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Abstract: We accomplish the classification of the reductive symmetric pairs ðG;HÞ for

which the dimension of the space HomHð�jH; �Þ of H-intertwining operators is finite for any

irreducible smooth representation � of G and for any irreducible smooth representation � of H.
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1. Finite-multiplicity in induction and

restriction. One of the basic problems in repre-

sentation theory is to understand how a given

representation is decomposed into irreducible rep-

resentations. Given a pair of groups G � H, there

are two important settings for this problem:

I) (Induction) For a simple H-module � , un-

derstand IndGHð�Þ as a G-module.

II) (Restriction) For a simple G-module �,

understand �jH as an H-module.

We shall highlight the case where G is a real

reductive linear Lie group.

Concerning Induction Problem (I), a special

case is the unitary induction IndGHð�Þ from the

trivial one-dimensional representation � ¼ 1 of H,

which is unitarily equivalent to the regular repre-

sentation of G on L2ðG=HÞ if G=H admits a

G-invariant Radon measure. Its irreducible decom-

position is called the Plancherel-type theorem for

G=H, and the theory has been developed exten-

sively for reductive symmetric pairs ðG;HÞ over

several decades since the pioneering work of the

Gelfand school and Harish-Chandra. Such a suc-

cessful analysis is built on the following finiteness

property [1]: For any reductive symmetric pair

ðG;HÞ and for any irreducible admissible represen-

tation �:

dim HomGð�; C1ðG=HÞÞ <1:ð1:1Þ

We note that the finite-multiplicity property (1.1)

holds not only for irreducible unitary represen-

tations but also for non-unitary representations

�. More strongly, there exists a constant C �
CðG;HÞ <1 such that

dim HomGð�; C1ðG=HÞÞ � C;

for any irreducible smooth representation � of G, as

far as GC=HC is spherical, see [15, Theorem A].

Concerning Restriction Problem (II), the H-

irreducible decomposition of the restriction �jH is

called the branching law.

If H is a maximal compact subgroup K of the

reductive group G, then for any irreducible unitary

representation � of G, we have the following

admissibility theorem of Harish-Chandra [4]:

dim HomKð�; �jKÞ <1ð1:2Þ

for any irreducible (finite-dimensional) representa-

tion � of K. Equivalently, the condition (1.2) can be

replaced by

dim HomKð�jK; �Þ <1ð1:3Þ

because K is compact. Harish-Chandra’s admissi-

bility theorem has led to the concept of ðg; KÞ-mod-

ules, providing us with an algebraic powerful tool

in studying irreducible unitary representations of

reductive Lie groups.

A continuous representation � of a real re-

ductive group G of finite length on a complete,

locally convex topological vector space is called

admissible if (1.2) is satisfied. We say � is an

admissible smooth representation (sometimes refer-

red to as a smooth Fréchet representation of

moderate growth [22, Chapter 11]) if � is realized

in the space of smooth vectors of a Banach
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representation of finite length. An irreducible

admissible smooth representation will be called an

irreducible smooth representation in this article for

simplicity. By the Casselman–Wallach globaliza-

tion theory, there is a canonical equivalence of

categories between the category of ðg; KÞ-modules

of finite length and the category of admissible

smooth representations of G.

In contrast to the Riemannian symmetric pair

ðG;KÞ, it is notorious that a finite-multiplicity

theorem for the restriction (see (1.3)) may fail for

reductive symmetric pairs ðG;HÞ, namely, it may

well happen that

dim HomHð�jH; �Þ ¼ 1

for some irreducible smooth representation � of G

and some irreducible smooth representation � of H.

Here HomHð ; Þ denotes the space of continuous

H-homomorphisms.

An opposite extremal case is that the restric-

tion �jH is still irreducible as an H-module. This is

rare but still happens for (infinite-dimensional)

irreducible representations � and for reductive

symmetric pairs ðG;HÞ, see [11].

A special case of a symmetric pair is the group

case

ðG;HÞ ¼ ðG0 �G0; diagG0Þ;

for which the branching problem (II) deals with the

decomposition of the tensor product of two irredu-

cible representations of G0. Even in this case, the

branching laws do not always behave nicely. For

example, the tensor product of two irreducible

unitary principal series representations of a simple

group such as SLðn;RÞ ðn � 3Þ involves infinite

multiplicities in the irreducible decomposition.

