some

vexillary Schubert polynomials. Hence they have determinantal expressions in terms of complete
or elementary symmetric functions, as well as a description in terms of tableaux and Giambelli
type formula. We give for them a finite sum Cauchy identity.
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This is a joint work while the first author
(Alain Lascoux) visited Okayama University. Un-
fortunately he passed away recently, and the second
author is responsible for the final form of this paper.

We shall need symmetric functions of a differ-
ence of alphabets, the definition of which we recall.
For more considerations about A-rings and their use
in the theory of symmetric functions, see [6].

Given two sets of variables (we say alphabets)
A B, the complete functions sy(A —B) are given
by the generating function

i Fsi(A —B) = H(l — 2b) H(l —za)""
=0

beB acA

In particular, when one adds r letters spe-
cialized to 1 to one of the two alphabets, one has

Z Fs(A—B=£r)

k=0
A7 [ =2b) ] = 20)7".

= (1—
beB acA

MultiSchur functions are determinants in the
complete functions, which can be expressed as a
Jacobi-Trudi type determinant with different al-
phabets in rows

S)\(A1 - Bl, e ,An — Bn) = det(SA,+j,i(Ai — Bz))

The symmetric group &, acts on the ring of
polynomials in x, = {z1,...,2,}, with coeflicients
in other alphabets. Specifically, the simple trans-
position s;, i=1,...,n—1, acts by transposing
T;, Tit+1, fixing the other variables. The action is
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denoted exponentially f — f%. The divided differ-
ence 0;, acting on its left, is the operator

1) f(x0) = f(x0) 0 = (f = F) (i — wi1)

To any permutation o € G,, corresponds a divided
difference 0, which may be obtained as a product of
0; corresponding to a reduced decomposition of o.
The divided difference 9, associated to the maximal
permutation w = [n,...,1] can also be interpreted
as the Cauchy-Jacobi operator [6, Prop. 7.6.2]

N 1 o) po i )

f Z(;( )X

Notice that, given n functions fi,...,f, of

a single variable, the image of the product
fi(z1) ... fu(zy,) under 9, is equal to

det(fi(x;))A(xa) "
Thanks to the Newton interpolation formula in one

variable, one can rewrite this quotient as a single
determinant (see [6]):
fl(xl) cee fn(xn) 0.,
= (=1)®) det(fi(21)1 ... 0}) i1 ,
j=0...n—1
where an empty product of divided differences
stands for the function evaluated in x;.

When fi,..., f, are just powers of a single
variable, one obtains a determinant of complete
functions of the flag of alphabets x; < x5 — ... —
x, that one can transform by linear combination of
columns into the usual Jacobi-Trudi determinant of
complete functions of the same alphabet x,,.

Grothendieck polynomials are the classes, in
K-theory, of the structure sheaves of Schubert
subvarieties of the flag variety [5]. In the case of
Grafimannian permutations, it have been defined in
[4, Th. 4.4] as image of
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) under 2”0, where p=
z;

i+j<diagram of A + p
[n—1,...,0]. Specializing all y; to 1 and changing
variables 1 — % — x;, the Grothendieck polynomial
becomes Gy = z*P(1 —x5)--- (1 —x,)"'9,. The

change of variables transforming 2z, into
(1—mo)---(1— x,,,)”*law. Thus
G)\(X ) — ML 0](1 _ x2) B (1 _ xn)n—l d,,

Therefore, one has

(2) Ga(xn) =

(71)(3) S)u,>\2+1,...,)\,7,+71,—1(Xna Xp — ]-a o
expression given by Lenart [9].

One finds in the literature [1-3,11], still in the
GraBmannian case, dual Grothendieck polynomials
gx. They first appear in an implicit form in Buch’s
paper ([2]). Buch gives a Pieri-type formula for the
coproduct on Grothendieck polynomials. By duality
this formula may be used to uniquely define a basis,
which are the dual Grothendieck polynomials. So
this defines dual Grothendieck polynomials as the
dual basis to Grassmannian Grothendieck polyno-
mials. The determinantal definition of dual Gro-
thendieck polynomial, as well as its equivalence
with the duality definition, is due to Shimozono and
Zabrocki ([11]). The Cauchy identity and the
duality formulation, are equivalent.