See [7,9–11] for more details about ‘‘bad behav-

iours’’ and ‘‘good behaviours’’ of the restriction with

respect to symmetric pairs.

These observations suggest that the condition

that H is a maximal reductive subgroup of G would

be too general to develop a concrete analysis of

branching laws of irreducible unitary representa-

tions of G. In other words, one could expect detailed

analysis on branching laws only if we were able to

discover ‘‘very nice frameworks.’’ Indeed, the analy-

sis of branching laws has been developed exten-

sively in the following nice settings:

(1) (Theta correspondence, Howe’s dual pair) �

is the metaplectic representation of G ¼

Mpðn;RÞ and H ¼ H1 �H2 is a dual pair in

G [5].

(2) (Admissible restriction) The restriction �jH is

H-admissible, i.e., it decomposes discretely

into a direct sum of irreducible representations

of H with finite multiplicities [7,9,10].

These examples impose strong constraints on the

representation � of G. For instance, in the theta

correspondence (1), the representation � attains

its minimum Gelfand–Kirillov dimension among all

infinite-dimensional representations of G. The re-

cent papers [16,17] gave a classification of the

triples ðG;H; �Þ for which the admissibility of the

restriction (2) holds in the setting that ðG;HÞ is a

reductive symmetric pair and � is relatively ‘‘small’’

(e.g., Zuckerman’s derived functor modules, mini-

mal representations, etc.).

In this article, we consider a more general

framework, and try to relax any assumption on �

such as ‘‘small’’ representations. Thus, we wish to

understand clearly for which pairs ðG;HÞ of reduc-

tive groups we could expect that the branching laws

�jH behave reasonably for arbitrary irreducible

representations �. To be more precise, we ask

whether a given pair ðG;HÞ satisfies the following

finite-multiplicity property for the restriction of

admissible representations:

(FM) (Finite-multiplicity restriction)

dim HomHð�jH; �Þ <1, for any admissible

smooth representation � of G and for any

admissible smooth representation � of H.

The main results of this paper were announced

in the conferences ‘‘Group Actions with Applica-

tions in Geometry and Analysis’’ at Reims Univer-

sity (France) in June, 2013 and in ‘‘Representations

of Reductive Groups’’ at the University of Utah

(U.S.A.) in July, 2013.

Detailed proofs are given in [13–15].

2. Statement of main results. Here is the

complete classification of the reductive symmetric

pairs ðG;HÞ having the property (FM).

Theorem 1. Suppose ðG;HÞ is a reductive

symmetric pair. Then the following two conditions

are equivalent:

(i) ðG;HÞ satisfies the finite-multiplicity property

(FM) for restriction of admissible smooth

representations.

(ii) The pair of the Lie algebras ðg; hÞ is isomorphic

(up to outer automorphisms) to the direct sum
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of the following pairs:

A) Trivial case: g ¼ h.

B) Abelian case: g ¼ R, h ¼ f0g.
C) Compact case: g is the Lie algebra of a

compact simple Lie group.

D) Riemannian symmetric pair: h is the Lie

algebra of a maximal compact subgroup K

of a non-compact simple Lie group G.

E) Split rank one case ðrankR G ¼ 1Þ:
E1) ðoðpþ q; 1Þ; oðpÞ þ oðq; 1ÞÞ

ðpþ q � 2Þ.
E2) ðsuðpþ q; 1Þ; sðuðpÞ þ uðq; 1ÞÞÞ

ðpþ q � 1Þ.
E3) ðspðpþ q; 1Þ; spðpÞ þ spðq; 1ÞÞ

ðpþ q � 1Þ.
E4) ðf4ð	20Þ; soð8; 1ÞÞ.

F) Strong Gelfand pairs and their real forms:

F1) ðslðnþ 1;CÞ; glðn;CÞÞ ðn � 2Þ.
F2) ðoðnþ 1;CÞ; oðn;CÞÞ ðn � 2Þ.
F3) ðslðnþ 1;RÞ; glðn;RÞÞ ðn � 1Þ.
F4) ðsuðpþ 1; qÞ; uðp; qÞÞ ðpþ q � 1Þ.
F5) ðoðpþ 1; qÞ; oðp; qÞÞ ðpþ q � 2Þ.

G) Group case: ðg; hÞ ¼ ðg0 þ g0; diag g0Þ
G1) g0 is the Lie algebra of a compact

simple Lie group.