Let us define the dual Grothendieck polyno-
mials, using J,,, by

gA(XH) = (ﬁ 5)\1+n—72(1'1', +1— 1)) Op-

i=1

SXp—n+1)

Thus a dual Grothendieck polynomial is still a
discrete Wronskian that one identifies with a
multiSchur function (in the case of an increasing
or decreasing sequence of alphabets, one also uses
the term flagged Schur function cf. [12]):

(3)  ga(xn) =sx(xXp,xp +1,...,x, + 0 —1).

However, the Schubert polynomial Yj.1,(x;0) is
equal to ([6])

SA(Xn;Xn+17 cee 7X2n71)-

Therefore, gx(x,) is equal to the specialization
Tpi1 = 1= Xpio =+ = x9,_1 of the Schubert poly-
nomial Yy 5(x;0).

[Vol. 90(A),

Explicitly, one has for any integers k,r,

wle =3 (" st

=0
the flagged Schur function (3) being equal to the
determinant

(4) 9 (xp) = det(sy4j-i(xp +i —1)).

Schubert polynomials Y,(x;y) satisfy a sym-
metry property exchanging x and y. In the present
case, with p the partition conjugate to A, this
property reads

Yoa(%0) = (1) M¥p0,(05 ),

the second function being a determinant in the
elementary symmetric functions of x,.,, that one
specializes to x, +r as before. Thus, simplifying
signs, one has

(5) ga(x,) = det(ey,4j-i(Xn + pi — 1)).

Any vexillary Schubert polynomial Y,(x;0) is
equal to the Demazure character K, of the same
index, and thus possesses the same description
in terms of tableaux satisfying a flag property
(see [8]). Explicitly, Yp.1 \(x;0) is equal to the sum
of all tableaux of shape Ain 1,...,2n — 1, the letter
2n — 1, for i =1,...,n — 1, being permitted in rows
1,...,% only (counting from top).

Therefore, the function gy is obtained from this
set of tableaux, giving weight x; to ¢, for ¢ < n, and
weight 1 to ¢, for i > n:

6) () = Yoa(z, -

This coincides with the description of gy in terms of
elegant fillings given in [3].

As flagged Schur function has Giambelli type
determinantal formula ([10]), we can express gy as a
determinant using hook partitions.

If A= (al,ag, . ,ar|b1,b2, .
notation, then

Proposition 1.

ST, 1,105 0).

,b;):  Frobenius

gr(xn) = det (ng{j)bj) (Xn)>

TXT

where

iy (%)

N pi—2\ (g2
= 9la—pl—) (Xn)
p=0 ¢=0 p q
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min(4,5) . .
a+i—t\ [b+j5—1
+ .
> ()00
Proof. Flagged Schur function s) (X, Xn41, - - -
Xon—1) has Giambelli type formula ([10]),
3 X2p-1)

= det(s(a,‘,\bj) (Xn+i—17 Xn+jy Xn+j+1 - -

SA(Xna Xn41s- -
: 7X2n—1))-

Actually the formula in [10] is a special case but we
can use Bazin’s formula [6] to prove the formula
above. Then it is enough to prove

S(ai\bj)(xnﬂf—lv Xntjy Xntjtly- - ,in—1)|;,;"+1:xn+2:...:1

=y o)

In tableaux formula s, p,)(Xn+i—1, Xntjs Xnsjrls -« -
Xon-1) = pal cf. [12], we consider the number
T(1,1) of a tableau T of shape (a;|b;) which satisfies
the flag condition i.e., 1 <T(1,1) <n+i—1 and
T(1,1)<n+j—1. If T(1,1) >n then by the
specialization z,.1 = X, = --- =1, the product
becomes ! =1. If we set t =T(1,1) —n + 1, the
number of such tableaux is (a’j;f*t> (b’:fft) which
explains the second term. For the case T(1,1) < n,
we can sum over the tableaux according to the
length of the parts with entries greater than n. The
tableaux with the number of such box in the first
row is p and the number of such box in the first
column is g form g, p|p,—)(Xx) and the multiplicity

atij=2) 0

ofitis (+1)
p q

Adding one extra letter y to the argument of a
symmetric function is a way to obtain a combina-
torial description of this function. For example, in
the case of a Schur function, one obtains that the
letter y occupies an horizontal strip. In the case of
an Hall-Littlewood polynomial, one obtains a com-
binatorial description in terms of plane partitions
[7]. This is also the case for the dual Grothendieck
polynomial, as shows the next proposition.

Proposition 2. Let A\ be a partition. Then

(7) a0+ y) =Yy g, (x),

HCA

where c(\/p) is the number of non-empty columns of
the skew diagram of \/u.

Proof. Let A, be the set of semistandard
tableaux with shape A and entries in 1 <2 < --- <
n<y<n+1l<n4+2--- such that n+1 is in the
row ¢ or above (in French display) for each i =
1,2,---. Let By be the set of semistandard tableaux
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with a shape p which is contained in A and entries in
1<2<---<n<n+1<n+2--- such that n+1
is in the ¢ + 1-st row or above for each i =1,2,---.
Then by the tableaux expression of flagged Schur
function it is sufficient to construct a bijection
¢ : Ay — B, such that the number of y’'sin T € A,
is equal to the number of columns in A/p where y is
the shape of ¢(T). We say a number n+i in a
tableau T' € A, is in the extremal row if it is in the
i-th row of T from the bottom. We define a map ¢ as
follows. We use the restricted jue de taquin, which
means that we can swap empty box and a neigh-
bouring number as usual jue de taquin but one can
move the number n+4 up to i-th row. Given a
tableau T € A), we fix elements in extremal rows in
T and replace all y’s to 2’s. Then proceed the
restricted jue de taquin to move 2’s as if they are
vacant boxes. When z is in the right most position,
remove the z and the above boxes of the same
column (if there are). When all these procedures are
terminated, the resulting tableau is ¢(7T'). From the
construction it is easy to see that it satisfies the
required properties. ([l

Iterating this addition, one recovers the de-
scription of dual Grothendieck polynomials in terms
of reverse plane partitions given by Lam and
Pylyavskyy [3] (we combine two of their results,
to account for the choice of a finite alphabet).

Corollary 3. For any plane partition T,
define z* to be the product [], :EZ-TO'), where T(1) is
the number of columns containing at least one entry
equal to i. Let A be a partition. Then

g(x) = Z z’.
T

To obtain a Cauchy formula, we need more
properties of multi-Schur functions.

Functions f(z1,...,%p, Tpt1,...,2s), which are
symmetrical in z1,...,z, and z,41,..., T, separate-
ly, can be symmetrized using the divided difference

By = (00 1)(Op1 -+ On2) - (B ...0,).

In fact d,), is a factor of 0,, and one has for such
functions

fla, ... ,xn)ap‘q =g(x1,...,2,)0,,
where g¢g(z1,...,2,) is any function such that
9(151, ceey xn)ap,...,l,n,...,erl = f(xla ey xn)

In particular, one has the following lemmas.
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Lemma 4. Let n=p+gq, veN! x,= .
{z1,...,2,}, B be arbitrary. Then x Z HS/\ +n-1(@i —i+1)
A<rnt =1
8 ot (T, . »—B)o -
(8) Sy+p (l'p-;l;; +x o ) plg X Sxni(yi +1— 1+ k) 900
= (=1 su(xn ) Then
Lemma 5. Let k,neN, e N"', A B be
arbitrary. Then (12)  F(xpyniri k) = Z sx(Xn)sx(yn + k).