G2) g0 ’ oðn; 1Þ ðn � 2Þ.
H) Other cases:

H1) ðoð2n; 2Þ; uðn; 1ÞÞ.
H2) ðsu�ð2nþ 2Þ; suð2Þ þ su�ð2nÞ þRÞ

ðn � 1Þ.
H3) ðo�ð2nþ 2Þ; oð2Þ þ o�ð2nÞÞ ðn � 1Þ.
H4) ðspðpþ 1; qÞ; spðp; qÞ þ spð1ÞÞ.
H5) ðe6ð	26Þ; soð9; 1Þ þRÞ.

For the ‘‘group case’’ (G), Theorem 1 implies

the following:

Corollary 2. Suppose G is a simple Lie

group. Then the following three conditions on G

are equivalent:

(i) For any triple of admissible smooth represen-

tations �1, �2, and �3 of G,

dim HomGð�1 
 �2; �3Þ <1:

(ii) For any triple of admissible smooth represen-

tations �1, �2 and �3 of G, invariant trilinear

forms are finite-dimensional:

dim HomGð�1 
 �2 
 �3;CÞ <1:

(iii) Either G is compact or g is isomorphic to

oðn; 1Þ ðn � 2Þ.

3. Uniformly bounded multiplicities. In

addition to the aforementioned finite-multiplicity

property (FM), we consider the following two

properties on a pair of reductive groups ðG;HÞ:
(BM) (Bounded-multiplicity restriction) There

exists a constant C � CðG;HÞ <1 such

that

dim HomHð�jH; �Þ � C;

for any irreducible admissible representa-

tions � and � of G and H, respectively.

(MF) (Multiplicity-free restriction) One can take

C to be 1 in (BM), namely,

dim HomHð�jH; �Þ � 1

for any irreducible admissible representa-

tions � and � of G and H, respectively.

Clearly, we have

(MF)) (BM)) (FM):

We note that the properties (FM) and (BM) depend

only on the Lie algebra ðg; hÞ. Moreover, we

have discovered in [15, Theorem D] that the bound-

ed-multiplicity property (BM) depends only on

the complexified Lie algebra ðgC; hCÞ � ðg
R C;

h
R CÞ. On the other hand, the multiplicity-free

property (MF) is not determined by the pair of Lie

algebras ðg; hÞ, but depends on the groups G and H

(e.g., the disconnectedness of the groups may affect

the best constant C in (BM)).

Here is the classification of symmetric pairs

ðg; hÞ satisfying the property (BM) as a subclass of

(FM):

Proposition 3. Suppose ðg; hÞ is a real re-

ductive symmetric pair. Then the following three

conditions are equivalent:

(i) For any real reductive Lie groups G � H with

Lie algebras g � h, respectively, the pair

ðG;HÞ satisfies the bounded multiplicity prop-

erty (BM) for restriction.

(ii) There exists a pair of (possibly disconnected)

real reductive Lie groups G � H such that

ðG;HÞ satisfies the multiplicity-free property

(MF) for restriction.

(iii) The pair of the Lie algebras ðg; hÞ is isomorphic

(up to outer automorphisms) to the direct sum

of pairs (A), (B) and (F1)–(F5).

The implication (ii) ) (i) is obvious as men-

tioned. The equivalence (i) , (iii) was proved in

[15, Theorem D]. The implication (iii) ) (ii) was
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proved in Sun–Zhu [21]. (Thus there are two

different proofs for the implication (iii) ) (i)). As

a more refined form of the implication (iii) ) (ii),

Gross and Prasad formulated a conjecture about

the restriction of an irreducible admissible tem-

pered representation of an inner form G of the

group OðnÞ over a local field to a subgroup which is

an inner form Oðn	 1Þ (cf. (F2) and (F4) for the

Archimedian field), [3].

Similarly to Corollary 2, we apply Proposition

3 to the group case and get the following (see [8],

[13, Corollary 4.2] for further equivalence, e.g.,

the finite-dimensionality of the space of Shintani

functions):

Corollary 4. Suppose G is a simple Lie

group. Then the following three conditions on G

are equivalent:

(i) There exists a constant C <1 such that

dim HomGð�1 
 �2; �3Þ � C;

for any irreducible smooth representations �1,

�2, and �3 of G.

(ii) There exists a constant C <1 such that

dim HomGð�1 
 �2 
 �3;CÞ � C;

for any irreducible smooth representations �1,

�2, and �3 of G.