9)  Sppn-1(z1 £ A)sp(zo+---+2,£B) 0. ..
= Skm’(xn :l: A_, Xn :l: B)

anfl

Multi-Schur functions are a little more delicate
to use than Schur functions of a difference of
alphabets. The following lemma gives an example
where passing to the inverse variables simplify the
function.

Lemma 6. Letn =p+q, A of cardinality n,
B of cardinality p, v € N9, r be an integer such that
v<rl. Put X={a':ae€A}, Y={b':beB}.
Then

(10) Sypiy4pa (A, A — B) = Spn (A)qu(B> 87-4/U(X - Y)
Lemma 7. Letn=p+q,r€ N, ande € NP.

Let A;B be arbitmry, and Z be of cardinality p.
Denote 2V = {z7': z€ Z}. Then

1) ) swwipn(AsA = Z)s.,(B; B+ 2Y)

v<rd
§ Spp, u S. V )

v<ri

= Sqﬂ

sum over all increasing partitions v with q parts not
bigger than r.

Proof. The two sides of the equation involve
only Schur functions s)(A), sy(B) with ¢(\) <n
Thus the equation is true if it is true for A =
{z71,...,2;'} = XV. However, according to (10),
the left-hand side rewrites into

)Y Sup(X = Z2Y)s0(B; B + Z)

v<rit

= S (A)sqp(Z)s. #(B; B+ X)

sm(A)sp(Z

= 5m(A)sp(Z Z 8pa /1 (X)Se(B).
v<ri
Going back to the alphabet A, one obtains that the
sum is equal to the right-hand side of (11). O

We introduce a function F(z1,...,z.; 41, -,
Yn; 7, k) which will play the role of a Cauchy kernel.

Proposition 8. Given n,r e N, k€Z, w=
... 1], xp ={x1,. .., z0}, Yo = {y1, .- Unt, let

F(xuynim k) = (1))

A<

Proof. Factorizing 9, = 0,0 ...
writes the function as

n—1
Z( Z H Tiy1 — 1 S;L,+n 2(x1+1 -1+ 1)

A <r /1<)\T’ L=

On_1, one re-

X Slt171+rl_1—¢(yi+1 +i—1+ k + 1) 85/63/)

X Sx4n-1(T1)Snn-1(y1 + k) OF ... 0;_10] ... 0.

By induction on n, the operator 9%, produces the
function F(xo,...,ZTn; Y2, Yn;7, k+ 1) times the
factor (zg —1)...(x, — 1) which commutes with it.

The sum to compute has become

Z Z (3)\1+n71($1)8#(x2 + .+ xn)

AL<r ;LS)\’I”I
X (xg—1)...(x, — 1))
X (Sxtn—1(y1 +K)su(yo + - +yn + b+ 1))
X Of..0n 0O

The symmetrization formula (9) gives

Z Z Sapprtn-1 (Xns X, — 1)

M <r #S)\rlr—l
X SAl?lb(yn, + k; yn + k —|— 1)

Formula (11) disposes of the shift by £1 in final the
function is equal to

Z SA(XH)SA(YIL + k)

A<rn

= F(Xp;y,; 7, k)

and the proposition is proved. (I

For k =0, the function F(x,;y,;r,0) is a sum
of products of Grafmannian Grothendieck polyno-
mials times dual Grothendieck polynomials, and
one obtains the following finite Cauchy identity as a
corollary of the preceding proposition.

Theorem 9. Letn,r be two positive integers.
Then

(13) Z GA(XH) g>\(yn) - Z S/\(X") 5)\(yn)'

A< A<
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Using the involution on symmetric functions
f — f~ which exchanges elementary and complete
functions, one can also write

Z G)\(xﬂ) (g)\(yn))N = Z S)\(X’ﬂ) S~ (y”)

A<rn A<

= H (1 +ziy;).

i<nj<n

Letting n ends towards infinity gives the
Cauchy formula due to Lam and Pylyavskyy [3].

D Ga(x) DYoo) = D 53 (%0) 53 (Vo)

) A
- H(1 - Iiyj)fl-
]
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