(iii) The Lie algebra g is isomorphic to one of

suð2Þ ’ oð3Þ, suð1; 1Þ ’ slð2;RÞ ’ oð2; 1Þ or

slð2;CÞ ’ oð3; 1Þ.
4. Strategy of proof. A complex manifold

XC with action of a complex reductive group GC is

called spherical if a Borel subgroup of GC has an

open orbit in XC, and there is a vast literature on

spherical varieties. In the real setting, in search of a

good framework for global analysis on homogeneous

spaces which are broader than the usual (e.g.,

symmetric spaces), we emphasised in [8] the im-

portance of the following notion and proposed to

call:

Definition 5. A smooth manifold X with

action of a real reductive group G is real spherical

if a minimal parabolic subgroup P of G has an open

orbit in X.

In the case where G acts transitively on X, a

minimal parabolic subgroup P has finitely many

orbits in X if and only if P has an open orbit in X

by the works of Kimelfeld [6] and Matsuki [20], see

also [15, Remark 2.5] and references therein.

Representation theoretic properties (FM) or

(BM) are characterised by the geometric conditions

on real or complex flag varieties, respectively, as

follows:

Fact 6 ([15, Theorems C and D]). Suppose G

is a real reductive Lie group, and H a reductive

subgroup defined algebraically over R.

1) The finite-multiplicity property (FM) holds if

and only if ðG�HÞ=diagH is real spherical.

2) The bounded-multiplicity property (BM) holds

if and only if ðGC �HCÞ=diagHC is spherical.

Here GC is a complexification of G, and HC a

subgroup of GC with complexified Lie algebra hC ¼
h
R C.

Therefore, we can reduce the proof of Theorem

1 to a purely algebraic question, namely, the

classification of real spherical variety of the form

ðG�HÞ=diagH.

For this, it is sufficient to deal with the case

where ðg; hÞ is an irreducible symmetric pair, which

consists of two families:

1) (group case) ðg0 þ g0; diag g0Þ with g0 simple,

2) ðg; hÞ with g simple.

In the sequel, we say ðG;HÞ satisfies (PP) if

ðG�HÞ=diagH is real spherical, and (BB) if ðGC �
HCÞ=diagHC is spherical.

The classification of real spherical homogene-

ous spaces of the form ðG�HÞ=diagH with ðG;HÞ
irreducible symmetric pairs was accomplished as

follows:

Theorem 7 ([14]). For irreducible symmet-

ric pairs ðg; hÞ, the following two conditions are

equivalent:

(i) ðG�HÞ=diagH is real spherical.

(ii) ðg; hÞ is isomorphic to one of (C){(H) up to

outer automorphisms.

Remark 8. In connection with branching

problems, the classification in Theorem 7 was

established earlier in the following special cases:

1) ðg; hÞ: complex pairs (PP), (BB), (F1) or

(F2) ([19]).

2) ðg; hÞ ¼ ðg0 þ g0; diag g0Þ (group case) (PP),
(G) ([8]).

The case (1) was studied in connection with

finite-dimensional representations of compact Lie

groups, and the case (2) with the tensor product of

two representations as we saw in Corollary 2. We

also notice that ðg0 þ g0; g0Þ satisfies (PP) if and only

if the homogeneous space ðG0 �G0 �G0Þ=diagG0 is

a real spherical variety in view of the following

isomorphism:
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ðPG0 � PG0 � PG0 ÞnðG0 �G0 �G0Þ=diagG0

’ ðPG0 � PG0 ÞnðG0 �G0Þ=PG0 :
5. Concluding remarks. As mentioned at

the beginning of this article, the original motivation

of this work is to single out good pairs ðG;HÞ of

reductive groups, with which we hope to open a new

theory of geometric analysis of the branching laws

�jH of arbitrary irreducible smooth representations

� of G. We mention here some few examples of the

recent progress in this direction for some specific

pairs ðG;HÞ that appear in the list of Theorem 1:

. Analysis on invariant trilinear forms [2]

– ðG;HÞ ¼ ðG0 �G0; diagG0Þ with G0 ¼ Oðn; 1Þ,
see Corollary 2.

. Classification and explicit construction of con-

formally covariant (integral, differential, . . .)
operators [12,18].

– ðG;HÞ ¼ ðOðnþ 1; 1Þ; Oðn; 1ÞÞ, see (E1) or

(F5) in Theorem 1.
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